为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自南洋理工大学的面向文生图模型的后门攻击工作。该工作由南洋理工大学博士后黄怿豪录制。 论文题目: Personalization as a Shortcut for Few-Shot Backdoor Attack against Text-to-Image Diffusion Models 作者列表: 黄怿豪 (南洋理工大学),徐觉非 (纽约大学),郭青 (Astar),张杰 (南洋理工大学),吴与桐 (南洋理工大学),胡铭 (南洋理工大学),李恬霖 (南洋理工大学),蒲戈光 (华东师范大学),刘杨 (南洋理工大学) B站观看网址: 论文摘要: Although recent personalization methods have democratized high-resolution image synthesis by enabling swift concept acquisition with minimal examples and lightweight computation, they also present an exploitable avenue for highly accessible backdoor attacks. This paper investigates a critical and unexplored aspect of text-to-image (T2I) diffusion models - their potential vulnerability to backdoor attacks via personalization. By studying the prompt processing of popular personalization methods (epitomized by Textual Inversion and DreamBooth), we have devised dedicated personalization-based backdoor attacks according to the different ways of dealing with unseen tokens and divide them into two families: nouveau-token and legacy-token backdoor attacks. In comparison to conventional backdoor attacks involving the fine-tuning of the entire text-to-image diffusion model, our proposed personalization-based backdoor attack method can facilitate more tailored, efficient, and few-shot attacks. Through comprehensive empirical study, we endorse the utilization of the nouveau-token backdoor attack due to its impressive effectiveness, stealthiness, and integrity, markedly outperforming the legacy-token backdoor attack. 论文链接: [https://arxiv.org/abs/2305.10701]
代码链接: [https://github.com/Huang-yihao/Personalization-based_backdoor]
视频讲者简介: 黄怿豪,南洋理工大学CSL实验室博后。主要研究方向是DeepFake,对抗攻击等。 特别鸣谢本次论文速览主要组织者: 月度轮值AC:周天飞 (北京理工大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ T群,群号:863867505); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2024-11-21 23:52 , Processed in 0.012837 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.