为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自西安电子科技大学的零样本学习方面的工作。该工作由邓成教授指导,论文第一作者李翔宇博士录制。 论文题目:基于双流对比嵌入网络的组合式零样本学习 作者列表:李翔宇 (西安电子科技大学)、杨旭 (西安电子科技大学)、魏坤 (西安电子科技大学)、邓成 (西安电子科技大学)、杨木李 (西安电子科技大学) B站观看网址: 论文摘要: Compositional Zero-Shot Learning (CZSL)aims to recognize unseen compositions formed from seen state and object during training. Since the same state may be various in the visual appearance while entangled with different objects, CZSL is still a challenging task. Some methods recognize state and object with two trained classifiers, ignoring the impact of the interaction between object and state; the other methods try to learn the joint representation of the state-object compositions, leading to the domain gap between seen and unseen composition sets. In this paper, we propose a novel Siamese Contrastive Embedding Network (SCEN)for unseen composition recognition. Considering the entanglement between state and object, we embed the visual feature into a Siamese Contrastive Space to capture prototypes of them separately, alleviating the interaction between state and object. In addition, we design a State Transition Module (STM)to increase the diversity of training compositions, improving the robustness of the recognition model. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three challenging benchmark datasets, including the recent proposed C-QGA dataset. 论文信息: [1] Xiangyu Li, Xu Yang, Kun Wei, Cheng Deng and Muli Yang. Siamese Contrastive Embedding Network for Compositional Zero-Shot Learning. CVPR 2022 (Poster). 论文链接: [https://openaccess.thecvf.com/content/CVPR2022/papers/Li_Siamese_Contrastive_Embedding_Network_for_Compositional_Zero-Shot_Learning_CVPR_2022_paper.pdf] 代码链接: [https://github.com/XDUxyLi/SCEN-master] 视频讲者简介: 李翔宇,西安电子科技大学电子工程学院博士研究生,师从邓成教授,主要研究方向是计算机视觉、零样本学习和深度学习,在AAAI、CVPR等会议上发表多篇文章。 特别鸣谢本次论文速览主要组织者: 月度轮值AC:王智慧 (大连理工大学)、杨旭 (西安电子科技大学) 季度责任AC:魏秀参 (南京理工大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ R群,群号:137634472); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2024-11-23 15:10 , Processed in 0.012807 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.