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Abstract—Traffic surveillance has become an important topic in
intelligent transportation systems (ITSs), which is aimed at mon-
itoring and managing traffic flow. With the progress in computer
vision, video-based surveillance systems have made great advances
on traffic surveillance in ITSs. However, the performance of most
existing surveillance systems is susceptible to challenging complex
traffic scenes (e.g., object occlusion, pose variation, and cluttered
background). Moreover, existing related research is mainly on a
single video sensor node, which is incapable of addressing the
surveillance of traffic road networks. Accordingly, we present a
review of the literature on the video-based vehicle surveillance
systems in ITSs. We analyze the existing challenges in video-based
surveillance systems for the vehicle and present a general archi-
tecture for video surveillance systems, i.e., the hierarchical and
networked vehicle surveillance, to survey the different existing
and potential techniques. Then, different methods are reviewed
and discussed with respect to each module. Applications and
future developments are discussed to provide future needs of ITS
services.

Index Terms—Behavior understanding, computer vision, net-
worked surveillance system, traffic surveillance, vehicle detection,
vehicle tracking.

I. INTRODUCTION

W ITH the rapid development of urbanization, traffic con-
gestion, incidents, and violations pose great challenges

on traffic management systems in most large and medium-sized
cities. Consequently, research on active traffic surveillance,
which aims to monitor and manage traffic flow, has attracted
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much attention. With the progress in computer vision, the video
camera has become a promising and low-cost sensor for traffic
surveillance. Over the last 30 years, video-based surveillance
systems have been a key part of intelligent transportation
systems (ITSs). These systems capture vehicles’ visual ap-
pearance and extract more information about them through
vehicle detection, tracking, recognition, behavior analysis, and
so forth. Generally, existing surveillance systems collect traffic
flow information that mainly includes traffic parameters and
traffic incident detection. Traffic incident detection is more
challenging and has much research potential.

Although great progress has been made on video-based traf-
fic surveillance, researchers are still facing various difficulties
and challenges for practical ITS applications. A summary of the
existing challenges for video-based surveillance systems are as
follows.

• All-day surveillance: The lighting conditions changes at
different time of a day, particularly between daytime and
nighttime. Supplemental lighting equipment can be used
for nighttime operation; however, their visual ranges are
usually limited.

• Vehicle occlusion: In busy traffic scenarios, vehicles are
easily occluded by other vehicles and nonvehicle objects,
such as pedestrians, bicycles, trees, and buildings.

• Pose variation: Vehicle pose can vary greatly when they
are turning or changing lanes.

• Different types of vehicles: There are various vehicles with
different shapes, sizes, and colors.

• Different resolutions: When a vehicle drives through the
camera’s field of view (FOV), its image size in pixels
changes. This leads to the loss of some detailed visual
information and challenges the robustness of detection
models.

• Vehicle behavior understanding on the road network:
Tracking a vehicle traveling through the road network
requires the cameras coordinate with each other in order
to understand the full traffic status through global behavior
analysis.

Based on the analysis of existing surveillance systems, we
present a general system architecture of hierarchical and net-
worked vehicle surveillance (HNVS) in ITSs (see Fig. 1) with
the aim of vehicle attribute extraction and behavior under-
standing. The HNVS hierarchy is constructed from four layers,
which are defined as follows.

Layer 1 Image Acquisition: The function of this layer is to sense
traffic scenes and obtain images using visual sensors.
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Fig. 1. Architecture of Hierarchical and Networked Vehicle Surveillance.

Layer 2 Extraction of Dynamic and Static Attributes: Based
on the obtained images, this layer is used to extract the
vehicle’s dynamic and static attributes. The dynamic at-
tributes refer to the attributes with respect to vehicle motion
characteristics, including velocity, direction of movement,
vehicle trajectories on a single camera and on the road
network, etc. The static attributes represent the features
of vehicle appearance description, which consist of license
plate number, type, color, logo, etc.

Layer 3 Behavior Understanding: This layer aims to analyze
the vehicle’s dynamic and static attributes, understand
vehicle behaviors, and finally perceive traffic status of
the transportation system. Vehicle behaviors are analyzed
both from a single camera and over the road network in
order to obtain and predict the traffic status of the whole
transportation system.

Layer 4 ITS Services: Based on the outputs of the previous
layers, this layer provides ITS services for efficient trans-
portation management and control. Example ITS services
include electronic toll collection, security monitoring, il-
legal activity and anomaly detection, and environment
impact assessment.

HNVS is both hierarchical and networked. The functions
have little overlap between different layers, which simplifies
analysis of layer techniques in literature. Since the HNVS is
a networked system, it is possible to generate full networked
conclusions, e.g., capturing and understanding the vehicle be-
haviors on the road network, and perceiving and predicting the
traffic status of the whole transportation system.

A recent review [1] presented the state-of-the-art computer
vision techniques for the analysis of urban traffic. This survey

focused on Layer 2 techniques such as vehicle foreground seg-
mentation, vehicle classification were reviewed in detail, and
the complete traffic surveillance system was discussed on both
urban and highway environment. Further, the five key computer
vision and pattern recognition technologies required for large-
area surveillance, including multicamera calibration, computa-
tion of the topology of camera views, multicamera tracking,
object reidentification and multicamera activity analysis, has
been reviewed with detailed descriptions of their technical
challenges and comparison of different solutions [2]. Different
from [1] and [2], we depart from the typical perspectives of
general hierarchical and networked surveillance to consider
the problem of vehicle surveillance explicitly. We survey both
motion-based and feature-based vehicle detection methods and
the latest advances in other fields about surveillance, e.g.,
vehicle tracking, recognition, and behavior understanding. Fur-
thermore, we present a vehicle surveillance framework for
monitoring and understanding their behaviors both on a single
camera and the road network. The contribution of this survey is
threefold. First, it presents the HNVS architecture to consider
the problem of vehicle surveillance from the perspectives of
hierarchical and networked surveillance. Second, it provides a
comprehensive latest review of state-of-the-art computer vision
techniques used in traffic surveillance. Third, we present de-
tailed analysis, discussions, and outlooks on special computer
vision issues and surveillance systems.

The remainder of this paper is organized as follows.
Section II provides a comprehensive survey of the state-of-the-
art research on dynamic and static attributes extraction with
detailed discussion with respect to each task. Section III reviews
the literature about vehicle behavior understanding, i.e., vehicle
behavior understanding both on a single camera and on the
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Fig. 2. Taxonomy for vehicle attributes extraction methods and the lists of selected publications corresponding to each category.

road network. In Section IV, the layers of image acquisition
and providing ITS services are discussed, and in Section V,
the outlook of future developments in video surveillance sys-
tem are presented. Finally, Section VI summarizes the HNVS
framework and concludes this paper.

II. DYNAMIC AND STATIC ATTRIBUTES EXTRACTION

Here, we will describe the layer of dynamic and static at-
tributes extraction, review the existing techniques, and provide
detailed discussions of challenging issues. Here, the dynamic
attributes refer to the attributes with respect to vehicle motion
characteristics, including velocity, direction of movement, ve-
hicle trajectories on a single camera and on the road network,
etc. It involves techniques of vehicle detection, tracking, and
tracking by the camera networks. The static attributes represent
the features of vehicle appearance description and recognition,
including recognition of license plate number, color, type, logo,
and so forth. Fig. 2 demonstrates the taxonomy for vehicle at-
tributes extraction methods and the lists of selected publications
corresponding to each category.

A. Vehicle Detection

Reliable and robust vehicle detection, or localization in an
image, is the first step of video processing. The accuracy of
vehicle detection is of great importance for vehicle tracking,
vehicle movement expression, and behavior understanding and
is the basis for subsequent processing. There are two main
detection research categories.

1) vehicle detection methods based on appearance features;
2) vehicle detection methods based on motion features.

