设为首页收藏本站

VALSE

查看: 1266|回复: 0

[CFP] a special session of VCIP'17

[复制链接]

8

主题

8

帖子

405

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
405
发表于 2017-5-4 15:53:54 | 显示全部楼层 |阅读模式
Regularization Techniques for High-Dimensional Visual Data Processing and Analysis (Special Session of VCIP'17)
The explosive growth of high-dimensional visual data in computer vision requires effective techniques to reveal the underlying low-dimensional structure and discover the latent knowledge. Over the past decades, a variety of representative methods are proposed for visual data modelling and analysis, including manifold learning, matrix factorization, subspace learning, sparse coding, and deep learning. However, they often suffer from unsatisfactory robustness and generalization ability, as well as poor theoretical interpretability. To this end, many regularization techniques have been developed and shown effective. Despite the promising progress, many problems remain unsolved, and both theoretical and technical developments are desirable to provide new insights and tools in modelling the complexity of real world visual data.

This special session aims to provide a forum for researchers all over the world to discuss their works and recent advances in algorithms and applications for advanced regularization techniques in high dimensional visual data analysis. Papers addressing interesting real-world visual computing applications are especially encouraged.

Organizers:  
    Zhangyang (Atlas) Wang, Texas A&M University, USA
    Xi Peng, Institute for Infocomm Research Agency for Science, Singapore
    Sheng Li, Northeastern University, USA

敬请大家赐稿。
【注】:special session论文和main track没有任何区别,仅是审稿人可能更是小领域专家,从而可能能更正面的评价相关工作。


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|Vision And Learning SEminar    

GMT+8, 2017-12-15 16:31 , Processed in 0.044255 second(s), 23 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表