VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第114期:An Investigation into Whitening Loss for SSL

2023-6-21 09:52| 发布者: 程一-计算所| 查看: 331| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自本期VALSE论文速览选取了来自北京航空航天大学的自监督学习 (Self-Supervised Learning)的工作。该工作由黄雷副教授指导,论文一作翁熙同学录制。


论文题目:An Investigation into Whitening Loss for Self-supervised Learning

作者列表:翁熙 (北京航空航天大学)、黄雷 (北京航空航天大学)、赵磊 (北京航空航天大学)、Rao Muhammad Anwer (穆罕默德·本·扎耶德人工智能大学)、Salman Khan (穆罕默德·本·扎耶德人工智能大学)、 Fahad Khan (穆罕默德·本·扎耶德人工智能大学)

B站观看网址:

https://www.bilibili.com/video/BV1hM4y1E7ds/



论文摘要:

A desirable objective in self-supervised learning (SSL)is to avoid feature collapse. Whitening loss guarantees collapse avoidance by minimizing the distance between embeddings of positive pairs under the conditioning that the embeddings from different views are whitened. In this paper, we propose a framework with an informative indicator to analyze whitening loss, which provides a clue to demystify several interesting phenomena as well as a pivoting point connecting to other SSL methods. We reveal that batch whitening (BW)based methods do not impose whitening constraints on the embedding, but they only require the embedding to be full-rank. This full-rank constraint is also sufficient to avoid dimensional collapse. Based on our analysis, we propose channel whitening with random group partition (CW-RGP), which exploits the advantages of BW-based methods in preventing collapse and avoids their disadvantages requiring large batch size. Experimental results on ImageNet classification and COCO object detection reveal that the proposed CW-RGP possesses a promising potential for learning good representations.


论文信息:

[1] Weng X, Huang L, Zhao L, et al. An Investigation into Whitening Loss for Self-supervised Learning[C]. Advances in Neural Information Processing Systems, 2022.


论文链接:

[https://arxiv.org/abs/2210.03586]


代码链接:

[https://github.com/winci-ai/CW-RGP]


视频讲者简介:

翁熙,本科毕业于北京航空航天大学人工智能研究院,目前为该学院研一学生,师从黄雷副教授。主要研究方向为自监督学习,以一作身份在NeurIPS 2022发表论文一篇。



特别鸣谢本次论文速览主要组织者:

月度轮值AC:林迪 (天津大学)、彭春蕾 (西安电子科技大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ S群,群号:317920537);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-11-21 19:46 , Processed in 0.013204 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部