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Referring Image Segmentation (RES)

* RES is a fundamental and challenging task at the intersection of vision and language understanding.

* RES aims to segment a referent via a natural linguistic expression.
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Previous Work

Encoder Fusion Network with Co-Attention Embedding for Referring
Image Segmentation
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* In most previous works, linguistic feature interacts with visual
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features progressively.

* They also propose a boundary enhancement module to make
the network pay more attention to the fine structure.

Feng, Guang, et al. "Encoder fusion network with co-attention embedding for referring image segmentation.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021.



Previous Work

Vision-Language Transformer and Query Generation for Referring

Segmentation Vision-Guided.
T |_ Attention + Query Vectors
- . o | [Resp. 1]0.6—
. .. .. . 1 "SMALL elephant on the LEFT' P:
* The linguistic expression in RES can be treated as a query, which "Small elephant on the left" Q elephant on the

indicates the target object by describing its relationship with others.
Then, RES is reformulated as a direct attention problem: finding the

Q2 "SMALL ELEPHANT on the left | |Resp. 2/0.7
Q3 "small ELEPHANT on the LEFT" | |Resp. 3 |0.3 —

region in the image where the query is most attended to.

* They build a network with an encoder-decoder attention mechanism
architecture that “queries” the given image with the language
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* They propose a Query Generation Module (QGM) that understands
the language from different comprehension ways, and a Query Balance
Module (QBM) to focus on the suitable ways.

Ding, Henghui, et al. "Vision-language transformer and query generation for referring segmentation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.



Previous Work

Multi-task Collaborative Network for Joint Referring [ Referring Expression  Referring Expression
Expression Comprehension and Segmentation Comprehension

* Referring expression comprehension (REC) and segmentation (RES) are
two highly-related tasks, which both aim at identifying the referent
according to a natural language expression. RES can help REC to “a halfhorse »

achieve better language-vision alignment, while REC can help RES to (a) Mlustration of Referrlng Expression Comprehension (REC)
better locate the referent. and Segmentatlon (RES)
* To address the prediction conflict, they propose two innovative designs: £

Consistency Energy Maximization (CEM) and Adaptive Soft Non-
Located Suppression (ASNLS).
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* CEM enables REC and RES to focus on similar visual regions by :

| “person on scooter wearing black

maximizing the consistency energy between two tasks. | helmet and has black backpack” |
. T
*  ASNLS suppresses the response of unrelated regions in RES based on the (b) Ilustraion of the prediction conflict.
prediction of REC.

Luo, Gen, et al. "Multi-task collaborative network for joint referring expression comprehension and segmentation." Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 2020.



* Due to the distinct data properties between text and image, it is challenging for a network to

well align text and pixel-level features.

 Existing approaches use pretrained models to facilitate learning, yet separately transfer the
language / vision knowledge from pretrained models, ignoring the multi-modal corresponding
information.

* Overly complex model architectures and fusion strategies.



Introduction

Learning Transferable Visual Models From
Natural Language Supervision

» State-of-the-art computer vision systems are trained to predict
a fixed set of predetermined object categories. This restricted
form of supervision limits their generality and usability since
additional labeled data is needed to specify any other visual
concept.

* Learning from a large-scale dataset of 400 million (image, text)
pairs collected from the internet.

* Powerful vision-language alignment capability.

(1) Contrastive pre-training
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.




Introduction

 CLIP jointly trains an image encoder and a text encoder to =~ ® LI
predict the correct pairings of a batch of image 7 and text T, e _’
which can capture the text-image information. . H
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* To well transfer the powerful multi-modal knowledge of Toxt - e ot 1t 1o
CLIP models, we propose a CLIP-Driven Referring Image — e

Segmentation framework (CRIS).

(b) CRIS
* To generalize the multi-modal knowledge from image level Tmage —»—
to pixel level, CRIS resorts to vision-language decoding Dec@l.
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and contrastive learning for achieving the text-to-pixel
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alignment.




« CRIS mainly consists of a text encoder, an image encoder, a cross-modal neck, a vision-language decoder, and
two projectors.
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Text Encoder:

* A lower-cased byte pair encoding (BPE)
representation of the text with a 49,152
vocab size.

* A modified transformer.

* Each text sequence 1s bracketed with

[SOS] and [EOS] tokens.

Text Encoder
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Image Encoder & Neck:

A ResNet-50/101used in CLIP.

To stablize training, we add a residual

connect in the attention pooling layer of

the ResNet.

Following most previous methods, we
adopt a cross-modal FPN to fuse the
multi-level visual features and the

sentence representation.
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Vision-Language Decoding:

We design a vision-language decoder to adaptively propagate fine-grained semantic information from textual features to visual
features.

The vision-language decoder composed of n layers (n=3) is applied to generate a sequence of evolved multi-modal features F;.
Following the standard architecture of the transformer, each layer consists of a multi-head self-attention layer, a multi-head cross-

attention layer, and a feed-forward network. In one decoder layer, F, is first sent into the multi-head self-attention layer to capture
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Vision-Language Decoding:

* After that, the multi-head cross-attention layer and a MLP block of two linear layers with Layer Normalization and residual
connections are adopted to propagate fine-grained semantic information into the evolved multi-modal features F..
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Text-to-pixel Contrastive Learning:

* A text projector and an image projector are adopted to transfer features into a multi-modal embedding space.

