VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第199期:SCTNet: 融合Transformer语义信息的单分支CNN实时语义分割网 ...

2024-10-21 18:51| 发布者: 程一-计算所| 查看: 26| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自华中科技大学的实时语义分割 (Real-time Semantic Segmentation)的工作。该工作由高常鑫教授指导,论文一作徐正泽同学录制。


论文题目:

SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation

作者列表:

徐正泽 (华中科技大学)、吴东岳 (华中科技大学)、余昌黔 (美团)、初祥祥 (美团)、桑农 (华中科技大学)、高常鑫 (华中科技大学)


B站观看网址:

https://www.bilibili.com/video/BV1voxNe8E8h/?spm_id_from=333.999.0.0&vd_source=2044ac986b5caa4c8b5f00b525441df3


复制链接到浏览器打开或点击阅读原文即可跳转至观看页面。


论文摘要:

Recent real-time semantic segmentation methods usually adopt an additional semantic branch to pursue rich long-range context. However, the additional branch incurs undesirable computational overhead and slows inference speed. To eliminate this dilemma, we propose SCTNet, a single branch CNN with transformer semantic information for real-time segmentation. SCTNet enjoys the rich semantic representations of an inference-free semantic branch while retaining the high efficiency of lightweight single branch CNN. SCTNet utilizes a transformer as the training-only semantic branch considering its superb ability to extract long-range context. With the help of the proposed transformer-like CNN block CFBlock and the semantic information alignment module, SCTNet could capture the rich semantic information from the transformer branch in training. During the inference, only the single branch CNN needs to be deployed. We conduct extensive experiments on Cityscapes, ADE20K, and COCO-Stuff-10K, and the results show that our method achieves the new state-of-the-art performance.


参考文献:

[1] Xu, Zhengze, Dongyue Wu, Changqian Yu, Xiangxiang Chu, Nong Sang, and Changxin Gao. "SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation." AAAI Conference on Artificial Intelligence (AAAI), 2024.


论文链接:

[https://arxiv.org/pdf/2312.17071.pdf]


代码链接:

[https://github.com/xzz777/SCTNet]


视频讲者简介:

徐正泽,华中科技大学硕士研究生,研究方向为语义分割、模型轻量化,师从高常鑫教授。


个人主页:

https://github.com/xzz777



特别鸣谢本次论文速览主要组织者:

月度轮值AC:傅雪阳 (中国科学技术大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ T群,群号:863867505);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。


小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2025-2-1 14:03 , Processed in 0.013725 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部