Appearance-based techniques use the appearance features,
e.g., shape, color, and texture, of the vehicle to detect the
vehicle or separate it from the background. Motion-based
methods use “moving” characteristic to distinguish vehi-
cles from the stationary background image. Table I sum-
marizes the representative works in vision-based vehicle
detection.

1) Methods Based on Appearance Features: The visual in-
formation of object falls into three classes: color, texture, and
shape. Prior information is usually employed for modeling
when using methods based on these features. In contrast to
motion-based methods, appearance-based methods can detect
and recognize stationary cars.

a) Representative feature descriptors: Representative
feature-based approaches concern methods using coded
descriptions about the inherent visual appearance of vehicle,
such as symmetry [10]–[12], color [3], [13], edge [14]–[16],
contour [17] and texture [18], [19]. A variety of feature
descriptors have been used in this field to describe the vehicle’s
visual appearance.

Many earlier works [20] used local image patches to repre-
sent vehicle objects. It is simple to use the patch pixel values
as the feature vector, but this representation is sensitive to
the vehicle size and illumination changes. As a result, edge-
based histograms [7], [21], [22] are used to achieve more
spatial invariance and to deal with the influence of illumination
conditions.

The scale-invariant feature transform (SIFT) [21] is one of
the most widely used local features. This feature is invariant
to image scaling and rotation and is partially invariant to
illumination change and affine projection by considering local
edge orientations around stable keypoints. The modified SIFT
descriptor was used in [7] to generate a rich representation of
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TABLE I
REPRESENTATIVE WORKS IN VISION-BASED VEHICLE DETECTION

vehicle images. This histogram of oriented gradient (HOG) [23]
is another popular feature descriptor that counts the occurrences
of gradient orientation in localized portions of an image. HOG
features have illumination invariance and geometric invariance
with high computational efficiency on dense sampling grids as
opposed to sparse representation in SIFT. Haar-like features [9],
[24], [25] compute the difference of the sum of pixels within
the rectangles over an image patch. The rectangular structure of
Haar-like features is highly efficient to compute, making them
well suited for real-time applications and representing rigid
objects such as vehicles.

b) Classifiers: Classifiers can be broadly split into two
categories, i.e., discriminative and generative classifiers, which
follows the general trends in the computer vision and machine
learning literature. Discriminate classifiers learn the posterior
probability of classification or decision boundary between
classes and are more widely used in vehicle detection, whereas
the generative classifiers, which learn the underlying distribu-
tion or structure of a given class, are less common in the vehicle
detection literature.

Discriminative approaches, such as artificial neural networks
(ANNs), support vector machines (SVMs), boosting, and con-
ditional random fields (CRFs), are usually preferred for two-
class classification: vehicle or nonvehicle. Traditionally, the
shortcomings of ANN’s were uncertain network topology,
many parameters to tune, and potential for locally optimal
solutions. However, recent advances in deep learning archi-
tectures, such as deep neural networks (DNNs) [26], [27] for
general object detection, have been pulling researchers back. In
contrast to ANN, SVMs have a much smaller number of tunable
parameters and are widely used for vehicle detection [28].
Boosting [29] uses a weighted combination of weak classifiers
to create a strong classifier. Feris et al. [9] used adaptive
boosting (AdaBoost) to deal with a huge pool of local feature
descriptors for vehicle detection. Another alternative approach
is the use of a probabilistic graphical model, which has been
widely used in artificial intelligence, pattern recognition, and

computer vision. In [30], CRFs were used to recognize a target.
The 3-D Layout CRF was proposed in [31] for joint vehicle
detection and pose recognition.

Generative classifiers are not as widely used as discrimina-
tive classifiers for vehicle detection. In [32], a spatiotemporal
Markov random field model (MRF) was used to achieve robust
tracking in occluded and cluttered situations. In [33], Gaussian
mixture modeling was used for vehicle detection. In [34], the
active basis model, which is a generative model, was proposed
and used for object detection and recognition. In this model, a
deformable template is represented as an active basis, which
consists of a small number of Gabor wavelet elements at
selected locations and orientations. These elements are allowed
to slightly perturb their locations and orientations to achieve an
optimal match with the image.

Part-based detection models, which divide an object into a
number of smaller parts and model the spatial relationships
between these parts, has become popular for vehicle detection
recently. Vehicles were separated into front, side, and rear parts
to improve detection performance in occlusion and at the edge
of the camera FOV [35]. In [36], objects were broken into their
constituent parts, and stochastic attribute graph grammars were
used to model the variability of configurations and relationships
between these parts. The discriminatively trained deformable
part model [37], [38] was used in [39] and [40] for robust
vehicle detection.

c) 3-D Modeling: Computer-generated 3-D models of ve-
hicles can be used to detect vehicles by appearance matching
[41]–[44]. In [45], existing 3-D vehicle models were analyzed,
and it was found that the models were either generic but far too
simple to utilize high-resolution imagery or far too complex
and limited to specific vehicle instances. To span these two
extremes, a deformable vehicle model is constructed with a
multiresolution approach to fit various image resolutions. At
each resolution, a small number of parameters control the
deformation to accurately represent a wide variety of passenger
vehicles.
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TABLE II
RESULTS OF DIFFERENT METHODS TO DEAL WITH OCCLUSION

The main difficulty of 3-D modeling approaches is the ques-
tion of how to obtain accurate 3-D models. To deal with this
problem, a kind of synthetic 3-D model was proposed in [46] to
build 3-D representations of object classes. However, this kind
of synthetic 3-D model does not always match a real vehicle.
Generally, 3-D modeling techniques are limited to only a few
vehicle types because it is impossible to generate a model for all
vehicles on the road. Even with unlimited models, it is unclear
how the unique characteristics of each vehicle type can be
extracted and represented for efficient matching. More details
about 3-D modeling can be seen in the survey [1].

2) Methods Based on Motion Features: Motion detection
is an important task in computer vision. In traffic scenes, the
most common characteristic of interest is whether a vehicle is
“moving” since it is typically only the moving vehicles that are
of interest (traffic counts, safety, etc.). Motion detection aims to
separate moving foreground objects from the static background
in the image.

Background subtraction methods are the most widely studied
and used approach for motion detection. Foreground objects
are extracted by calculating the difference by pixel between
the current image and a background image [5]. In the simplest
case, the background image is constructed by specific known
background images, e.g., background averaging method, in
which a period of image sequences are averaged to obtain a
background model [47]. However, in real traffic scenes, the
background is usually changing; therefore, this kind of method
is not suitable for dynamic traffic scenes. Thus, the background
is constructed without known background image, which make
the following assumptions.

• Background is always the most frequently observed in the
image sequence.

• The background pixel value is the value that has the
maximum appearance time at a steady state.

There are several methods based on the above assumptions,
such as the image median, Kalman filter [42], single Gaussian
pixel distribution [48], [49], Gaussian mixture model (GMM)
[50], [51], and wavelets [52]. Background subtraction methods
also have low computational complexity, which makes it suit-
able for practical applications. However, they are sensitive to
the background changes caused by factors such as illumination
and weather.

Optical flow is the instantaneous speed of pixels on the image
surface, which corresponds to moving objects in 3-D space.
The main idea of optical flow is to match pixels between image

frames using temporal and gradient information. In [53], dense
optical flow was used to separate merged blobs of vehicles.
In [6], optical flow was used with 3-D wireframes for vehicle
segmentation. The iterative nature of optical flow calculations
provides accurate subpixel motion vectors at the expense of
added computational time. Yet, optical flow methods are still
popular for vehicle detection since these techniques are less
susceptible to occlusion issues.

