VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第124期:BAM: A New Perspective on Few-shot Segmentation

2023-9-6 10:30| 发布者: 程一-计算所| 查看: 530| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自西北工业大学的少样本分割 (Few-shot Segmentation) 的工作。该工作由程塨教授指导,论文一作郎春博同学录制。


论文题目:Base and Meta: A New Perspective on Few-shot Segmentation

作者列表:

郎春博 (西北工业大学)、程塨 (西北工业大学)、屠斌飞 (西北工业大学)、李超 (之江实验室)、韩军伟 (西北工业大学)

B站观看网址:

https://www.bilibili.com/video/BV1cP411a7QR/



论文摘要:

Despite the progress made by few-shot segmentation (FSS) in low-data regimes, the generalization capability of most previous works could be fragile when countering hard query samples with seen-class objects. This paper proposes a fresh and powerful scheme to tackle such an intractable bias problem, dubbed base and meta (BAM). Concretely, we apply an auxiliary branch (base learner) to the conventional FSS framework (meta learner) to explicitly identify base-class objects, i.e., the regions that do not need to be segmented. Then, the coarse results output by these two learners in parallel are adaptively integrated to derive accurate segmentation predictions. Considering the sensitivity of meta learner, we further introduce adjustment factors to estimate the scene differences between support and query image pairs from both style and appearance perspectives, so as to facilitate the model ensemble forecasting. The remarkable performance gains on standard benchmarks (PASCAL-5i, COCO-20i, and FSS-1000) manifest the effectiveness, and surprisingly, our versatile scheme sets new state-of-the-arts even with two plain learners. Furthermore, in light of its unique nature, we also discuss several more practical but challenging extensions, including generalized FSS, 3D point cloud FSS, class-agnostic FSS, cross-domain FSS, weak-label FSS, and zero-shot segmentation. Our source code is available at https://github.com/chunbolang/BAM.


论文信息:

[1] Chunbo Lang, Gong Cheng, Binfei Tu, Junwei Han, “Learning What Not To Segment: A New Perspective on Few-Shot Segmentation,” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022.

[2] Chunbo Lang, Gong Cheng, Binfei Tu, Chao Li, Junwei Han, “Base and Meta: A New Perspective on Few-shot Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.


论文链接:

[https://ieeexplore.ieee.org/abstract/document/10098188]


代码链接:

[https://github.com/chunbolang/BAM]


视频讲者简介:

郎春博,西北工业大学博士生,研究方向为计算机视觉和图像处理,目前专注于少样本学习、语义分割和遥感图像解译。


个人主页:

https://sites.google.com/view/chunbolang/



特别鸣谢本次论文速览主要组织者:

月度轮值AC:张磊 (重庆大学)、谢雨彤 (阿德莱德大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。


小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-12-26 20:18 , Processed in 0.013147 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部