为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览主要讲解用Re-ranking思想做深度聚类。 论文题目: Contextually Neighborhood Refinery for Deep Clustering 作者列表: Chunlin Yu, Ye Shi, and Jingya Wang B站观看网址: https://www.bilibili.com/video/BV1voxNe8E8w/?spm_id_from=333.999.0.0&vd_source=2044ac986b5caa4c8b5f00b525441df3 复制链接到浏览器打开或点击阅读原文即可跳转至观看页面。 论文摘要: Previous endeavors in self-supervised learning have enlightened the research of deep clustering from an instance discrimination perspective. Built upon this foundation, recent studies further highlight the importance of grouping semantically similar instances. One effective method to achieve this is by promoting the semantic structure preserved by neighborhood consistency. However, the samples in the local neighborhood may be limited due to their close proximity to each other, which may not provide substantial and diverse supervision signals. Inspired by the versatile re-ranking methods in the context of image retrieval, we propose to employ an efficient online re-ranking process to mine more informative neighbors in a Contextually Affinitive (ConAff) Neighborhood, and then encourage the cross-view neighborhood consistency. To further mitigate the intrinsic neighborhood noises near cluster boundaries, we propose a progressively relaxed boundary filtering strategy to circumvent the issues brought by noisy neighbors. Our method can be easily integrated into the generic self-supervised frameworks and outperforms the state-of-the-art methods on several popular benchmarks. 论文链接: [https://arxiv.org/abs/2312.07806] 代码链接: [https://github.com/cly234/DeepClustering-ConNR] 视频讲者简介: 余春霖,上海科技大学信息学院研究生,研究方向为计算机视觉,主要研究行人再识别、增量学习、自监督学习。 个人主页: https://cly234.github.io/ 特别鸣谢本次论文速览主要组织者: 月度轮值AC:于茜 (北京航空航天大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ T群,群号:863867505); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2025-2-1 09:06 , Processed in 0.014350 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.