3) Discussion: There are two general problems in the vehi-
cle detection: shadow and occlusion. Here, we will give some
discussions about these two problems, as well as challenges
with vehicle detection during the nighttime.

a) Vehicle shadow: A shadow is often detected along
with the vehicle, particularly when using motion-based meth-
ods. Shadow detection is critical for accurate vehicle detection
and tracking. In general, a shadow has two features: shape
and color/texture. The shape of a shadow has a regular pat-
tern and is determined by the shape of the object and illu-
mination characteristics, which can be exploited to detect the
shadow [54]. However, the information of the object shape
and the illumination characteristics is difficult to obtain and
is usually unstable. The other feature of shadow is its color
and texture and is often different from the vehicle. In [55],
pixels were analyzed in the hue–saturation–value (HSV) color
space to explicitly separate chromaticity (color) and luminosity
(brightness) to develop a mathematical formulation for shadow
detection, which is not possible in standard RGB color space.
An effective shadow-eliminating algorithm based on contour
information and color features is developed in [56]. Readers
can find more information on shadow detection in [57], which
presents an evaluation of moving-shadow detection.

b) Vehicle occlusion: Occlusion is another common
problem in detection that arises due to the high density of
vehicles and the low camera angles used when monitoring
traffic. When occlusion occurs, the appearance of a vehicle is
obscured from view either by other vehicles or background
objects closer to the camera. Table II lists some experimental
results with occlusion handling. In [58], Zhang et al. considered
that the occlusion is caused by the information lost in the
projection of a 3-D scene onto a 2-D image plane, and the
key point of handling occlusion is the estimation of the lost
information. The proposed framework consists of three levels:
the intraframe, interframe, and the tracking level, which are
sequentially implemented. In their experiments, 427 vehicles
were used, including 249 occlusions, and the accuracy was
94.1%. Kanhere et al. [59] presented a method for segmenting
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TABLE III
REPRESENTATIVE WORKS IN VISION-BASED VEHICLE TRACKING

and tracking vehicles on highways using a camera that is
relatively low to the ground. In their framework, feature points
were first extracted, and then the distribution of the points was
estimated to recognize occlusion vehicles. The accuracy was
over 90%.

c) Nighttime detection: One of the largest obstacles to
vision-based vehicle detection systems is performance during
the night, which is critical for continuous surveillance. During
nighttime operation, cameras are extremely light sensitive and
have poor contrast, and reflections of vehicle lights cause seri-
ous recognition issues. One solution is to install supplemental
illumination equipment (e.g., streetlights or infrared illumina-
tors) to artificially provide visual information similar to daytime
operation. However, the range of this type of equipment is
limited and may require more expensive camera optics.

Instead, researchers have focused on detecting vehicles based
on the limited visual information available with standard cam-
eras at night. Gritsch et al. [61] constructed a nighttime clas-
sification system, smart eye traffic data sensor, which could
distinguish between a car and a truck. The frequency of y-
values in the region of interest (ROI) were evaluated, and the
x-coordinates parallel with the car’s motion were projected.
The y-histogram contained two peaks that represented the
vehicle headlights, and their distance was used to distinguish
between trucks and cars. Robert et al. [62], [63] proposed a
nighttime detection framework that operated on vehicle lights.
Candidate lights were located as bright horizontally aligned
blobs in the image. A decision tree was used to determine
which candidate blobs corresponded to headlights. Inspired
by the work in [63], Wang et al. [64] proposed a two-layer
nighttime detection method. In the first layer, headlights were
detected using the same methods as [63] and, in the second
layer, a boosted cascade classifier based on Haar-like features
was employed to detect the front of vehicles. Chen et al.
[65] implemented vision-based multiple vehicle tracking at
nighttime. Bright object regions called candidate headlights
were segmented using an automatic multilevel thresholding
technique [66], and size-ratio, area, and distance constraints
were used to filter out the nonheadlights components. Then,
they tracked vehicle lights using spatial and temporal features,
grouped the vehicle components using motion constraints, and
recognized cars and motorbikes. Zhang et al. [67] modeled
the reflection intensity map, the reflection suppressed map, and
image intensity into an MRF model to distinguish light pixels

from reflection pixels, which can be used to better represent
vehicle and improve vehicle tracking.

B. Vehicle Tracking

Vehicle tracking is used to predict vehicle positions in sub-
sequent frames, match vehicles between adjacent frames, and
ultimately obtain the trajectory and location for each frame
in the camera FOV of the vehicle. In the HNVS architecture,
vehicle-tracking techniques are used to extract vehicles’ dy-
namic attributes, including velocity, direction of movement, and
vehicle trajectories. Most vehicle tracking algorithms follow
one basic principle: vehicles in two adjacent frames are the
same if the spatial distance is small. Table III summarizes the
representative works in vision-based vehicle tracking.

1) Vehicle Representation: Before tracking the vehicle, it
needs to be uniquely represented. Existing representations uti-
lize the vehicle region, a feature vector, contour, or model.
Region representations describe the moving targets with simple
geometric shapes, such as a rectangle or oval, which is suit-
able for rigid objects. In [5], tracking was performed based
on motion silhouette overlaps. The feature-based approach is
suitable for tracking those targets with small area in the image
by compactly representing parts of a vehicle or local areas (see
Section II-A1a). Contour representation normally uses a closed
curve contour to represent moving objects, and the contour
can be continuously updated automatically. It is suitable for
complex nonrigid targets. The contour of two vehicles was used
in [58] to resolve occlusions by considering the convexity of the
shape. Model representation methods generally use 2-D or 3-D
appearance models. A 3-D wireframe model was used in [6] and
[72] for vehicle tracking. The choice of representation type is
closely related to specific applications, the behavior of moving
object, or the accuracy requirement.

2) Kalman Filter Tracking: The Kalman filter [73], also
known as linear quadratic estimation, is an algorithm that uses
a series of measurements observed over time, containing noise
and other inaccuracies, and produces estimates of unknown
variables that tend to be more precise than those based on a
single measurement alone. The Kalman filter can make full use
of the historical information and reduce the search range of the
image, to significantly improve system processing speed. Par-
ticularly when the vehicle motion and light conditions change
or overlapped by other objects, which may cause tracking
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TABLE IV
POPULAR METHODS FOR VEHICLE ATTRIBUTE EXTRACTION

failure, the Kalman filter shows better tracking accuracy and
stability. The filter was used successfully in [42], [49], and [74]
for tracking. However, the algorithm performance on large mo-
tor vehicle tracking is not entirely satisfactory due to linearity
assumption and normally distributed noise characteristics. The
extended Kalman filter can be utilized to deal with nonlinear
models [75].

3) Particle Filter Tracking: The particle filter is a general-
ization of the Kalman filter. The basic idea of particle filter is
to use a set of random samples with associated weights and
estimation based on these samples to represent the posterior
probability density. According to Monte Carlo theory, when
the number of particles is big enough, the group of particles
with associated weight can completely describe a posteriori
probability distribution. At this point, the Bayesian estimation
of particle filter is optimal [76]. This approach overcomes the
constraint of a single Gaussian distribution of Kalman filters.
In [69], [77], and [78], the filter was used for traffic videos. In
[70], a combination of particle filter and mean shift was used
for object tracking.

4) Dense Inferencing Architectures: The probabilistic
graphical model is another mathematical tool for tracking
to solve the inference problem of motion estimation. In
[32], a spatiotemporal MRF was used to model a tracking
problem. The model determines the state of each pixel in
an image and its transition, and how such states transit. The
spatiotemporal MRF was used in [79] to track moving objects
in H.264/AVC-compressed video sequences.

In [71], Wang et al. studied the challenging problem of
tracking a moving object in a video with possibly very com-
plex background. Inspired by deep learning architectures, they
trained a stacked denoising autoencoder using many auxiliary
natural images to learn generic image features. This is the
first work on applying DNNs to visual tracking, and many
opportunities remain open for further research.

C. Vehicle Recognition

In this section, vehicle recognition techniques to extract static
attributes, including recognition of license plate number, color,

type, and logo, are discussed. Table IV summarizes the popular
methods used for vehicle attributes extraction.

