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Referring Image Segmentation (RES)

• RES is a fundamental and challenging task at the intersection of vision and language understanding.

• RES aims to segment a referent via a natural linguistic expression.

a baby sheep walking amongst the grass

Segmentation



Previous Work

Encoder Fusion Network with Co-Attention Embedding for Referring 
Image Segmentation

• In most previous works, linguistic feature interacts with visual 
feature of each scale separately, which ignores the continuous 
guidance of language to multi-scale visual features.

• They propose an encoder fusion network (EFN), which 
transforms the visual encoder into a multi-modal feature 
learning network and uses language to refine the multi-modal 
features progressively.

• They also propose a boundary enhancement module to make 
the network pay more attention to the fine structure.

Feng, Guang, et al. "Encoder fusion network with co-attention embedding for referring image segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 2021.



Previous Work

Vision-Language Transformer and Query Generation for Referring 
Segmentation

• The linguistic expression in RES can be treated as a query, which 
indicates the target object by describing its relationship with others. 
Then, RES is reformulated as a direct attention problem: finding the 
region in the image where the query is most attended to.

• They build a network with an encoder-decoder attention mechanism 
architecture that “queries” the given image with the language 
expression.

• They propose a Query Generation Module (QGM) that understands 
the language from different comprehension ways, and a Query Balance 
Module (QBM) to focus on the suitable ways.

Ding, Henghui, et al. "Vision-language transformer and query generation for referring segmentation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.



Previous Work

Multi-task Collaborative Network for Joint Referring 
Expression Comprehension and Segmentation

• Referring expression comprehension (REC) and segmentation (RES) are 
two highly-related tasks, which both aim at identifying the referent 
according to a natural language expression. RES can help REC to 
achieve better language-vision alignment, while REC can help RES to 
better locate the referent.

• To address the prediction conflict, they propose two innovative designs:
Consistency Energy Maximization (CEM) and Adaptive Soft Non-
Located Suppression (ASNLS).

• CEM enables REC and RES to focus on similar visual regions by 
maximizing the consistency energy between two tasks.

• ASNLS suppresses the response of unrelated regions in RES based on the 
prediction of REC.

Luo, Gen, et al. "Multi-task collaborative network for joint referring expression comprehension and segmentation." Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 2020.



Motivation

• Due to the distinct data properties between text and image, it is challenging for a network to 
well align text and pixel-level features.

• Existing approaches use pretrained models to facilitate learning, yet separately transfer the 
language / vision knowledge from pretrained models, ignoring the multi-modal corresponding
information.

• Overly complex model architectures and fusion strategies.



Introduction

Learning Transferable Visual Models From
Natural Language Supervision

• State-of-the-art computer vision systems are trained to predict 
a fixed set of predetermined object categories. This restricted 
form of supervision limits their generality and usability since
additional labeled data is needed to specify any other visual 
concept.

• Learning from a large-scale dataset of 400 million (image, text) 
pairs collected from the internet.

• Powerful vision-language alignment capability.

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.



Introduction
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• CLIP jointly trains an image encoder and a text encoder to 
predict the correct pairings of a batch of image I and text T, 
which can capture the text-image information.

• To well transfer the powerful multi-modal knowledge of
CLIP models, we propose a CLIP-Driven Referring Image 
Segmentation framework (CRIS). 

• To generalize the multi-modal knowledge from image level 
to pixel level, CRIS resorts to vision-language decoding 
and contrastive learning for achieving the text-to-pixel 
alignment.



Method

• CRIS mainly consists of a text encoder, an image encoder, a cross-modal neck, a vision-language decoder, and 
two projectors.
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Method

Text Encoder:

• A lower-cased byte pair encoding (BPE) 

representation of the text with a 49,152 

vocab size.

• A modified transformer.

• Each text sequence is bracketed with 

[SOS] and [EOS] tokens.
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Method

Image Encoder & Neck:

• A ResNet-50/101used in CLIP.

• To stablize training, we add a residual

connect in the attention pooling layer of

the ResNet.

• Following most previous methods, we

adopt a cross-modal FPN to fuse the

multi-level visual features and the

sentence representation.
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Method

Vision-Language Decoding:
• We design a vision-language decoder to adaptively propagate fine-grained semantic information from textual features to visual 

features.

• The vision-language decoder composed of n layers (n=3) is applied to generate a sequence of evolved multi-modal features 𝐹!.

• Following the standard architecture of the transformer, each layer consists of a multi-head self-attention layer, a multi-head cross-

attention layer, and a feed-forward network. In one decoder layer, 𝐹" is first sent into the multi-head self-attention layer to capture

global contextual information.
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Method

Vision-Language Decoding:
• After that, the multi-head cross-attention layer and a MLP block of two linear layers with Layer Normalization and residual 

connections are adopted to propagate fine-grained semantic information into the evolved multi-modal features 𝐹!.
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Method

Text-to-pixel Contrastive Learning:
• A text projector and an image projector are adopted to transfer features into a multi-modal embedding space.

• We design a text-to-pixel contrastive loss to learn more fine-grained multi-model representations. A language expression and related 

pixel-wise features are pulled closer, while other irrelevances are pushed away.
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Experiments

Dataset: 

• RefCOCO

a) Train / Val / TestA / TestB: 42404 / 3811 / 1975 / 1810

b) Sentence: attribute, location…

c) Length: min-1 / max-39 / mean-3.6

• RefCOCO+

a) Train / Val / TestA / TestB: 42278 / 3805 / 1975 / 1798

b) Sentence: No location information

c) Length: min-1 / max-24 / mean-3.6

• G-Ref

a) Train / Val / Test: 42226 / 2573 / 5023

b) Sentence: More detailed descriptions

c) Length: min-1 / max-46 / mean-8.4

RefCOCO RefCOCO+

G-Ref



Experiments

• To evaluate the effectiveness of each component in our method, we conduct extensive experiments on three benchmarks, including
RefCOCO, RefCOCO+, and G-Ref.



Experiments

Ablation Study:
• Effectiveness of Contrastive 

Learning
• Effectiveness of Vision-Language 

Decoder
• Numbers of Layers in Decoder
• Efficiency analysis



Experiments

Qualitative Analysis:
• Effectiveness of 

Contrastive Learning
• Effectiveness of Vision-

Language Decoder



Experiments

Qualitative Analysis:
• Comparison with Naïve

finetuning
Language: “a blond haired , blue eyed young boy in a blue jacket” Language: “a zebra ahead of the other zebra”

(b) GT (c) Naïve (f) Ours(a) Image (b) GT (c) Naïve (f) Ours(a) Image

Language: “a blond haired , blue eyed young boy in a blue jacket” Language: “a zebra ahead of the other zebra”

(b) GT (c) Naïve (f) Ours(a) Image (b) GT (c) Naïve (f) Ours(a) Image



Experiments
Failure Cases:
Imperfect linguistic expressions:

• The expression of “yellow” is not enough to 
describe the region of the man in the yellow 
snowsuit.

Noisy annotation:
• Some failures are also caused by the wrong 

label. It is obvious that the top region is 
unrelated to “fingers”.

Boundary of masks:
• the boundaries of the referent cannot be 

accurately segmented, but this issue can be 
alleviated by introducing other technologies, 
such as the refine module.

Occlusion:
• occlusion could cause failure cases, which is a 

challenging problem in many vision tasks.
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