VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第122期:LLIE via Structure Modeling and Guidance

2023-9-4 10:29| 发布者: 程一-计算所| 查看: 421| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自之江实验室的暗光增强 (Low-Light Image Enhancement, LLIE)工作。该工作由之江实验室研究专家徐晓刚完成,其他作者包括来自荣耀终端的王瑞星,和思谋科技的CTO吕江波 (通讯作者)。


论文题目:Low-Light Image Enhancement via Structure Modeling and Guidance

作者列表:

徐晓刚 (之江实验室,浙江大学),王瑞星 (荣耀终端),吕江波 (思谋科技)

B站观看网址:

https://www.bilibili.com/video/BV1fz4y1K7pA/



论文摘要:

In this discussion, we will debate a new framework for low-light image enhancement by simultaneously conducting the appearance as well as structure modeling. It employs the structural feature to guide the appearance enhancement, leading to sharp and realistic results. The structure modeling in our framework is implemented as the edge detection in low-light images. It is achieved with a modified generative model via designing a structure-aware feature extractor and generator. The detected edge maps can accurately emphasize the essential structural information, and the edge prediction is robust towards the noises in dark areas. Moreover, to improve the appearance modeling, which is implemented with a simple U-Net, a novel structure-guided enhancement module is proposed with structure-guided feature synthesis layers. 


论文信息:

[1] Xiaogang Xu, Ruixing Wang, Jiangbo Lu, “Low-Light Image Enhancement via Structure Modeling and Guidance,” in Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR 2023).


论文链接:

[https://openaccess.thecvf.com/content/CVPR2023/papers/Xu_Low-Light_Image_Enhancement_via_Structure_Modeling_and_Guidance_CVPR_2023_paper.pdf]


代码链接:

[https://github.com/xiaogang00/SMG-LLIE]


视频讲者简介:

徐晓刚目前任之江实验室智能计算基础理论研究院研究PI,研究方向包括生成式模型和多模态可信计算。徐晓刚于2022年7月在香港中文大学计算机科学与工程学系获得哲学博士学位,并且在博士期间,获得香港政府奖学金支持。在人工智能领域顶级会议和期刊上已发表论文20余篇,同时他担任多个国际学术会议和期刊的审稿人。


个人主页:

https://xiaogang00.github.io/



特别鸣谢本次论文速览主要组织者:

月度轮值AC:张磊 (重庆大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-12-26 20:09 , Processed in 0.012462 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部