1) License Plate: License plate recognition (LPR) is used
to extract the vehicle license plate information from an image
or a sequence of images. The related algorithms are generally
composed of three steps: localization of the license plate region,
segmentation of the plate characters, and recognition of the
plate characters.

a) License plate localization: This step extracts the re-
gions of license plates in an input image, which directly in-
fluences the accuracy of an LPR system. Features, such as
edge, texture, color, and hybrid features, are usually utilized to
accurately localize the license plate.

The method of extracting the license plate depends on the
presence of characters in the license plate, which results in
significant change in the grayscale levels between the character
pixels and license plate background pixels. The change of
the grayscale level results in a high edge density in the scan
line [111]. Anagnostopoulos et al. [112] proposed a sliding-
concentric-window method in which license plates are viewed
as irregularities in the texture of the image. Zhang et al. [86]
employed AdaBoost with Harr-like features for license plate
localization since license plates normally have a rectangular
shape with a known aspect ratio. Edge detection methods are
commonly used to find the rectangles of license plates [80],
[83], [85].

Many color-based methods are proposed in the literature for
license plate localization. The color combination of the plate
and the characters is unique to the plate region [90], [91].
Yohimori et al. [113] used a genetic algorithm (GA) to identify
the license plate color. Jia et al. [114] used Gaussian weighted
histogram intersection to overcome the various illumination
conditions. Deb and Jo [93] adopted a hue–saturation–intensity
model to select a statistical threshold for detecting candidate
regions. The mean and standard deviation of hue were used
to detect green and yellow license plate pixels. Wan et al.
[92] proposed a novel method to localize the plate by means
of a Color Barycenter Hexagon model that is insensitive to
illumination.

In addition to the methods based on a single feature, many
research works combined two or more features of the license
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plate, such as texture and color [115] or rectangular shape with
texture and color [116]. Lee et al. [117] used the local structure
patterns computed from the modified census transform to detect
the license plate, and a two-part postprocessing with position-
based and color-based methods was adopted.

b) Character segmentation: A wide variety of techniques
have been proposed to segment each character after plate local-
ization. The method proposed in [118] used the dimensions of
each character for fixed segmentations. Meanwhile, the struc-
ture of the Chinese license plate is used to construct a classifier
for recognition. As pointed out in [119], the plates in Taiwan
are all in the same color distribution, i.e., black characters
and white background. The localization and segmentation rates
were 97.1% and 96.4%, respectively, in the experiment with
332 different test images. In [120]–[122], the connected pixels
in the binary license plate image were labeled to segment the
characters. These labeled pixels with the correct same size and
aspect ratios are detected as license plate characters. However,
it fails to detect the plate characters when there are some joined
or broken characters. Similar to plate detection, two or more
features can be combined to segment the license plate char-
acters. A morphological thickening algorithm was proposed
in [123] to segment by means of locating the related lines
for separating the overlapped characters. In [124], an adaptive
morphology was proposed to detect fragments and merge them
based on the histogram obtained by vertical projection of shape
pixels in each column of image matrix.

c) Character recognition: Character recognition has
some challenges due to the camera zoom factor that results in
various character sizes and sometimes noise. In [125], extracted
features were compared with prestored feature vectors to mea-
sure the similarity, and they were robust enough to distinguish
characters even under distortions. In addition, many classifiers
such as ANNs [89], hidden Markov models (HMMs) [94], and
SVMs [95] can be used to recognize characters after feature ex-
traction. Some researchers integrate two kinds of classification
schemes [126], [127], use multistage classification schemes
[128], or a “parallel” combination of multiple classifiers
[129], [130].

d) Discussion: Although significant progress of LPR
techniques has been made in the last few decades and commer-
cial products exist, there is still plenty of work to be done. A
robust system should work effectively under a variety of con-
ditions such as indoors, outdoors, nighttime, or with different
colors and complex backgrounds and even when the plates been
occluded by dirt or lighting.

A uniform evaluation benchmark needs to be constructed
to evaluate the performance of different LPR systems. It is
essential that the number and quality of testing examples have
a direct effect on the overall LPR performance. Except for
common test sets, some regulations should be formulated for
performance evaluation, such as how to define the accurate
localization of license plate and how to calculate the character
recognition rate. (For more research and discussion about LPR,
see [131].)

2) Vehicle Type: Recognition of vehicle type, which is an
important characteristic of vehicle, has become ever more im-
portant in the recent years in ITS [132]. For example, accurate

recognition of vehicle types could offer valuable assistance to
the police in identifying blacklisted vehicles from a mass of
traffic surveillance image database [97] or could be used for
emission estimation [133]. The researches of vehicle classifica-
tion methods are mainly based on the following two aspects:
shape features and appearances of vehicles.

a) Shape-based methods: Shape-based methods classify
vehicles according to their shape features, e.g., size and sil-
houette. Lai et al. [134] proposed to classify the trucks and
cars by longitudinal length. The images should be taken in
the driving direction to accurately get the length information.
Han et al. [135] thought that the most stable image features for
vehicle class recognition appear to be image curves associated
with 3-D ridges on the vehicle surface. Types of SUV, car,
and minibus were recognized and yielded an accurate rate of
88%. Negri et al. [100] proposed an oriented-contour point
model to represent a vehicle type, which exploits the edges in
the four orientations of vehicle front images as features and
reported a classification performance of 93.1% by using the
classifier based on a voting algorithm and an Euclidean edge
distance. Shape-based methods might not yield fine-grained
vehicle types as different types of vehicles may be similar
in size.

b) Appearance-based methods: Appearance-based meth-
ods classify vehicles based on their appearance features, e.g.,
edge, gradient, and corner. Petrovic et al. [136] used Sobel
edge response and square mapped gradients together with sim-
ple Euclidean measure-based decision module and obtained a
good performance on classification of 77 different classes. In
[97], Munroe et al. detected edge features and used k-means
to classify five different vehicle classes. In [98], a 2-D linear
discriminant analysis (2DLDA) method was proposed to clas-
sify 25 vehicle types. The experiment showed that it yielded
accuracy of 91%. Huang et al. [99] extracted a ROI relative to
the located license plate and also used the 2DLDA method on
the gradients of ROI and achieved a high recognition accuracy
rate of 94.7% for 20 types. It is not sensitive to colors and
illumination due to the feature selection of ROI gradients for
2DLDA. In [49], Morris and Trivedi developed a VECTOR
system to classify eight different types of vehicles with over
80% accuracy using simple blob measurements in highway
scenes. In their later work [9], they used the term shape-free
appearance space to denote the image space of objects with the
same aspect ratio and learned a single detector for multiple ve-
hicle types (buses, trucks, and cars) by multiple feature planes
(red, green, blue, gradient magnitude, and many others), Zhang
et al. [137] built a two-stage cascade classifier ensemble with
rejection option based on a pyramid HOG and Gabor features
extracted from frontal images of vehicles. The experimental
results showed it yielded an overall accuracy rate of 98.7% for
21 classes.

c) Discussion: Vision-based vehicle type recognition is
still a challenging task due to many issues still to be fully
explored. In traffic surveillance videos, even the same vehicle
type can be incorrectly classified into different types due to
different road environments, illumination variation, complex
backgrounds, and different camera views. In addition, many
types of vehicles have highly similar appearance, and the
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number of vehicle types is large and is ever expanding as time
goes on.

Future works will be devoted to tackling the challenging
aforementioned problems. Moreover, obtained attributes such
as color, width, height, velocity, and travel direction can be used
to search for specific vehicles in large-scale collections from
realistic vehicle surveillance settings. In vision-based vehicle
classification, feature representation and classification are two
principal issues. Although most studies pursue accuracy in
recent years, the reliability and time efficiency will be more
important to address for widespread deployment.

3) Vehicle Color: Color is another essential attribute of ve-
hicle that has become more widely used for video surveillance.

