VALSE

VALSE 首页 活动通知 好文作者面授招 查看内容

20160120-03 刘力: 基于特征表达和特征学习在人体行为识别中的应用 ... ... ... ... . ...

2016-1-15 11:26| 发布者: 程一-计算所| 查看: 11182| 评论: 0

摘要: 【16-03期VALSE Webinar活动】报告嘉宾1:刘力(英国诺桑比亚大学)报告时间:2016年1月20日(星期三)晚20:00(北京时间)报告题目: 基于特征表达和特征学习在人体行为识别中的应用 ... ...

16-03VALSE Webinar活动】

报告嘉宾1刘力(英国诺桑比亚大学)
报告时间:2016120日(星期三)晚20:00(北京时间)
报告题目:基于特征表达和特征学习在人体行为识别中的应用 (Human Action Recognition by Feature Engineering and Feature Learning )[Slides]

主持人: 王琦( 西北工业大学)卢孝强(中科院西光所)
报告摘要:HUMAN action recognition, as a hot research area in computer vision, has many potential applications such as video search and retrieval, intelligent surveillance systems, and human-computer interaction. Despite its popularity, how to precisely distinguish different actions still remains challenging, since variations in lighting conditions, intra-class differences and complex backgrounds all pose as obstacles for robust action recognition.  Generally, the basic approach to action recognition contains the following two stages: 1) feature extraction and representation and 2) action classification. In this talk, I will mainly talk about the feature engineering and feature learning for action recognition. Particularly, some discriminative hand-crafted local/global feature embedding methods mentioned in our previous work will be reviewed first. After that the machine-learned representations via genetic-programming and cross-domain dictionary learning will be introduced.  We demonstrate that these propose methods have achieved significantly improvement over a variety of realistic datasets for action recognition tasks. More details can be found in our references and webpages.
参考文献:
[ 1 ] X. Zhen, L. Shao and F. Zheng, Discriminative Embedding via Image-to-Class Distances, British Machine Vision Conference (BMVC), 2014.

[ 2  ] L. Shao, et al., Spatio-Temporal Laplacian Pyramid Coding for Action Recognition, IEEE Transactions on Cybernetics, 2014.

[ 3 ] L. Liu, L. Shao and P. Rockett, Genetic Programming-Evolved Spatio-Temporal Descriptor for Human Action Recognition, British Machine Vision Conference (BMVC), Surrey, UK, 2012.

[ 4  ] L. Liu and L. Shao, Learning Discriminative Representations from RGB-D Video Data, International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, 2013.

[ 5  ] F. Zhu and L. Shao, Weakly-Supervised Cross-Domain Dictionary Learning for Visual Recognition, International Journal of Computer Vision (IJCV), vol. 109, no. 1-2, pp. 42-59, Aug. 2014.

[ 6  ] M. Yu, L. Liu and L. Shao, Structure-Preserving Binary Representations for RGB-D Action Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)2015.

[ 7  ]. Shao, L. Liu and M. Yu, Kernelized Multiview Projection for Robust Action Recognition, International Journal of Computer Vision (IJCV), 2015..

报告人简介:
刘力,博士, 现任英国诺桑比亚大学计算机视觉与人工智能实验室研究员。2011年毕业于西安交通大学自动化科学系并获得学士学位。 后赴英国谢菲尔德大学电子工程系攻读博士,并于2014 获得博士学位。2014年底加入英国诺上比亚大学工作至今。刘力博士的主要研究领域是计算机视觉,模式识别和多媒体,尤其关注人体行为识别, 辨别性特征提取及表达的监督/非监督学习, 大规模数据的检索以及深度学习在图像视频上的相关应用。相关研究成果已发表在TPAMITIPTNNLSTCYBIJCV PRICCVIJCAIACM MM 等国际顶级期刊和会议上。部分研究成果也已取得发明专利许可。目前主持并领导英国CREATEC INNOVATION公司机器视觉相关项目的研发工作。他是IEEE会员,并担任IEEE TIP, TNNLS, TCYBCVPRACM MM等多个国际期刊和会议的审稿人。

最新评论

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2025-1-11 10:48 , Processed in 0.015080 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部