【15-34期VALSE Webinar活动】 报告嘉宾:林国省(The University of Adelaide) 报告时间:2015年11月12日(星期四)晚21:00(北京时间) 报告题目:Learning Deep Structured Models for Semantic Segmentation. [Slides] 主持人:彭玺(A*STAR) 报告摘要: The fist part of the talk is about how to explore the context by learning deep structured model. We achieve an intersection-over-union score of 77.8 on the challenging PASCAL VOC 2012 dataset, which is a new record. The second part of the talk concerns a new deep structured learning method. We propose to directly learn the CNN based message estimator in message passing inference, instead of learning conventional potential functions. 参考文献: [1.] Gushing Lin, Cfhunhua Shen, Ian Reid, Anton van dan Henge; Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation; arXiv. [2.] Gushing Lin, Cfhunhua Shen, Ian Reid, Anton van dan Hengel;Deeply Learning the Messages in Message Passing Inference; NIPS 2015. 报告人简介: 林国省现任澳大利亚阿德莱德大学博士后研究员。2014年获阿德莱德大学博士学位,师从沈春华教授。其研究兴趣包括 Structured Learning,Deep Learning, Image retrieval, and Semantic Image Segmentation。博士期间获得Google PhD Fellowship (one of 38 winners world-wide in 2014). 目前已发表2篇 TPAMI, 2篇NIPS/ICML和4篇CVPR/ICCV/ECCV。 |