为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自同济大学的噪声标签学习 (Noisy Label Learning)的工作。该工作由张博深研究员、李昱希研究员和赵才荣老师指导,论文一作涂远鹏同学录制。 论文题目:Learning with Noisy labels via Self-supervised Adversarial Noisy Masking 作者列表: 涂远鹏 (同济大学)、张博深 (腾讯优图)、李昱希 (腾讯优图)、刘亮 (腾讯优图)、李剑 (腾讯优图)、张江宁 (腾讯优图)、王亚彪 (腾讯优图)、汪铖杰 (腾讯优图)、赵才荣 (同济大学) B站观看网址: 论文摘要: Collecting large-scale datasets is crucial for training deep models, annotating the data, however, inevitably yields noisy labels, which poses challenges to deep learning algorithms. Previous efforts tend to mitigate this problem via identifying and removing noisy samples or correcting their labels according to the statistical properties (e.g., loss values) among training samples. In this paper, we aim to tackle this problem from a new perspective, delving into the deep feature maps, we empirically find that models trained with clean and mislabeled samples manifest distinguishable activation feature distributions. From this observation, a novel robust training approach termed adversarial noisy masking is proposed. The idea is to regularize deep features with a label quality guided masking scheme, which adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples. Further, an auxiliary task is designed to reconstruct input data, it naturally provides noise-free self-supervised signals to reinforce the generalization ability of models. The proposed method is simple yet effective, it is tested on synthetic and real-world noisy datasets, where significant improvements are obtained over previous methods. 论文信息: [1] Yuanpeng Tu , Boshen Zhang, Yuxi Li, Liang Liu, Jian Li, Jiangning Zhang, Yabiao Wang, Chengjie Wang, Cai Rong Zhao, “Learning with Noisy labels via Self-supervised Adversarial Noisy Masking,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR2023), Vancouver Convention Center, Jun, 2023. 论文链接: [https://arxiv.org/abs/2302.06805] 代码链接: [https://github.com/yuanpengtu/SANM] 视频讲者简介: 涂远鹏,同济大学电子与信息工程学院硕士生。主要研究为行人再识别与噪声标签学习。 个人主页: https://yuanpengtu.github.io/ 同济大学视觉与智能学习实验室主页: https://vill.tongji.edu.cn/ 特别鸣谢本次论文速览主要组织者: 月度轮值AC:叶茫 (武汉大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2024-12-26 21:39 , Processed in 0.012840 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.