*  We design a text-to-pixel contrastive loss to learn more fine-grained multi-model representations. A language expression and related

pixel-wise features are pulled closer, while other irrelevances are pushed away.
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Dataset

* RefCOCO
a) Train/ Val / TestA / TestB: 42404 / 3811/ 1975/ 1810
b) Sentence: attribute, location...
c) Length: min-1/max-39 / mean-3.6
* RefCOCO+
a) Train/ Val/ TestA / TestB: 42278 / 3805/ 1975 / 1798
b) Sentence: No location information
c) Length: min-1/max-24 / mean-3.6
* G-Ref
a) Train/ Val / Test: 42226 / 2573 / 5023
b) Sentence: More detailed descriptions
c) Length: min-1/ max-46 / mean-8.4

RefCOCO

train set

train set

RefCOCO+

train set




To evaluate the effectiveness of each component in our method, we conduct extensive experiments on three benchmarks, including
RefCOCO, RefCOCO+, and G-Ref.

RefCOCO RefCOCO+ G-Ref

Method Backbone val test A test B val test A test B val test
RMI* [24] ResNet-101 45.18 45.69 45.57 29.86 30.48 29.50 - -
DMN [32] ResNet-101 49.78 54.83 45.13 38.88 44.22 32.29 - -
RRN* [22] ResNet-101 55.33 57.26 53.95 39.75 42.15 36.11 - -
MAT(ttNet [49] ResNet-101 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61
NMTree [25] ResNet-101 56.59 63.02 52.06 47.40 53.01 41.56 46.59 47.88
CMSA* [48] ResNet-101 58.32 60.61 55.09 43.76 47.60 37.89 - -
Lang2Seg [5] ResNet-101 58.90 61.77 53.81 - - - 46.37 46.95
BCAN* [16] ResNet-101 61.35 63.37 59.57 48.57 52.87 42.13 - -
CMPC* [17] ResNet-101 61.36 64.53 59.64 49.56 53.44 43.23 - -
LSCM* [18] ResNet-101 61.47 64.99 59.55 49.34 53.12 43.50 - -
MCN [29] DarkNet-53 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40
CGAN [28] DarkNet-53 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69
EFNet [8] ResNet-101 62.76 65.69 59.67 51.50 55.24 43.01 - -
LTS [19] DarkNet-53 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25
VLT [6] DarkNet-53 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65
CRIS (Ours) ResNet-50 69.52 72.72 64.70 61.39 67.10 52.48 59.35 59.39
CRIS (Ours) ResNet-101 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36




Dataset |Con. Deec. n| ToU |Pr@50 Pr@60 Pr@70 Pr@80 Pr@90 | Params  FPS

Ablation Study: . E - | 6266 | 7255 6729 5953 4352 1272 | 131.86 27.30
S - - | 6464 | 7489 6958 6170 4550 1331 | 13422 2579
° Effectlveness Of Contrastlve - v 1 | 66.31 77.66 72.99 65.67 48.43 14.81 136.07  23.02
v V16866 | 80.16 7572  68.82 5198 1594 | 13843 22.64
: v v 26913 | 8096 7660 69.67 5223 1609 | 142.64 20.68
Learning v V316952 | 8135 7754 7079 5265 1621 | 14685 19.22
. - v V4] 6918 | 80.99 7674 6932 5257 1637 | 151.06 18.26
» Effectiveness of Vision-Language

: ~ - | 5017 | 5455 47.69 40.19 2875 821 | 131.86 27.30
Decoder el .. 5315 [ 5808 s394 d6el - 3400 930 (13493 2579
E v 1|57 631 5889 546 3853 1170 | 13607 2300
: v v 15997 | 69.19 6485 5817 4347 1339 | 13843 22.64

[ )
Numbers of Layers in Decoder v V216075 | 7069 6683 6074 4569 1342 | 142.64 20.68
. . v v 36139 | 7146 6782 61.80 47.00 1502 | 14685 19.22

[ )
Efficiency analysis v v 4]6L15| 7105 6694 6125 4698 1497 | 151.06 18.26
: ~ -] 4924 | 5333 4549 3658 2390 692 | 131.86 2572
o v - - | 5267 | 5927 5245 4412 2953 880 | 13422 2533
: v 1]5146 | 5868 5333 4561 3178 1023 | 13607 22.57
v v 1]578 | 6628 6099 5321 3858 1338 | 13843 2234
v v 25840 | 6730 6172 5470  39.67 1340 | 142.64 20.61
v v 305935 | 6893 63.66 5545  40.67 14.40 | 14685 19.14
v v 45879 6791 6311 5543 3981 1348 | 151.06 17.84




Experiments

Qualitative Analysis:

* Effectiveness of
Contrastive Learning

« Effectiveness of Vision-
Language Decoder

Language: “man left cut off”
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Language: “a blond haired , blue eyed young boy in a blue jacket”

Experiments

Qualitative Analysis:

* Comparison with Naive
finetuning




Experiments :
Failure Cases:
Imperfect linguistic expressions:

*  The expression of “yellow” is not enough to
describe the region of the man in the yellow

snowsuit.
Noisy annotation:

*  Some failures are also caused by the wrong
label. It is obvious that the top region is
unrelated to “fingers”.

Boundary of masks:

* the boundaries of the referent cannot be
accurately segmented, but this issue can be
alleviated by introducing other technologies,
such as the refine module.

Occlusion:

e occlusion could cause failure cases, which is a

challenging problem in many vision tasks.
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