VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第175期:Distortion-aware Transformer in 360° SOD

2024-5-24 17:57| 发布者: 程一-计算所| 查看: 145| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自北京航空航天大学的360度显著性物体检测 (360 Salient Object Detection)的工作。该工作由于茜老师、张晶老师、盛律老师和徐东老师指导,论文一作赵寅捷同学录制。


论文题目:

Distortion-aware Transformer in 360° Salient Object Detection

作者列表:

赵寅捷 (北京航空航天大学)、赵立晨 (北京航空航天大学)、于茜 (北京航空航天大学)、张晶 (北京航空航天大学)、盛律 (北京航空航天大学)、徐东 (香港大学)


B站观看网址:

https://www.bilibili.com/video/BV1AM4m1R7BM/



论文摘要:

With the emergence of VR and AR, 360° data attracts increasing attention from the computer vision and multimedia communities. Typically, 360° data is projected into 2D ERP (equirectangular projection) images for feature extraction. However, existing methods cannot handle the distortions that result from the projection, hindering the development of 360-data-based tasks. Therefore, in this paper, we propose a Transformer-based model called DATFormer to address the distortion problem. We tackle this issue from two perspectives. Firstly, we introduce two distortion-adaptive modules. The first is a Distortion Mapping Module, which guides the model to pre-adapt to distorted features globally. The second module is a Distortion-Adaptive Attention Block that reduces local distortions on multi-scale features. Secondly, to exploit the unique characteristics of 360° data, we present a learnable relation matrix and use it as part of the positional embedding to further improve  performance. Extensive experiments are conducted on three public datasets, and the results show that our model outperforms existing 2D SOD (salient object detection) and 360 SOD methods.


参考文献:

[1] Zhao, Yinjie, et al. "Distortion-aware Transformer in 360° Salient Object Detection." Proceedings of the 31st ACM International Conference on Multimedia. 2023.


论文链接:

[https://arxiv.org/abs/2308.03359]

 

代码链接:

[https://github.com/yjzhao19981027/DATFormer]

 

视频讲者简介:

Yinjie Zhao received the BE degree from Beihang University, China in 2021. He is currently studying for a master's degree in Beihang University. His current research interests include 360-degree video and SOD tasks.



特别鸣谢本次论文速览主要组织者:

月度轮值AC:胡迪 (中国人民大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ T群,群号:863867505);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。


小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2025-1-3 04:05 , Processed in 0.012306 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部