报告嘉宾:李佳男 (北京理工大学) 报告题目:Benchmarking and Custom Schemes for Tracking Drones in the Wild 报告嘉宾:王刚 (军事科学院) 报告题目:视觉点特征:脑启发的时空计算模型及其应用 报告嘉宾:李佳男 (Beijing Institute of Technology) 报告时间:2024年4月10日 (星期三)晚上20:00 (北京时间) 报告题目:Benchmarking and Custom Schemes for Tracking Drones in the Wild 报告人简介: Jianan Li currently serves as an Assistant Professor at the Beijing Institute of Technology, where he earned his B.S. and Ph.D. degrees in 2013 and 2019, respectively. His professional journey includes positions as a Postdoctoral Fellow at the National University of Singapore and as a Research Intern at Adobe Research. His research predominantly focuses on photoelectric imaging object detection and tracking. As the first author, he has contributed to 16 publications, with four featured in IEEE TPAMI, including one recognized as an ESI highly cited paper. Furthermore, he has acted as the corresponding author for 45 papers. He has been selected for the "Young Talent Support Project" by the China Association for Science and Technology and the Beijing Association for Science and Technology. Additionally, he has received the Excellent Doctoral Dissertation Award from the China Society for Image and Graphics and the National Wang Daheng Optics Award. 个人主页: https://opt.bit.edu.cn/jsdw/jsml/gdcxyxxgcyjs/62a55332f56d4398bfb6b7cbc4b32b7b.htm 报告摘要: The detection and tracking of drones, or Unmanned Aerial Vehicles (UAVs), especially in infrared video footage, are vital for successful anti-UAV operations. Existing datasets for tracking UAVs, however, fall short in capturing the full complexity of real-world scenarios due to limitations in target size and attribute distribution. To overcome these shortcomings, we introduce a comprehensive infrared tracking benchmark, Anti-UAV410, which includes 410 videos and over 438,000 manually annotated bounding boxes. This benchmark provides essential data support for the domain. Furthermore, we have developed custom tracking schemes specifically designed to address the challenges of tracking "low, slow, and small" UAVs, including rapid movement, occlusions, and interference from complex backgrounds. These schemes significantly improve the capability for tracking drones in the wild. 参考文献: [1] Huang, Bo, Jianan Li, Junjie Chen, Gang Wang, Jian Zhao, and Tingfa Xu. "Anti-UAV410: A Thermal Infrared Benchmark and Customized Scheme for Tracking Drones in the Wild." IEEE Transactions on Pattern Analysis and Machine Intelligence. Early Access. 2023. [2] Huang, Bo, Junjie Chen, Tingfa Xu, Ying Wang, Shenwang Jiang, Yuncheng Wang, Lei Wang, and Jianan Li. "SiamSTA: Spatio-temporal attention based siamese tracker for tracking UAVs." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1204-1212. 