VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第203期:针对图像去雾模型的攻击研究

2025-1-7 19:06| 发布者: 程一-计算所| 查看: 51| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自东南大学等机构的图像去雾 (image dehazing task)的工作。该工作由东南大学桂杰教授指导,丛晓峰同学录制。


论文题目:

Fooling the Image Dehazing Models by First Order Gradient

作者列表:

桂杰 (东南大学),丛晓峰 (东南大学),彭程威 (腾讯深圳公司),唐遠炎 (澳门大学),郭天佑 (香港科技大学)


B站观看网址:

https://www.bilibili.com/video/BV1oXxNeAEqb/?spm_id_from=333.999.0.0&vd_source=2044ac986b5caa4c8b5f00b525441df3


复制链接到浏览器打开或点击阅读原文即可跳转至观看页面。


论文摘要:

The research on the single image dehazing task has been widely explored. However, as far as we know, no comprehensive study has been conducted on the robustness of the well-trained dehazing models. In this paper, we focus on designing a group of attack methods based on first-order gradient to verify the robustness of the existing dehazing algorithms. Further, the defense strategy based on adversarial training is adopted for reducing the negative effects caused by malicious attacks. In summary, this paper defines a new challenging problem for the image dehazing area, which can be called as adversarial attack on dehazing networks (AADN). 


参考文献:

[1] Jie Gui, Xiaofeng Cong, Chengwei Peng, Yuan Yan Tang, James Tin-Yau Kwok. Fooling the Image Dehazing Models by First Order Gradient. IEEE Transactions on Circuits and Systems for Video Technology, 2024.


论文链接:

[https://arxiv.org/abs/2303.17255]


代码链接:

[https://github.com/Xiaofeng-life/AADN_Dehazing]


视频讲者简介:

Xiaofeng Cong is pursuing his Ph.D. degree in the School of Cyber Science and Engineering, Southeast University, Nanjing, China. He has published papers in CVPR, AAAI, IJCAI, ACM MM, ACM CSUR, TMM, TCSVT and TGRS, etc. His research interests include underwater image enhancement and image dehazing.


个人主页:

https://xiaofeng-life.github.io/index.html



特别鸣谢本次论文速览主要组织者:

月度轮值AC:武宇 (武汉大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ T群,群号:863867505);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2025-1-31 05:11 , Processed in 0.014144 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部