

CRIS: CLIP-Driven Referring Image Segmentation

Zhaoqing Wang^{1,2*}, Yu Lu^{3*}, Qiang Li^{4*}, Xunqiang Tao², Yandong Guo², Mingming Gong⁵, Tongliang Liu¹ ¹University of Sydney ²OPPO Research Institute ³Beijing University of Posts and Telecommunications ⁴Kuaishou Technology ⁵University of Melbourne https://github.com/DerrickWang005/CRIS.pytorch.git

Referring Image Segmentation (RES)

• RES is a fundamental and challenging task at the intersection of vision and language understanding.

Segmentation

• RES aims to segment a referent via a natural linguistic expression.

Previous Work

Encoder Fusion Network with Co-Attention Embedding for Referring Image Segmentation

- In most previous works, linguistic feature interacts with visual feature of each scale **separately**, which ignores the continuous guidance of language to multi-scale visual features.
- They propose an **encoder fusion network (EFN)**, which transforms the visual encoder into a multi-modal feature learning network and uses language to refine the multi-modal features progressively.
- They also propose a **boundary enhancement** module to make the network pay more attention to the fine structure.

Feng, Guang, et al. "Encoder fusion network with co-attention embedding for referring image segmentation." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.

Previous Work

Vision-Language Transformer and Query Generation for Referring Segmentation

- The linguistic expression in RES can be treated as **a query**, which indicates the target object by describing its relationship with others. Then, RES is reformulated as **a direct attention problem**: finding the region in the image where the query is most attended to.
- They build a network with **an encoder-decoder attention mechanism architecture** that "queries" the given image with the language expression.
- They propose a Query Generation Module (QGM) that understands the language from different comprehension ways, and a Query Balance Module (QBM) to focus on the suitable ways.

Previous Work

- Referring expression comprehension (REC) and segmentation (RES) are **two highly-related tasks**, which both aim at identifying the referent according to a natural language expression. RES can help REC to achieve better language-vision alignment, while REC can help RES to better locate the referent.
- To address the prediction conflict, they propose two innovative designs: Consistency Energy Maximization (CEM) and Adaptive Soft Non-Located Suppression (ASNLS).
- CEM enables REC and RES to focus on similar visual regions by maximizing the consistency energy between two tasks.
- ASNLS suppresses the response of unrelated regions in RES based on the prediction of REC.

Motivation

- Due to **the distinct data properties** between text and image, it is challenging for a network to **well align** text and pixel-level features.
- Existing approaches use pretrained models to facilitate learning, yet **separately transfer** the language / vision knowledge from pretrained models, ignoring **the multi-modal corresponding information**.
- Overly **complex** model architectures and fusion strategies.

Introduction

Learning Transferable Visual Models From Natural Language Supervision

- State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept.
- Learning from a large-scale dataset of 400 million (image, text) pairs collected from the internet.
- Powerful vision-language alignment capability.

Introduction

- CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of image *I* and text *T*, which can capture the text-image information.
- To well transfer the powerful multi-modal knowledge of CLIP models, we propose a CLIP-Driven Referring Image Segmentation framework (CRIS).
- To generalize the multi-modal knowledge from image level to pixel level, CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.

.

CRIS mainly consists of a text encoder, an image encoder, a cross-modal neck, a vision-language decoder, and two projectors.

Text Encoder:

- A lower-cased byte pair encoding (BPE) representation of the text with a 49,152 vocab size.
- A modified transformer.
- Each text sequence is bracketed with [SOS] and [EOS] tokens.

Image Encoder & Neck:

- A ResNet-50/101used in CLIP.
- To stablize training, we add a residual connect in the attention pooling layer of the ResNet.
- Following most previous methods, we adopt a cross-modal FPN to fuse the multi-level visual features and the sentence representation.

Vision-Language Decoding:

- We design a vision-language decoder to adaptively propagate fine-grained semantic information from textual features to visual features.
- The vision-language decoder composed of *n* layers (n=3) is applied to generate a sequence of evolved multi-modal features F_c .
- Following the standard architecture of the transformer, each layer consists of a multi-head self-attention layer, a multi-head crossattention layer, and a feed-forward network. In one decoder layer, F_v is first sent into the multi-head self-attention layer to capture global contextual information.

$$F'_{v} = MHSA(LN(F_{v})) + F_{v},$$
$$MHSA(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V.$$

Vision-Language Decoding:

• After that, the multi-head cross-attention layer and a MLP block of two linear layers with Layer Normalization and residual connections are adopted to propagate fine-grained semantic information into the evolved multi-modal features F_c .

 $F'_{c} = MHCA(LN(F'_{v}), F_{t}) + F'_{v},$ $F_{c} = MLP(LN(F'_{c})) + F'_{c}.$

Text-to-pixel Contrastive Learning:

- A text projector and an image projector are adopted to transfer features into a multi-modal embedding space.
- We design a text-to-pixel contrastive loss to learn more fine-grained multi-model representations. A language expression and related pixel-wise features are pulled closer, while other irrelevances are pushed away.

Dataset

- RefCOCO
 - a) Train / Val / TestA / TestB: 42404 / 3811 / 1975 / 1810
 - b) Sentence: attribute, location...
 - c) Length: min-1 / max-39 / mean-3.6

• RefCOCO+

- a) Train / Val / TestA / TestB: 42278 / 3805 / 1975 / 1798
- b) Sentence: No location information
- c) Length: min-1 / max-24 / mean-3.6

• G-Ref

- a) Train / Val / Test: 42226 / 2573 / 5023
- b) Sentence: More detailed descriptions
- c) Length: min-1 / max-46 / mean-8.4

RefCOCO+

train set 30950 25000 -22251 30982

• To evaluate the effectiveness of each component in our method, we conduct extensive experiments on three benchmarks, including RefCOCO, RefCOCO+, and G-Ref.