2021. 报告嘉宾:王刚 (军事科学院) 报告时间:2024年4月10日 (星期三)晚上20:30 (北京时间) 报告题目:视觉点特征:脑启发的时空计算模型及其应用 报告人简介: 王刚,军事科学院副研究员,北京脑科学与类脑研究所青年研究员,硕士生导师。兼任中国神经学会类脑智能分会副秘书长、青工委委员。获比利时根特大学工学博士学位,研究方向为视觉计算和智能光电。主持国家自然科学基金和北京市自然科学基金等多项课题,以第一/通讯作者 (含共同)在TIP、TPAMI、ICCV等期刊或顶会上发表论文20余篇,多次在国际竞赛和会议中获得奖励。曾入选全军青年科技英才、北京市科技新星、北脑青年学者等。 个人主页: https://scholar.google.com/citations?user=YOtXJvQAAAAJ&hl=zh-CN 报告摘要: 点特征是重要的低层视觉特征,业内已经提出了诸多点特征提取方法,但是针对点特征时空域定量刻画的研究较少。生物脑视觉系统需要加工大量的点目标信息,在点特征提取方面显现出明显优势。通过神经科学与马尔视觉的交叉研究,在图像域,借鉴初级视皮层非对称感受野特性,设计了能够定量计算点特征相对强度的多尺度滤波器组,在图像去噪和群簇点目标检测等任务中具有较好的应用。在时间域,借鉴视网膜至初级视皮层视觉运动感知机制,提出了点状目标动态特征 (运动强度、运动方向)计算方法,同时能够较好地排除随机噪声、光照变化、镜头震动等干扰,以较低成本显著提高复杂环境点目标检测识别算法的性能和可解释性,基于多个数据集的评估结果验证了上述算法的有效性。 参考文献: [1] Wang G, Lopez-Molina C, De Baets B. High-ISO long-exposure image denoising based on quantitative blob characterization[J]. IEEE Transactions on Image Processing, 2020, 29: 5993-6005. [2] Yang X, Wang G, Hu W, et al. Video tiny-object detection guided by the spatial-temporal motion information[C]/Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2023: 3053-3062. [3] Wang G, Yang X, Li L, et al. Tiny drone object detection in videos guided by the bio-inspired magnocellular computation model[J]. Applied Soft Computing, 2024. [4] Huang B, Li J, Chen J, et al. Anti-UAV410: A thermal infrared benchmark and customized scheme for tracking drones in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. 主持人:赵健 (中国电信人工智能研究院 & 西北工业大学) 主持人简介: 赵健,中国电信人工智能研究院多媒体认知学习实验室 (EVOL Lab)负责人、青年科学家,西北工业大学光电与智能研究院研究员,博士毕业于新加坡国立大学,研究兴趣包括多媒体分析、临地安防、具身智能。发表CCF-A类论文40余篇,一作代表作包括2篇T-PAMI (IF: 24.314)、3篇IJCV (IF: 13.369)等,第一发明人授权国家发明专利5项,技术成果应用于百度、蚂蚁金服、奇虎360等6个科技行业领军企业。入选了中国科协及北京市科协“青年人才托举工程”,主持JKW某特区项目、国家自然青年科学基金等项目6项。曾获2023 年度中国人工智能学会吴文俊人工智能优秀青年奖、2022 年度中国人工智能学会吴文俊人工智能自然科学奖一等奖 (2/5)、CCF-A类会议ACM MM'18唯一最佳学生论文奖 (一作,1/208),7次在国际重要科技赛事中夺冠。担任北京图象图形学学会理事,国际知名期刊《Artificial Intelligence Advances》、《IET Computer Vision》编委,《Pattern Recognition Letters》、《Electronics》特刊客座编辑,VALSE资深领域主席,ACM Multimedia 2021分论坛主席,CICAI 2022/2023领域主席,CCBR 2024论坛主席,中国人工智能学会/中国图象图形学学会高级会员,“挑战杯”大学生科技作品竞赛评委,中国人工智能大赛专家委委员等。 EVOL Lab主页: https://zhaoj9014.github.io 主持人:徐天阳 (江南大学) 主持人简介: 徐天阳,江南大学副教授。2019年博士毕业于江南大学,后任英国萨里大学CVSSP博士后。目前于江南大学从事计算机视觉、多模态分析、流形学习等方向的研究工作。在IEEE TPAMI、IJCV、IEEE TIP、ICCV等国际期刊和会议上发表学术论文50余篇,谷歌学术引用3000余次。获中国图象图形学学会优秀博士学位论文奖,获CVPR/ ICCV/ ECCV举办的视频分析相关学术竞赛 (VOT、MMVRAC、Anti-UAV、AI City Challenge、Perception Test Challenge)冠亚军10项,组织CVPR/ ICPR/ PRCV反无人机论坛和多模态模式识别讲习班,任VALSE 2023大会程序委员会主席,获PRCV2022最佳学生论文奖。 个人主页: https://xu-tianyang.github.io 特别鸣谢本次Webinar主要组织者: 主办AC:赵健 (中国电信人工智能研究院 & 西北工业大学) 协办AC:徐天阳 (江南大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2025-1-3 15:48 , Processed in 0.012908 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.