VALSE

VALSE 首页 活动通知 专题侠客群论剑 查看内容

20151223-38 彭玺: Lp-norm based representation learning...

2015-12-20 23:19| 发布者: 彭玺ASTAR| 查看: 7826| 评论: 0

摘要: 【15-38期VALSE Webinar活动】报告嘉宾1:彭玺(A*STAR)主持人:报告时间:2015年12月23日周三晚20:00(北京时间)报告题目:Lp-norm based representation learning: some theories, algorithms, and applications ...

【15-38期VALSE Webinar活动】

图片 1报告嘉宾1彭玺(A*STAR)
主持人王琦(西北工业大学)
报告时间:2015年12月23日周三晚20:00(北京时间)
报告题目:Lp-norm based representation learning: some theories, algorithms, and applications  [Slides]
文章信息
[1] Xi Peng, Zhang Yi, and Huajin Tang, Robust Subspace Clustering via Thresholding Ridge Regression, The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), Austin, Texas, USA, January 25–29, 2015;
[2] Xi Peng, Zhiding Yu, Huajin Tang, and Zhang Yi, Constructing L2-Graph for Subspace Learning and Segmentation, arXiv1209.0841;
[3] Xi Peng, Canyi Lu, Zhang Yi, and Huajin Tang, Connections Between Nuclear Norm and Frobenius Norm Based Representation, arXiv1502.07423;
[4] Xi Peng, Jiwen Lu, Yan Rui, and Zhang Yi, Automatic Subspace Learning via Principal Coefficients Embedding, arXiv1411.4419;
报告摘要:In this talk, I will introduce some works on Lp-norm based representation learning. The talk consists of three parts. First, I will introduce a Frobenius-norm based representation learning method and its applications in subspace clustering and subspace learning. Second, I will introduce a theoretical study on the connections between Frobenius norm based representation and nuclear-norm based representation. Finally, I will introduce an automatic subspace learning method that can automatically estimate the feature dimension and achieve robust results from corrupted data.
报告人简介:彭玺,目前是新加坡(Institute for Infocomm., Research Agency for Science, Technology and Research (A*STAR))信息通信研究所研究员(Research Scientist)。他于2013年在四川大学计算机学院章毅教授指导下获得博士学位。主要研究兴趣是无监督的表达学习(unsupervised representation learning)及其在计算机视觉和机器学习中的理论、算法及应用,目前在CVPR,AAAI,IJCAI,TNNLS,TCYB等国际会议及期刊上发表论文多篇,是多个国际会议及期刊例如AAAI,TNNLS,TKDE的审稿人。

最新评论

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2024-11-21 18:32 , Processed in 0.012793 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部