Some studies have been developed to recognize the vehicle
color. Hasegawa and Kanade [103] classified outdoor vehicle
colors into six groups, where each group is composed of similar
colors such as black, dark blue, and dark gray. They used a
k-nearest neighbor (k-NN)-like classifier with a new linearly re-
lated RGB color space. In [104], HSV color space was used for
vehicle color recognition. This work used the 2-D histograms
of H and S channels as input features for an SVM. It classified
the vehicle colors into red, blue, black, white, and yellow. Two
regions of interest (the smooth hood piece and semi-front of
a vehicle) were used along with three classification methods
(k-NN, ANNs, and SVM) and combinations of 16 color space
components as distinct feature sets to recognize the vehicle, and
yielded an accuracy rate of 83.5% [105].

The vehicles in surveillance scenes are almost always out-
doors with various illuminations. The color of vehicle may
differ with respect to the illumination and camera viewpoint.
Future work will focus on finding the reliable feature repre-
sentation and robust classification methods for vehicle color
recognition.

4) Vehicle Logo: Another important attribute of a vehicle is
its logo or emblem, which contains important information about
the make and model of a vehicle. Since the vehicle logo cannot
be tampered with easily, it plays an elemental role in classifica-
tion and identification of vehicles. We divide the related works
into two parts: logo detection and logo recognition.

a) Logo detection: Accurate logo detection is a critical
step in the vehicle logo recognition. A novel approach for vehi-
cle logo detection based on edge detection and morphological
filter was proposed in [109]. In [110], Wang et al. proposed to
conduct fast coarse-to-fine vehicle logo localization, although
the accuracy was not high in outdoor environments since it was
sensitive to lighting conditions. Yang et al. also proposed to take
a coarse-to-fine localization step to first find out the position
of logo and then localize the logo for details with an average
recognition accuracy rate of 98% [138]. In [139], the logo was
detected from a frontal-view vehicle image using a license plate
detection module to localize the position of vehicle license
plate and to know the relationship between plate and logo
position.

b) Logo Recognition: The work in [139] adopted the
SIFT descriptor to perform vehicle logo recognition. This work
claimed that the proposed method effectively used many dif-
ferent views of the database features to describe a detected
query feature and simultaneously made the recognition process

more robust. The method yielded 91% overall recognition suc-
cess rate but was time-consuming. Then, in [140], an analysis
was made to compare the performance of SIFT operator with
Fourier operator for logo recognition. The study concluded
that the Fourier operator yielded better performance. The logo
recognition is also performed through either neural networks
[106]–[108] or template matching [110]. Lee et al. [106] built
a three-layer neural network trained with texture descriptors
for recognition. The method demonstrated a recognition rate
of 94% for moving vehicles. In [108], a probabilistic neural
network was used for classification of the vehicle logo and
obtained an accuracy rate of 87%. Wang et al. used template
matching and edge-orientation histograms with good results in
[110].

c) Discussion: Vehicle logo recognition is essential for
vehicle surveillance. Successful recognition mostly depends
on the accurate extraction of the small logo area from the
original vehicle image. However, different conditions, such as
occlusion, illumination change, shadow, and rotation, make
vehicle logo recognition still a challenging task, particularly for
real-time applications. Future works will be devoted to finding
more discriminative feature representations and more robust
classification methods for real-time applications.

D. Vehicle Tracking on the Road Network

With the development of the GPS and radio-frequency iden-
tification (RFID) techniques, large-scale trajectory data are
collected from moving objects on road networks. Networking
of cameras deployed at urban intersections and other designated
places is conducive for similarly tracking vehicles as they
traverse the road network. Based on the vehicle detection and
tracking results of each single camera, vehicle tracking on
the road network can be achieved with networked cameras,
called networked tracking. Here, we treat the results of net-
worked tracking as vehicle’s dynamic attributes on the road
network.

Existing multicamera techniques identify whether camera
views are overlapped or spatially adjacent. Much research has
assumed that adjacent camera views have overlap and utilized
the spatial proximity of tracks in the overlapping area. As
described in [2], tracks of objects observed in different camera
views were stitched based on their spatial proximity [141],
[142]. In order to track objects across disjoint camera views,
appearance cues have been integrated with spatiotemporal rea-
soning [143], [144]. However, in the case that the cameras that
are far in distance and the environments are crowded, the cam-
era network topology is not available, and the object appearance
may undergo dramatic changes. Thus, object reidentification
is used to match two image regions observed in different
camera views and to recognize whether they belong to the
same object or not, purely based on the appearance information
without spatiotemporal reasoning [145]. More techniques about
multicamera tracking can be seen in [2].

Compared with the multicamera tracking techniques in [2],
we mainly focus on vehicle tracking techniques on the road
network for networked surveillance, i.e., networked tracking.
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From the point of our view, there are two significant differences
between networked tracking and multicamera tracking.

1) There might be thousands of cameras deployed on the
road network, and it is hard to obtain their topologies.

2) There might be multiple vehicles in the FOV of each
camera all the time; therefore, vehicle reidentification is
strenuously time-consuming.

Consequently, network-based tracking methods are better
suited for use in large road networks for traffic surveillance.
Most of these techniques are deployed for GPS-based track-
ing, but they have the potential to be employed in video-
based networked surveillance systems. In [146], three tracking
approaches were described based on GPS data, including
point-based tracking, vector-based tracking, and segment-based
tracking. For point-based tracking, the server represents a
moving object’s future positions as the most recently reported
position. An update is issued by a moving object when its
distance to the previously reported position deviates from its
current GPS position by a specified threshold. For vector-based
tracking, a GPS receiver computes both velocity and heading
for the object. It assumes that the object moves linearly and
with the constant speed received from the GPS device in the
most recent update. For segment-based tracking, this is done
by means of map matching. Segment-based tracking predicts a
moving object’s position according to its speed and the shape of
the road on which the object is traveling. In [147], trajectories
of moving objects on road networks were characterized by large
volumes of updates. A central database stores a representation
of each moving object’s current position. Each moving object
stores the central representation of its position and updates
it continuously. Experiments using real GPS logs and a real
road network were carried out to verify the performance of the
system. To efficiently track an object’s trajectory in real time,
Lange et al. [148] proposed a family of tracking protocols by
trading the communication cost and the amount of trajectory
data off against the spatial accuracy.

For the cameras deployed on the road network, their locations
are known a priori, giving precise coordinates. In addition,
the intelligent algorithms on the camera can automatically
extract the vehicle’s locations and attributes. Thus, transferring
from the aforementioned GPS-based tracking techniques, all
the characteristics of the vehicles (described in Section II-C),
particularly the license plate, can be utilized to track vehicles
over large areas on the road network.

III. BEHAVIOR UNDERSTANDING

After dynamic and static attributes extraction, vehicle be-
havior understanding will be performed. We depart from the
perspective of networked surveillance to understand vehicle
behaviors. In this section, we divide the behavior understanding
task into behavior understanding techniques on a single camera
and that on the road network.

A. Behavior Understanding on a Single Camera

Behavior understanding may be thought of as the classifica-
tion of time-varying feature data, i.e., matching an unknown

test sequence with a group of labeled reference sequences
representing typical or learned behaviors [149]. Simply stated,
behavior understanding in traffic surveillance describes the
location or speed changing of a vehicle in space and time in
the video sequence, e.g., running, cornering, and stopping.

