为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自武汉大学文本-图像跨模态行人重识别的工作。该工作由叶茫教授指导,论文一作姜定同学录制。 论文题目:Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval 作者列表: 姜定 (武汉大学)、叶茫 (武汉大学) B站观看网址: 论文摘要: Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods. 论文信息: [1] Ding Jiang and Mang Ye. 2023. Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 论文链接: [https://arxiv.org/abs/2303.12501] 代码链接: [https://github.com/anosorae/IRRA] 视频讲者简介: 姜定,武汉大学计算机学院硕士生。主要研究方向为跨模态检索。 个人主页: https://marswhu.github.io/ 特别鸣谢本次论文速览主要组织者: 月度轮值AC:叶茫 (武汉大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2024-12-26 21:14 , Processed in 0.012491 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.