VALSE

VALSE 首页 活动通知 查看内容

20151112-34 林国省: Learning Deep Structured Models for Semantic Segmentation

2015-11-9 14:50| 发布者: 彭玺ASTAR| 查看: 7063| 评论: 0

摘要: 【15-34期VALSE Webinar活动】报告嘉宾:林国省(The University of Adelaide)报告时间:2015年11月12日(星期四)晚21:00(北京时间)报告题目:Learning Deep Structured Models for Semantic Segmentation.主持 ...

【15-34期VALSE Webinar活动】

报告嘉宾:林国省(The University of Adelaide)
报告时间:2015年11月12日(星期四)晚21:00(北京时间)
报告题目:Learning Deep Structured Models for Semantic Segmentation. [Slides]
主持人:彭玺(A*STAR)
报告摘要:
The fist part of the talk is about how to explore the context by learning deep structured model. We achieve an intersection-over-union score of 77.8 on the challenging PASCAL VOC 2012 dataset, which is a new record.
The second part of the talk concerns a new deep structured learning method. We propose to directly learn the CNN based message estimator in message passing inference, instead of learning conventional potential functions.
参考文献:
[1.] Gushing Lin, Cfhunhua Shen, Ian Reid, Anton van dan Henge; Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation; arXiv.
[2.] Gushing Lin, Cfhunhua Shen, Ian Reid, Anton van dan Hengel;Deeply Learning the Messages in Message Passing Inference; NIPS 2015.
报告人简介:
林国省现任澳大利亚阿德莱德大学博士后研究员。2014年获阿德莱德大学博士学位,师从沈春华教授。其研究兴趣包括 Structured Learning,Deep Learning, Image retrieval, and Semantic Image Segmentation。博士期间获得Google PhD Fellowship (one of 38 winners world-wide in 2014). 目前已发表2篇 TPAMI, 2篇NIPS/ICML和4篇CVPR/ICCV/ECCV。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-11-23 12:01 , Processed in 0.011885 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部