A few recent surveys [150], [151] on behavior understanding
were carried out with different taxonomies. Subjects of interest
are first detected and tracked to generate motion descriptions,
which are then processed to identify actions or interactions.
Behaviors are usually recognized by defining a set of tem-
plates that represent different classes of behaviors [150]. In
the cases where behaviors cannot be represented a priori, it
is common to use the concept of anomaly, namely a deviation
from the predefined behaviors [152]. These surveys [150],
[151] focus on human behavior understanding, which is usually
categorized into four levels: gesture, action, behavior/activity,
and interactions. Gestures are elementary movements of the
human body parts, such as waving a hand, stretching an arm,
and bending. From these atomic elements, actions are the
single-person activity where multiple gestures are temporarily
organized in the time domain, for example, running, walking,
and jumping [153]. A behavior is the response of a person
to internal, external, conscious, or unconscious stimuli [150].
For two or more humans and/or objects doing activity, it is
called interaction. Carried/abandon bag, a person stealing a bag
from another, and pointing a gun are examples of interactions.
(For more information about human behavior understanding,
see [150] and [151].) Here, we focus on the techniques of
vehicle behavior understanding for traffic surveillance. Vehicle
behavior understanding is interlinked with human behavior
understanding with respect to the processing techniques. In
contrast, vehicle behavior understanding depends on vehicle
trajectories and other dynamic attributes, such as velocity and
acceleration. We will review the techniques of vehicle behavior
understanding with these two aspects in the following.

The fundamental problem of behavior understanding is to
learn the reference behavior sequences from training samples
and to devise both training and matching methods for coping
effectively with small variations of the feature data within each
class of motion pattern [154]. There are two main steps in be-
havior understanding: First, a dictionary of reference behaviors
is constructed, and second, it checks if a match can be found in
the dictionary for each observation. In traffic surveillance sys-
tems, there are a great number of vehicle activities that can be
viewed as reference behaviors, such as “stalled or slow motion,
speeding or fast motion, heading straight, heading right, and
heading left” [155] or “moving down and then turning right
on the road, U-turn” [156]. When combined with traffic scene
knowledge, these reference behaviors can be applied for two
main purposes: explicit event recognition, which means giv-
ing a proper semantic interpretations, and anomaly detection,
such as traffic event detection (illegal stop vehicles, converse
driving, congestion, and crashes [157], [158]) and traffic vio-
lation detection (red-light running [159], [160] and illegal lane
changing [161]).

From a massive amount of behavior research, there are two
main ways to understand vehicle behaviors in traffic surveil-
lance systems. The first one is trying to analyze the motion
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TABLE V
REPRESENTATIVE WORKS ON BEHAVIOR UNDERSTANDING BY A SINGLE CAMERA

trajectory information of a vehicle, called behavior under-
standing with trajectory analysis. The other one is trying to
analyze the underlying information such as the size, velocity,
and direction of the vehicle, called behavior understanding
without trajectory here. Table V lists the representative works
on behavior understanding by a single camera.

1) Behavior Understanding Based on Trajectory Analysis:
Most existing traffic monitoring systems are based on motion
trajectory analysis. Trajectory analysis [169] is an important
and basic research in behavior analysis and understanding. In
traffic video surveillance, learning and analyzing the vehicle
trajectory is becoming the main method used to understand
vehicle behavior because it is relatively simple to extract and
the interpretation is obvious [170].

Trajectory dynamics analysis assumes that change, in par-
ticular from motion, is the cue of interest for surveillance.
A motion trajectory is obtained by tracking an object from
one frame to the next and then linking its positions in con-
secutive frames. The following describes a common solution
framework for vehicle behavior modeling and recognition in
traffic monitoring systems using the trajectory-based approach.
First, spatiotemporal trajectories are formed, which describe
the motion paths of tracked vehicles. Then, characteristic mo-
tion patterns are learned, e.g., clustering these trajectories into
prototype curves. Finally, by tracking the position within these
prototype curves, motion recognition is tackled. To summarize,
learning and analyzing trajectories include three basic steps
[156]: trajectory clustering, trajectory modeling, and trajectory
retrieval. (For complete treatment of behavior analysis using
trajectories, the reader is directed to the survey by Morris and
Trivedi [169].)

a) Trajectory clustering: The key task here is to determine
an appropriate number of trajectory clusters automatically.
Inappropriate setting of the number of trajectory clusters may
result in inaccurate trajectory clustering, particularly when the
number of trajectories is very large. One of the earliest research
teams working on behavior analysis in video surveillance is
MIT’s Artificial Intelligence Laboratory. Stauffer and Grimson
[171] learned local trajectory features by vector quantization
(VQ) on subimages and learned those features similarities
using local cooccurrence measurements to do cluster analysis.
Wang et al. [163] utilized spectral clustering to complete tra-
jectory clustering, and help to detect and predict anomalies.
A fuzzy self-organizing neural network based on k-means was
proved to be more efficient than VQ in both speed and accuracy
in [172]. Vasquez and Fraichard [173] proposed a rather flexible
expectation–maximization algorithm to compute the trajectory
similarity, and combined complete-link hierarchical clustering
and deterministic annealing pairwise clustering together for
trajectory clustering. Piciarelli et al. [165] believed that a
trajectory should be decomposed into different shared parts,
and they proposed a clustering method based on a single-class
SVM. Spectral clustering and agglomerative clustering are two
most commonly used clustering methods. (See [174] for detail.)

b) Trajectory modeling: Each cluster of trajectories is
organized as a trajectory pattern. Trajectory cluster modeling,
i.e., trajectory pattern learning, means building a model of
trajectories in each cluster according to their statistical distri-
bution, such as a hierarchical Dirichlet process and a Dirichlet
process mixture model (DPMM). Usually, the motion trajectory
patterns are commonly learned using the HMM [164], fuzzy
models [168], and statistical methods [175]. When a new
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unknown video pattern is incoming, the time-sensitive DPMM
can be performed by using known normal events. Hu et al. [172]
applied a Gaussian distribution function to model the trajectory
pattern in the learning phase. The HMM has been used to
represent trajectories and time series successfully. Researchers
from the Institute of Industrial Science at the University of
Tokyo utilized spatiotemporal MRF model to separate occluded
vehicles, o learned the movement patterns with a HMM model,
and recognized motion behavior. Vasquez and Fraichard [173]
made use of growing HMM to realize online adaptive statistical
trajectory pattern model that could include new movement
patterns. In [176], the modeling of univariate time series by
autoregressive models was exemplified. Applications that can
benefit from semi-supervised learning of trajectory patterns are
demonstrated in [155], which were used to detect “south–north
through intersection” or “west–east through intersection” and
so on.

c) Trajectory retrieval: In this trajectory analysis step, a
user can give a query, such as “find all illegal stop vehicles at
8:00–10:00 in the Southwest road”, and matching is performed
to return all examples in a traffic surveillance database. The
query trajectory is matched to the corresponding trajectory
pattern based on the posterior probability estimation. The re-
trieved videos are ranked by the posterior probabilities. There
are two common used algorithms to represent and compare
trajectories: string matching algorithm and sketch matching
algorithm. As a matter of fact, the string-based method can
automatically convert a trajectory to a string and match it using
its semantic meanings. Vlachos et al. [177] utilized the longest
common subsequence (LCSS) algorithm complete string-based
matching trajectories by performing a frame-by-frame analysis
directly on objects’ coordinates. The work in [178] assumed a
query by example mechanism according to presented example
trajectory and the search system could return a ranked list of
most similar items in the data set by a string matching algo-
rithm, whereas the sketch-based method projects a trajectory
on a set of basic functions and matches it according to its low-
level geometrical features. In [179], a real-time sketch-based
similarity calculation method to search millions of images was
developed. However, the gap between the user’s mind and their
specified query can still be large even in such a system. The
work in [180] took advantage of the complementary nature of
these two methods, and a hybrid method combining the sketch-
based scheme and a string-based one together to analyze and
index a trajectory with more syntactic meanings was proposed.
By utilizing syntactic meanings, most impossible candidates
can be filtered out, and at the same time, low-level features
can be also used to compare different trajectories. Moreover,
their method showed good performance in solving the partial
trajectory matching problem.

Based on the above discussion, a great number of successful
applications of activity analysis to anomaly detection have
been presented in literature. They address both complete and
incomplete trajectories in various traffic scenarios, including
the detection of illegal U-turns, red-light running, and illegal
lane changing.

