为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自西安电子科技大学的场景图生成 (Scene Graph Generation)的工作。该工作由邓成教授指导,论文一作闵聿宽同学录制。 论文题目: Environment-Invariant Curriculum Relation Learning for Fine-Grained Scene Graph Generation 作者列表: 闵聿宽 (西安电子科技大学)、武阿明 (西安电子科技大学)、邓成 (西安电子科技大学) B站观看网址: 论文摘要: The scene graph generation (SGG) task is designed to identify the predicates based on the subject-object pairs. However , existing datasets generally include two imbalance cases: one is the class imbalance from the predicted predicates and another is the context imbalance from the given subject-object pairs, which presents significant challenges for SGG. Most existing methods focus on the imbalance of the predicted predicate while ignoring the imbalance of the subject-object pairs, which could not achieve satisfactory results. To address the two imbalance cases, we propose a novel Environment Invariant Curriculum Relation learning (EICR) method, which can be applied in a plug-and-play fashion to existing SGG methods. Concretely, to remove the imbalance of the subject-object pairs, we first construct different distribution environments for the subject-object pairs and learn a model invariant to the environment changes. Then, we construct a class-balanced curriculum learning strategy to balance the different environments to remove the predicate imbalance. Comprehensive experiments conducted on VG and GQA datasets demonstrate that our EICR framework can be taken as a general strategy for various SGG models, and achieve significant improvements. 参考文献: [1] Yukuan Min, Aming Wu, and Cheng Deng “Environment-Invariant Curriculum Relation Learning for Fine-Grained Scene Graph Generation”, in Proceeding of IEEE International Conference on Computer Vision (ICCV2023), Paris, France, Oct 2023. 论文链接: [https://openaccess.thecvf.com/content/ICCV2023/papers/Min_Environment-Invariant_Curriculum_Relation_Learning_for_Fine-Grained_Scene_Graph_Generation_ICCV_2023_paper.pdf] 代码链接: [https://github.com/myukzzz/EICR] 视频讲者简介: 闵聿宽,西安电子科技大学电子工程学院博士研究生,师从邓成教授,主要研究方向是计算机视觉、场景图生成和深度学习。 特别鸣谢本次论文速览主要组织者: 月度轮值AC:胡迪 (中国人民大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2025-1-3 15:45 , Processed in 0.014255 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.