VALSE

VALSE 首页 活动通知 查看内容

VALSE 论文速览 第103期:以运动为导向的点云单目标跟踪范式

2022-11-22 12:30| 发布者: 程一-计算所| 查看: 96| 评论: 0

摘要: 为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速 ...

为了使得视觉与学习领域相关从业者快速及时地了解领域的最新发展动态和前沿技术进展,VALSE最新推出了《论文速览》栏目,将在每周发布一至两篇顶会顶刊论文的录制视频,对单个前沿工作进行细致讲解。本期VALSE论文速览选取了来自香港中文大学(深圳)的点云单目标跟踪方面的工作。该工作由李镇助理教授指导、论文第一作者郑超达博士生录制。


论文题目:Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds

作者列表:郑超达 (香港中文大学(深圳)),颜旭 (香港中文大学(深圳)),张海鸣 (香港中文大学(深圳)),王宝元 (小冰AI),成生辉 (西湖大学),崔曙光 (香港中文大学(深圳)),李镇 (香港中文大学(深圳))

B站观看网址:

https://www.bilibili.com/video/BV1aG4y1V7wZ/



论文摘要:

3D single object tracking (3D SOT)in LiDAR point clouds plays a crucial role in autonomous driving. Current approaches all follow the Siamese paradigm based on appearance matching. However, LiDAR point clouds are usually textureless and incomplete, which hinders effective appearance matching. Besides, previous methods greatly overlook the critical motion clues among targets. In this work, beyond 3D Siamese tracking, we introduce a motion-centric paradigm to handle 3D SOT from a new perspective. Following this paradigm, we propose a matching-free two-stage tracker M2-Track. At the 1st -stage, M2 -Track localizes the target within successive frames via motion transformation. Then it refines the target box through motion-assisted shape completion at the 2nd -stage. Extensive experiments confirm that M2-Track significantly outperforms previous state-of-the-arts on three large-scale datasets while running at 57FPS (~8%, ~17% and ~22% precision gains on KITTI, NuScenes, and Waymo Open Dataset respectively). Further analysis verifies each component's effectiveness and shows the motion centric paradigm's promising potential when combined with appearance matching.


论文信息:

[1] Chaoda Zheng, Xu Yan, Haiming Zhang, Baoyuan Wang, Shenghui Cheng, Shuguang Cui, Zhen Li, Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds In CVPR, 2022.


论文链接:

[https://arxiv.org/abs/2203.01730]


代码链接:

[https://github.com/Ghostish/Open3DSOT]


视频讲者简介:

郑超达,香港中文大学 (深圳)理工学院博士生。主要研究方向点云处理与分析。在CVPR,ICCV,ECCV,TIP等顶级期刊和会议发表多篇论文。



特别鸣谢本次论文速览主要组织者:

月度轮值AC:李冠彬 (中山大学)、李镇 (香港中文大学 (深圳))

季度责任AC:张姗姗 (南京理工大学)


活动参与方式

1、VALSE每周举行的Webinar活动依托B站直播平台进行,欢迎在B站搜索VALSE_Webinar关注我们!

直播地址:

https://live.bilibili.com/22300737;

历史视频观看地址:

https://space.bilibili.com/562085182/ 


2、VALSE Webinar活动通常每周三晚上20:00进行,但偶尔会因为讲者时区问题略有调整,为方便您参加活动,请关注VALSE微信公众号:valse_wechat 或加入VALSE QQ R群,群号:137634472);


*注:申请加入VALSE QQ群时需验证姓名、单位和身份缺一不可。入群后,请实名,姓名身份单位。身份:学校及科研单位人员T;企业研发I;博士D;硕士M。


3、VALSE微信公众号一般会在每周四发布下一周Webinar报告的通知。


4您也可以通过访问VALSE主页:http://valser.org/ 直接查看Webinar活动信息。Webinar报告的PPT(经讲者允许后),会在VALSE官网每期报告通知的最下方更新。

小黑屋|手机版|Archiver|Vision And Learning SEminar

GMT+8, 2023-2-9 14:27 , Processed in 0.018074 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

返回顶部