为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自苏黎世联邦理工学院和商汤科技的语义分割方面的工作。该工作由论文共同第一作者周天飞博士录制。 论文题目:Exploring Cross-Image Pixel Contrast for Semantic Segmentation 作者列表:Wenguan Wang (ETH Zurich,共同一作),Tianfei Zhou (ETH Zurich,共同一作),Fisher Yu (ETH Zurich),Jifeng Dai (Sensetime Research),Ender Konukoglu (ETH Zurich), Luc Van Gool (ETH Zurich) B站观看网址: 论文摘要: Current semantic segmentation methods focus only on mining "local"context, i.e., dependencies between pixels within individual images, by context-aggregation modules (e.g., dilated convolution, neural attention)or structure-aware optimization criteria (e.g., IoU-like loss). However, they ignore "global"context of the training data, i.e., rich semantic relations between pixels across different images. Inspired by the recent advance in unsupervised contrastive representation learning, we propose a pixel-wise contrastive framework for semantic segmentation in the fully supervised setting. The core idea is to enforce pixel embeddings belonging to a same semantic class to be more similar than embeddings from different classes. It raises a pixel-wise metric learning paradigm for semantic segmentation, by explicitly exploring the structures of labeled pixels, which were rarely explored before. Our method can be effortlessly incorporated into existing segmentation frameworks without extra overhead during testing. We experimentally show that, with famous segmentation models (i.e., DeepLabV3, HRNet, OCR)and backbones (i.e., ResNet, HR-Net), our method brings consistent performance improvements across diverse datasets (i.e., Cityscapes, PASCAL-Context, COCO-Stuff, CamVid). We expect this work will encourage our community to rethink the current de facto training paradigm in fully supervised semantic segmentation. 论文信息: [1] Wenguan Wang*, Tianfei Zhou*, Fisher Yu, Jifeng Dai, Ender Konukoglu and Luc Van Gool. Exploring Cross-Image Pixel Contrast for Semantic Segmentation. ICCV 2021 (Oral) 论文链接: [https://arxiv.org/pdf/2101.11939.pdf] 代码链接: [https://github.com/tfzhou/ContrastiveSeg] 视频讲者简介: 周天飞,苏黎世联邦理工学院CVL博后研究员,主要研究方向是计算机视觉和深度学习。 特别鸣谢本次论文速览主要组织者: 月度轮值AC:赵文达 (大连理工大学)、任文琦 (中山大学) 季度责任AC:魏秀参 (南京理工大学) 活动参与方式 1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们! 直播地址: https://live.bilibili.com/22300737; 历史视频观看地址: https://space.bilibili.com/562085182/ 2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ R群,群号:137634472); *注:申请加入VALSE QQ群时需验证姓名、单位和身份,缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。 3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。 4、您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。 |
小黑屋|手机版|Archiver|Vision And Learning SEminar
GMT+8, 2025-1-11 11:10 , Processed in 0.012662 second(s), 14 queries .
Powered by Discuz! X3.4
Copyright © 2001-2020, Tencent Cloud.