VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第197期:基于ProtoOT的无监督跨域图像检索

2024-10-16 18:50| 发布者: 程一-计算所| 查看: 17| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自上海科技大学的无监督跨域图片检索 (Unsupervised Cross-Domain Image Retrieval, UCIR)的工作。该工作由汪婧雅研究员指导,论文一作李斌同学录制。


论文题目:

Unsupervised Cross-Domain Image Retrieval via Prototypical Optimal Transport

作者列表:

李斌 (上海科技大学)、石野 (上海科技大学)、于茜 (北京航空航天大学)、汪婧雅 (上海科技大学)


B站观看网址:

https://www.bilibili.com/video/BV1tGxKeJETs/?spm_id_from=333.999.0.0&vd_source=2044ac986b5caa4c8b5f00b525441df3


复制链接到浏览器打开或点击阅读原文即可跳转至观看页面。


论文摘要:

Unsupervised cross-domain image retrieval (UCIR) aims to retrieve images sharing the same category across diverse domains without relying on labeled data. Prior approaches have typically decomposed the UCIR problem into two distinct tasks: intra-domain representation learning and cross-domain feature alignment. However, these segregated strategies overlook the potential synergies between these tasks. This paper introduces ProtoOT, a novel Optimal Transport formulation explicitly tailored for UCIR, which integrates intra-domain feature representation learning and cross-domain alignment into a unified framework. ProtoOT leverages the strengths of the K-means clustering method to effectively manage distribution imbalances inherent in UCIR. By utilizing K-means for generating initial prototypes and approximating class marginal distributions, we modify the constraints in Optimal Transport accordingly, significantly enhancing its performance in UCIR scenarios. Furthermore, we incorporate contrastive learning into the ProtoOT framework to further improve representation learning. This encourages local semantic consistency among features with similar semantics, while also explicitly enforcing separation between features and unmatched prototypes, thereby enhancing global discriminativeness. ProtoOT surpasses existing state-of-the-art methods by a notable margin across benchmark datasets. Notably, on DomainNet, ProtoOT achieves an average P@200 enhancement of 24.44%, and on Office-Home, it demonstrates a P@15 improvement of 12.12%. 


参考文献:

[1] Li, B., Shi, Y., Yu, Q., & Wang, J. (2024). Unsupervised Cross-Domain Image Retrieval via Prototypical Optimal Transport. Proceedings of the AAAI Conference on Artificial Intelligence, 38(4), 3009-3017.


论文链接:

[https://arxiv.org/pdf/2402.18411]


代码链接:

[https://github.com/HCVLAB/ProtoOT]


视频讲者简介:

李斌,上海科技大学信息科学与技术学院博士一年级,师从汪婧雅老师。主要研究方向为迁移学习,计算机视觉。



特别鸣谢本次论文速览主要组织者:

月度轮值AC:陈使明 (阿联酋人工智能大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ T群,群号:863867505);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。


小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2025-2-1 19:48 , Processed in 0.013526 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部