VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第134期:基于解耦元学习标签纠正的噪声标签学习 ...

2023-10-13 12:05| 发布者: 程一-计算所| 查看: 976| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自同济大学的噪声标签学习 (Noisy Label Learning)的工作。该工作由张博深研究员、李昱希研究员和赵才荣老师指导,论文一作涂远鹏同学录制。


论文题目:Learning from Noisy Labels with Decoupled Meta Label Purifier

作者列表:

涂远鹏 (同济大学),张博深 (腾讯优图),李昱希 (腾讯优图),刘亮 (腾讯优图),李剑 (腾讯优图),王亚彪 (腾讯优图),汪铖杰 (腾讯优图),赵才荣 (同济大学)


B站观看网址:

https://www.bilibili.com/video/BV13w411A7Nk/



论文摘要:

Training deep neural networks (DNN) with noisy labels is challenging since DNN can easily memorize inaccurate labels, leading to poor generalization ability. Recently, the meta-learning based label correction strategy is widely adopted to tackle this problem via identifying and correcting potential noisy labels with the help of a small set of clean validation data. Although training with purified labels can effectively improve performance, solving the meta-learning problem inevitably involves a nested loop of bi-level optimization between model weights and hyper-parameters (i.e., label distribution). As compromise, previous methods resort to a coupled learning process with alternating update. In this paper, we empirically find such simultaneous optimization over both model weights and label distribution can not achieve an optimal routine, consequently limiting the representation ability of backbone and accuracy of corrected labels. From this observation, a novel multi-stage label purifier named DMLP is proposed. DMLP decouples the label correction process into label-free representation learning and a simple meta label purifier. In this way, DMLP can focus on extracting discriminative feature and label correction in two distinctive stages. DMLP is a plug-and-play label purifier, the purified labels can be directly reused in naive end-to-end network retraining or other robust learning methods, where state-of-the-art results are obtained on several synthetic and real-world noisy datasets, especially under high noise levels.


论文信息:

[1] Yuanpeng Tu , Boshen Zhang, Yuxi Li, Liang Liu, Jian Li, Yabiao Wang, Chengjie Wang, Cai Rong Zhao, “Learning from Noisy Labels with Decoupled Meta Label Purifier,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR2023), Vancouver Convention Center, Jun, 2023.


论文链接:

[https://arxiv.org/abs/2302.06810]


代码链接:

[https://github.com/yuanpengtu/DMLP]


视频讲者简介:

涂远鹏,同济大学电子与信息工程学院硕士生。主要研究为行人再识别与噪声标签学习。


个人主页:

https://yuanpengtu.github.io/


同济大学视觉与智能学习实验室主页:

https://vill.tongji.edu.cn/



特别鸣谢本次论文速览主要组织者:

月度轮值AC:叶茫 (武汉大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-11-21 18:02 , Processed in 0.012478 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部