2) Behavior Understanding Without Trajectory: The other
way of behavior understanding is to analyze nontrajectory

information such as the size, velocity, direction of the object, or
queue length and flow of objects. The main idea is to determine
abnormal events according to the sudden changes in velocity,
location, and direction [181] of the target or if the value of these
attribute of behavior does not meet a predefined threshold rule.

Speed is the estimated velocity of a tracked vehicle converted
from the image distance to the actual distance by manual
roadway calibration. By velocity monitoring, first, the surveil-
lance system can detect congestion and give the upstream
section bypass warning; second, some incidents can be quickly
detected from the stopped state, which means traffic accident
or a violation behavior. Moreover, vehicle velocity measure-
ments have been used to categorize speeding behavior [182]
or highway congestion from stalled vehicles or accidents [162].
Kamijo et al. [162] used flow and speed to report highway con-
gestion warnings, and they also showed that congestion is not
caused by demand exceeding capacity but of inefficient opera-
tion of highways during periods of peak demand. Huang et al.
[166] utilized velocity, moving direction, and position of the
vehicle and recognized vehicle activities, including breaking,
changing-lane driving, and opposite-direction driving. Kamijo
et al. [32] employed an HMM to detect events, including bump-
ing accident, stop and start in tandem, and passing. Pucher et al.
[167] used both video and audio sensors to detect incidents such
as wrong-way drivers, still-standing vehicles, and traffic jams
on highways.

B. Behavior Understanding on the Road Network

The FOV of a single camera is finite and limited by traffic
scene structures. In order to monitor a wide area, many in-
telligent multicamera video surveillance systems [183]–[185]
have been developed by utilizing video streams from multiple
cameras.

Multicamera video surveillance is generally achieved with
five key computer vision and pattern recognition technologies,
including multicamera calibration, computation of the topol-
ogy of camera views, multicamera tracking, object reidentifi-
cation, and multicamera activity analysis [2]. By employing
multicamera networks, video surveillance systems can extend
their capabilities and improve their robustness. In multicamera
surveillance systems, activities in wide areas can be analyzed,
the accuracy and robustness of object tracking are improved
by fusing data from multiple camera views, and one cam-
era hands over objects to another camera to realize tracking
over long distances without break [2]. (For more information
about intelligent multicamera surveillance, readers are referred
to [2].)

However, most published results on multicamera surveil-
lance are based on small camera networks [2], and they focus
on specific object tracking and activity analysis, for example,
regular vehicle activity and abnormal motion trajectories [186].
In contrast, networked surveillance cannot only monitor the
object behavior but also yield to networked conclusions, e.g.,
obtaining and predicting the traffic status of the road network,
finding interesting regions on the road network, etc.

In addition to behavior understanding on a single camera,
we propose to understand the vehicle behaviors from the
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perspective of networked surveillance, i.e., understanding vehi-
cle behaviors on the road network. A large amount of research
about trajectory analysis on the network has been developed
in the fields of mobile computing and location-based systems
(LBSs). However, most of them are based on GPS trajectories
and traffic simulation rather than video sensors. GPS-based tra-
jectory analysis can produce networked conclusions about the
vehicle object behavior and traffic network, including mining
trajectory patterns, predicting vehicle movements, discovering
anomalies, and discovering interesting regions.

With the advances of computer vision and network tech-
niques and a growing need for safety and security from the pub-
lic, tens of thousands of cameras in a city for video surveillance
should be networked. Video sensors with intelligent algorithms
that are deployed on the road network can be treated as high-
end intelligent sensors. They can perceive and yield precise
positions, and detailed dynamic and static attributes of the
vehicle object, as discussed in Section II-C. Afterward, vehicle
behaviors on the road network can be understood, and finally,
the traffic status of the whole transportation system is perceived,
predicted, and understood.

Compared with GPS-based systems, networked video
surveillance systems might play a part in the following aspects.

• Perception of rich information. Video surveillance sys-
tems can obtain detailed vehicle attributes, as listed in
Section II-C, which give more support to the trajectory
analysis. In addition, they can yield vehicle queuing
length, traffic volume, road occupancy, and other traffic
parameters, which can help with efficient traffic control.

• Low cost. For GPS-based systems, each vehicle should be
equipped with at least one GPS device and typically re-
quires higher penetration rates. However, for video-based
systems, cameras might be deployed at key road sections
and intersections to monitor the same scale region, which
is not contingent on the number of vehicles.

• Complementarity. In the case of a vehicle without GPS
installed or inoperative, video surveillance systems can be
complementary solutions.

In the following, we will review existing research that is
related to behavior understanding on the road network. These
methods might be not designed for traffic surveillance but they
have the potential to be used for networked surveillance.

1) Mining of Trajectory Patterns: Mining of trajectory pat-
terns is to find the trajectory patterns on the networks by mod-
eling the moving objects constrained by the road architecture
[187], [188]. Several recent studies have been developed to
mine predesignated trajectory patterns [189]–[194], which are
defined as follows.

• Flock: A group of objects that travel within some disk for
consecutive timestamps.

• Moving cluster: A set of objects that move close to each
other for a long time interval.

• Convoy: A group of objects that are density-connected to
each other within a consecutive timestamps.

• Traveling companion: A group of objects that its members
are density connected by themselves for a period and its
size is larger than a threshold.

• Gathering: A dense and continuing group of individuals
with low mobility of individuals in this group.

Gudmundsson et al. [189] computed four types of spatiotem-
poral patterns using approximation algorithms, including flock,
leadership, convergence, and encounter. Later, they detected the
longest duration flocks and meetings [191]. Jeung et al. [192]
proposed a trajectory simplification (CuTS) method with the
filter-refinement framework to discover conveys. The filter step
applies line-simplification techniques on the trajectories. The
refinement step further process candidate convoys to obtain
actual convoys. Both the flock and convoy discoveries require
the moving objects to stick together for consecutive times-
tamps. Li et al. [195] considered the situation that the moving
objects in a cluster might diverge temporarily and recongregate
at certain timestamps and proposed a novel trajectory pattern,
which is called swarm. Tang et al. [193] proposed a smart-
and-closed discovery algorithm to efficiently generate traveling
companions from trajectory data in an incremental manner.
Both real taxi GPS and synthetic trajectory data sets were used
to evaluate the algorithm. In recent research, Zheng et al. [194]
implemented a framework to find gatherings. It consists of
three phases: snapshot clustering, crowd discovery, and gath-
ering detection. Snapshot clustering performs density-based
clustering on the object trajectories at each timestamp to obtain
snapshot clusters. Crowd discovery finds all the closed crowds
from snapshot clusters. For efficiency, the closed crowds are
discovered by incrementally appending the snapshot clusters to
the current set of crowd candidates at the next timestamp.

Trajectory clustering is useful for discovering movement
patterns that help illuminate overall trends in the trajectories.
Trajectory clustering techniques aim to find groups of moving
object trajectories that are close to each other and have similar
geometric shapes [194]. Since trajectory data are received in-
crementally, e.g., continuous new points reported by the GPS
systems, the clustering methods (see Section III-A1a) with
incremental learning are more practical to compute efficiently
and effectively. Jesen et al. [196] maintained a clustering of
moving object trajectories in 2-D Euclidean space with an
incremental clustering scheme. Li et al. [197] proposed an
incremental clustering framework, i.e., incremental trajectory
clustering using microclustering and macroclustering (TCMM).
In TCMM, the microclustering step clusters the trajectory
segments at fine granularity, and the microclusters are updated
constantly with newly received data. The macroclustering step
is on demand of a user’s request and takes microclusters as input
to get full trajectory clusters. The performance of TCMM was
tested on taxi GPS data. Most trajectory clustering algorithms
take similar trajectories as a whole and group them to discover
common trajectories. To find common subtrajectories, Lee et al.
[198] proposed a partition-and-group framework, which parti-
tions a trajectory into a set of line segments and then groups
similar line segments together into a cluster. Experiments were
carried out on hurricane track data and animal movement data
to find out representative trajectories.