Method	Backbone	RefCOCO			RefCOCO+			G-Ref	
Wiethod	Dackoone	val	test A	test B	val	test A	test B	val	test
RMI* [24]	ResNet-101	45.18	45.69	45.57	29.86	30.48	29.50	-	-
DMN [32]	ResNet-101	49.78	54.83	45.13	38.88	44.22	32.29	-	-
RRN* [22]	ResNet-101	55.33	57.26	53.95	39.75	42.15	36.11	-	-
MAttNet [49]	ResNet-101	56.51	62.37	51.70	46.67	52.39	40.08	47.64	48.61
NMTree [25]	ResNet-101	56.59	63.02	52.06	47.40	53.01	41.56	46.59	47.88
CMSA* [48]	ResNet-101	58.32	60.61	55.09	43.76	47.60	37.89	-	-
Lang2Seg [5]	ResNet-101	58.90	61.77	53.81	-	-	-	46.37	46.95
BCAN* [16]	ResNet-101	61.35	63.37	59.57	48.57	52.87	42.13	-	-
CMPC* [17]	ResNet-101	61.36	64.53	59.64	49.56	53.44	43.23	-	-
LSCM* [18]	ResNet-101	61.47	64.99	59.55	49.34	53.12	43.50	-	-
MCN [29]	DarkNet-53	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40
CGAN [28]	DarkNet-53	64.86	68.04	62.07	51.03	55.51	44.06	51.01	51.69
EFNet [8]	ResNet-101	62.76	65.69	59.67	51.50	55.24	43.01	-	-
LTS [19]	DarkNet-53	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25
VLT [6]	DarkNet-53	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65
CRIS (Ours)	ResNet-50	69.52	72.72	64.70	61.39	67.10	52.48	59.35	59.39
CRIS (Ours)	ResNet-101	70.47	73.18	66.10	62.27	68.08	53.68	59.87	60.36

Ablation Study:

- Effectiveness of Contrastive Learning
- Effectiveness of Vision-Language Decoder
- Numbers of Layers in Decoder
- Efficiency analysis

Dataset	Con.	Dec.	\boldsymbol{n}	IoU	Pr@50	Pr@60	Pr@70	Pr@80	Pr@90	Params	FPS
RefCOCO	-	-	-	62.66	72.55	67.29	59.53	43.52	12.72	131.86	27.30
	~	-	-	64.64	74.89	69.58	61.70	45.50	13.31	134.22	25.79
	-	\checkmark	1	66.31	77.66	72.99	65.67	48.43	14.81	136.07	23.02
	~	\checkmark	1	68.66	80.16	75.72	68.82	51.98	15.94	138.43	22.64
	~	\checkmark	2	69.13	80.96	76.60	69.67	52.23	16.09	142.64	20.68
	~	\checkmark	3	69.52	81.35	77.54	70.79	52.65	16.21	146.85	19.22
	~	\checkmark	4	69.18	80.99	76.74	69.32	52.57	16.37	151.06	18.26
RefCOCO+	-	-	-	50.17	54.55	47.69	40.19	28.75	8.21	131.86	27.30
	~	-	-	53.15	58.28	53.74	46.67	34.01	9.30	134.22	25.79
	-	\checkmark	1	54.73	63.31	58.89	52.46	38.53	11.70	136.07	23.02
	~	\checkmark	1	59.97	69.19	64.85	58.17	43.47	13.39	138.43	22.64
	1	\checkmark	2	60.75	70.69	66.83	60.74	45.69	13.42	142.64	20.68
	~	\checkmark	3	61.39	71.46	67.82	61.80	47.00	15.02	146.85	19.22
	~	\checkmark	4	61.15	71.05	66.94	61.25	46.98	14.97	151.06	18.26
G-Ref	-	-	-	49.24	53.33	45.49	36.58	23.90	6.92	131.86	25.72
	1	-	-	52.67	59.27	52.45	44.12	29.53	8.80	134.22	25.33
	-	\checkmark	1	51.46	58.68	53.33	45.61	31.78	10.23	136.07	22.57
	~	\checkmark	1	57.82	66.28	60.99	53.21	38.58	13.38	138.43	22.34
	~	\checkmark	2	58.40	67.30	61.72	54.70	39.67	13.40	142.64	20.61
	~	\checkmark	3	59.35	68.93	63.66	55.45	40.67	14.40	146.85	19.14
	\checkmark	\checkmark	4	58.79	67.91	63.11	55.43	39.81	13.48	151.06	17.84

Qualitative Analysis:

- Effectiveness of Contrastive Learning
- Effectiveness of Vision-Language Decoder

Qualitative Analysis:

• Comparison with Naïve finetuning

Language: "a blond haired, blue eyed young boy in a blue jacket"

(a) Image

(b) GT

(c) Naïve

(f) Ours

Language: "a zebra ahead of the other zebra"

(a) Image

(b) GT

(c) Naïve

(f) Ours

Failure Cases:

Imperfect linguistic expressions:

• The expression of "yellow" is not enough to describe the region of the man in the yellow snowsuit.

Noisy annotation:

• Some failures are also caused by the wrong label. It is obvious that the top region is unrelated to "fingers".

Boundary of masks:

• the boundaries of the referent cannot be accurately segmented, but this issue can be alleviated by introducing other technologies, such as the refine module.

Occlusion:

• occlusion could cause failure cases, which is a challenging problem in many vision tasks.

Language: "yellow"

Language: "fingers holding hotdog"

Language: "keenling man"

Language: "young man with face obscured by mans arm"

(a) Image

(b) GT

(c) Ours

Thanks