VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第93期:SEMICON—一种用于大规模细粒度图像检索的哈希学习算法 ...

2022-8-31 17:19| 发布者: 程一-计算所| 查看: 1090| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自南京理工大学的大规模细粒度图像哈希检索方面的工作。该工作由魏秀参教授指导、论文第一作者沈阳博士生录制。


论文题目:SEMICON: A Learning-to-hash Solution for Large-scale Fine-grained Image Retrieval

作者列表:沈阳 (南京理工大学),孙旭豪 (南京理工大学),魏秀参 (南京理工大学),蒋庆远,杨健 (南京理工大学)

B站观看网址:

https://www.bilibili.com/video/BV1At4y137iQ/



论文摘要:

In this paper, we propose Suppression-Enhancing Mask based attention and Interactive Channel transformatiON (SEMICON)to learn binary hash codes for dealing with large-scale fine-grained image retrieval tasks. In SEMICON, we first develop a suppression-enhancing mask (SEM)based attention to dynamically localize discriminative image regions. More importantly, different from existing attention mechanism simply erasing previous discriminative regions, our SEM is developed to restrain such regions and then discover other complementary regions by considering the relation between activated regions in a stage-by-stage fashion. In each stage, the interactive channel transformation (ICON)module is afterwards designed to exploit correlations across channels of attended activation tensors. Since channels could generally correspond to the parts of fine-grained objects, the part correlation can be also modeled accordingly, which further improves fine-grained retrieval accuracy. Moreover, to be computational economy, ICON is realized by an efficient two-step process. Finally, the hash learning of our SEMICON consists of both global- and local-level branches for better representing fine-grained objects and then generating binary hash codes explicitly corresponding to multiple levels. Experiments on five benchmark fine-grained datasets show our superiority over competing methods.


论文信息:

[1] Yang Shen, Xuhao Sun, Xiu-Shen Wei*, Qing-Yuan Jiang, Jian Yang. SEMICON: A Learning-to-hash Solution for Large-scale Fine-grained Image Retrieval. ECCV 2022.


论文链接:

[http://www.weixiushen.com/publication/eccv22_SEMICON.pdf]

[http://www.weixiushen.com/publication/eccv22_SEMICON_supp.pdf]


代码链接:

[https://github.com/NJUST-VIPGroup/SEMICON]


视频讲者简介:

沈阳,南京理工大学博士生,主要研究方向为计算机视觉,师从魏秀参教授。在 ECCV、NeurIPS、IJCAI等国际会议发表多篇论文。获首届“计图”人工智能挑战赛狗细分类赛道冠军,在CVPR、ICCV等举办的国际权威细粒度视觉评测中多次获冠亚季军。



特别鸣谢本次论文速览主要组织者:

月度轮值AC:冯尊磊 (浙江大学),徐易 (大连理工大学)

季度责任AC:张姗姗 (南京理工大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ R群,群号:137634472);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-11-22 02:10 , Processed in 0.012823 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部