为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自大连理工大学的实例感知任务统一模型方面的工作。该工作由卢湖川教授指导、论文第一作者严彬博士生录制。 论文题目:Universal Instance Perception as Object Discovery and Retrieval 作者列表: 严彬 (大连理工大学),江毅 (字节跳动),吴剑南 (香港大学),王栋 (大连理工大学),罗平 (香港大学),袁泽寰 (字节跳动),卢湖川 (大连理工大学) B站观看网址: 论文摘要: All instance perception tasks aim at finding certain objects specified by some queries such as category names, language expressions, and target annotations, but this complete field has been split into multiple independent subtasks. In this work, we present a universal instance perception model of the next generation, termed UNINEXT. UNINEXT reformulates diverse instance perception tasks into a unified object discovery and retrieval paradigm and can flexibly perceive different types of objects by simply changing the input prompts. This unified formulation brings the following benefits: (1) enormous data from different tasks and label vocabularies can be exploited for jointly training general instance-level representations, which is especially beneficial for tasks lacking in training data. (2) the unified model is parameter-efficient and can save redundant computation when handling multiple tasks simultaneously. UNINEXT shows superior performance on 20 challenging benchmarks from 10 instance-level tasks including classical image-level tasks (object detection and instance segmentation), vision-and-language tasks (referring expression comprehension and segmentation), and six video-level object tracking tasks. Code is available at https://github.com/MasterBin-IIAU/UNINEXT. 论文信息: [1] Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Ping Luo, Zehuan Yuan, Huchuan Lu, Universal Instance Perception as Object Discovery and Retrieval, In CVPR, 2023. 论文链接: [https://arxiv.org/abs/2303.06674] 代码链接: [https://github.com/MasterBin-IIAU/UNINEXT] 视频讲者简介: 严彬,大连理工大学在读博士,研究方向为目标跟踪与实例感知,导师是卢湖川教授。作为第一作者在CVPR,ICCV,ECCV等计算机视觉领域顶级会议上发表论文多篇,曾获研究生国家奖学金,研究生学术之星,CCF-CV学术新锐奖等荣誉。 特别鸣谢本次论文速览主要组织者: 月度轮值AC:焦剑波 (伯明翰大学) 季度轮值AC:叶茫 (武汉大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2024-11-23 21:00 , Processed in 0.012767 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.