为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自同济大学的网络架构搜索基准 (NAS Bench)的工作。该工作由蒋忻洋研究员和赵才荣教授指导,论文一作窦曙光同学录制。 论文题目:EA-HAS-Bench: Energy-aware Hyperparameter and Architecture Search Benchmark 作者列表: 窦曙光 (同济大学),蒋忻洋 (微软亚洲研究院),赵才荣 (同济大学),李东胜 (微软亚洲研究院) B站观看网址: 论文摘要: The energy consumption for training deep learning models is increasing at an alarming rate due to the growth of training data and model scale, resulting in a negative impact on carbon neutrality. Energy consumption is an especially pressing issue for AutoML algorithms because it usually requires repeatedly traininglarge numbers of computationally intensive deep models to search for optimal configurations. This paper takes one of the most essential steps in developing energy-aware (EA) NAS methods, by providing a benchmark that makes EANAS research more reproducible and accessible. Specifically, we present the first large-scale energy-aware benchmark that allows studying AutoML methods to achieve better trade-offs between performance and search energy consumption, named EA-HAS-Bench. EA-HAS-Bench provides a large-scale architecture/hyperparameter joint search space, covering diversified configurations related to energy consumption. Furthermore, we propose a novel surrogate model specially designed for large joint search space, which proposes a Bezier curve-based model ´ to predict learning curves with unlimited shape and length. Based on the proposed dataset, we modify existing AutoML algorithms to consider the search energy consumption, and our experiments show that the modified energy-aware AutoML methods achieve a better trade-off between energy consumption and model performance 论文信息: [1] Shuguang Dou, Xinyang Jiang, Cairong Zhao, Dongsheng Li , “EA-HAS-Bench: Energy-aware Hyperparameter and Architecture Search Benchmark,” in Proceeding of Eleventh International Conference on Learning Representations (ICLR 2023,Spotlight), Kigali Convention Center, Virtual-only, May, 2023. 论文链接: [https://openreview.net/forum?id=n-bvaLSCC78] 代码链接: [https://github.com/microsoft/EA-HAS-Bench] 视频讲者简介: 窦曙光,同济大学电子与信息工程学院博士生。主要研究为安全可信行人再识别和网络架构搜索。 个人主页: https://shuguang-52.github.io/ 同济大学视觉与智能学习实验室主页: https://vill.tongji.edu.cn/ 特别鸣谢本次论文速览主要组织者: 月度轮值AC:叶茫 (武汉大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2024-12-26 20:35 , Processed in 0.012108 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.