VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第179期:Neural Interactive Keypoint Detection

2024-6-17 18:16| 发布者: 程一-计算所| 查看: 161| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自香港中文大学 (深圳),博士生杨杰同学发表在ICCV 2023的论文,指导老师为张瑞茂博士,曾爱玲博士。


论文题目:

Neural Interactive Keypoint Detection

作者列表:

Jie Yang (香港中文大学 (深圳)), Ailing Zeng* (IDEA研究院), Feng Li (IDEA研究院), Shilong Liu (IDEA研究院), Ruimao Zhang* (香港中文大学 (深圳)), Lei Zhang (IDEA研究院)


B站观看网址:

https://www.bilibili.com/video/BV1PM4m167nD/



论文摘要:

This work proposes an end-to-end neural interactive keypoint detection framework named Click-Pose, which can significantly reduce more than 10 times labeling costs of 2D keypoint annotation compared with manual-only annotation. Click-Pose explores how user feedback can cooperate with a neural keypoint detector to correct the predicted keypoints in an interactive way for a faster and more effective annotation process. Specifically, we design the pose error modeling strategy that inputs the ground truth pose combined with four typical pose errors into the decoder and trains the model to reconstruct the correct poses, which enhances the self-correction ability of the model. Then, we attach an interactive human-feedback loop that allows receiving users’ clicks to correct one or several predicted keypoints and iteratively utilizes the decoder to update all other keypoints with a minimum number of clicks (NoC) for efficient annotation. We validate Click-Pose in in-domain, out-of-domain scenes, and a new task of keypoint adaptation. For annotation, Click-Pose only needs 1.97 and 6.45 NoC@95 (at precision 95%) on COCO and Human-Art, reducing 31.4% and 36.3% efforts than the SOTA model with manual correction, respectively. Besides, without user clicks, Click-Pose surpasses the previous end-to-end model by 1.4 AP on COCO and 3.0 AP on Human-Art.


论文链接:

[https://openaccess.thecvf.com/content/ICCV2023/papers/Yang_Neural_Interactive_Keypoint_Detection_ICCV_2023_paper.pdf]

 

代码链接:

[https://github.com/IDEA-Research/Click-Pose]

 

视频讲者简介:

杨杰,香港中文大学深圳,二年级博士生;导师为张瑞茂教授,研究方向为以人为中心的理解,感知和生成,在CVPR,ICCV,ICLR,NeurIPS等会议上发表多篇文章。



特别鸣谢本次论文速览主要组织者:

月度轮值AC:张瑞茂 (香港中文大学 (深圳))


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ T群,群号:863867505);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-11-23 16:01 , Processed in 0.012855 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部