In addition to predefined patterns, much research has been
carried out to mine frequent patterns [177], [199]–[202].
In [177], to discover similar trajectory patterns, nonmetric
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similarity functions were formalized based on the LCSS model.
The LCSS is used to measure two sequences by allowing them
to stretch, without rearranging the sequence of the elements
but allowing some elements to be unmatched. Based on the
LCSS model, Yan [199] developed a spatial pattern discov-
ery model, which is called network-enhanced LCSS scheme
(Net-LCSS), to measure consumer shopping path similarity.
Patterns in trajectories are interesting if they are sharable by
multiple commuters. Gidofalvi and Pedersen [200] mined long
sharable patterns in traffic trajectories. In recent literature [202],
Wei et al. presented a route inference framework based on
collective knowledge (RICK) to construct the popular routes
from uncertain trajectories. Given a location sequence and a
time span, the RICK is able to construct the top-k routes that
sequentially pass through the locations within the specified time
span, by aggregating such uncertain trajectories in a mutual
reinforcement way.

The data mining community has long been working on
trajectory data. They have studied different kinds of patterns
[190], [203]. More works on trajectory pattern mining can be
seen [204].

2) Prediction of Movement: Much research has been devel-
oped to predict the future trajectories of moving objects on
the road network. The MOST model [205], which is based
on the concept of a motion vector, is able to represent near
future developments of moving objects. However, the predictive
movement is limited to a single motion function. Aggarwal and
Agrawal [206] introduced a nonlinear model that uses quadratic
predictive function. Tao et al. [207] proposed a prediction
method based on recursive motion functions for objects with
unknown motion patterns. Cai and Ng [208] used Chebyshev
polynomials to represent and index spatiotemporal trajectories.
In [209], Tao et al. developed Venn sampling, a novel estima-
tion method optimized for a set of pivot queries that reflect the
distribution of actual ones. These prediction methods aim to
predict the individual object location.

The aforementioned research on prediction is based on pre-
defined prediction model. Several studies derive the probability
of the possible destinations based on historical trajectories and
route decomposition. Destination prediction is an important
task for many LBSs, such as recommending sightseeing places
and targeted advertising.

a) Destination based on history: A common approach for
destination prediction is to use the historical spatial trajectories.
If a partial trip matches part of a popular route, the destination is
predicted according to the popular route’s destination. Krumm
and Horvitz [210] proposed a method, called predestination,
to predict the driver’s destination by using Bayesian inference
based on the history of a driver’s destination. In [211], con-
sidering the characteristics of a road network, a trajectory was
represented as a series of road segments. A novel similarity
function is devised to search similar trajectories for a given
query trajectory. Then, the trajectory with the highest frequency
is treated as a future path of the query. In [212], Tiesyte et al.
proposed a nearest-neighbor trajectory technique that identifies
the historical trajectory that is the most similar to the cur-
rent vehicle trajectory to predict the future movement of the
vehicle.

b) Destination based on route decomposition: Route
decomposition is another way for destination estimation.
Simmons et al. [213] built an HMM of the routes and des-
tinations and made predictions of the destinations and route
through online observation of GPS positions. Ziebart et al.
[214] used the Bayesian inference with a grid representation of
the road network. The vehicle route preference was queried by
counting the number of trajectories that are partially matched
by the query trajectory and terminate at a location nj . In [215],
they used a tree structure to represent the mined movement
patterns. Then, the online movement data were matched to
the movement patterns by stepping down the tree. Finally,
the person’s destination and routes were predicted using the
matching results. In [199], to recognize consumer shopping
activities and purchase interest from RFID shopping trip data,
they applied two dynamic Bayesian network models with dif-
ferent structures. In [216], they employed both the vehicle
locations and their visiting orders to accurately classify ve-
hicle trajectories. Newly arrived trajectories can be predicted
by the pretrained classification model. In the literature [217],
Mathew et al. first clustered the location histories and trained
an HMM based on the clusters. For a given sequence of visits,
the most probable next location was predicted by inferring on
the HMM. However, if no popular route is matched, they fail to
predict the destinations; this is called a data sparsity problem.
To solve this problem, Xue et al. [218] proposed a subtrajectory
synthesis (SubSyn) algorithm with an MRF model. The SubSyn
algorithm first decomposes historical trajectories into subtra-
jectories comprising two neighboring locations and then con-
nects the subtrajectories into “synthesized” trajectories. As long
as the query trajectory matches part of any synthesized trajec-
tory, the destination of the synthesized trajectory can be used for
destination prediction. Real-world taxi trajectories were used to
test the performance of SubSyn algorithm.

3) Discovery of Anomalies: The detection of trajectory
anomalies has been widely discussed and studied using GPS
data. Knorr et al. [219] detected trajectory outlier with a
distance-based method. A trajectory was represented by a
sequence of key features, and the distance was measured by
summing the difference of the feature values. Different from
[219], Lee et al. [220] proposed a partition-and-detect frame-
work that can detect outlying subtrajectories. This framework
first partitions a trajectory into a set of line segments and detects
outlying line segments for trajectory outliers. The advantage
of this framework is that it can detect outlying subtrajectories.
In the study [221], they proposed a new framework named
ROAM (Rule- and Motif-based Anomaly Detection in Moving
Objects). A motif is a prototypical movement pattern, such
as right turn, U-turn, and loop. Features are generated with
the detected motifs. A rule-based classifier was developed to
classify normal and abnormal trajectories. In [222], a method
for detecting temporal outliers based on historical similarity
trends was presented. To monitor distance-based anomaly on
moving object trajectories, Bu et al. [223] utilized the local
continuity to build local clusters on trajectory streams. For a
base window B of the trajectory, if the numbers of neighbors
in the left and right sliding windows are less than a prede-
fined threshold, B is output as an anomaly. Ge et al. [224]
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proposed a TOP-EYE method to compute the outlying score of
each trajectory. The monitoring area is first divided into small
grids. Then, each grid is partitioned into eight direction bins
to summarize the directions with a direction vector. Finally,
the density of each grid is computed. A trajectory outlier is
defined to be the one that deviates from most of trajectories
within an observed space and time in terms of direction. In
[225], to discover anomalous driving patterns from taxi’s GPS
traces, Zhang et al. first grouped the taxi trajectories with
the same origin–destination pairs. Then, an isolation-based
anomalous trajectory (iBAT) detection method was proposed
to detect anomalous taxi trajectory patterns. Experiments with
large-scale taxi data showed that iBAT achieves good perfor-
mance. In [226] and [227], they proposed an isolation-based
online anomaly trajectory detection (iBOAT) method to detect
anomalous trajectory, which can report all the anomaly records
in a query trajectory. In [228], to detect “persistent outliers”
and “emerging outliers”, an efficient mining approach was
proposed to cater for spatiotemporal traffic data. Two statistical
models were proposed, which encompass the generic features
of anomalous patterns.

In addition to single trajectory outlier detection, traffic flow
anomaly detection is also studied based on GPS data. Tra-
ditional traffic jam detection methods are based on roadside
sensors, such as induction loops or radar and monitor only a
few critical points [229]. A GPS-based method, however, can
theoretically monitor a complete road network. Wang et al.
[230] used 24 days of taxi GPS trajectories in Beijing to
detect traffic jams. The GPS trajectories were cleaned from
sensor errors and fix apparent errors on the road network. After
estimating free flow speed on each road segment, traffic jam
events were automatically detected at roads based on relative
low road-speed detection.

4) Discovery of Interesting Regions: Given a geospatial re-
gion, it is important to mine interesting locations on the road
network. In addition to the existing works that focus on the
geometric properties of the trajectories, semantic trajectories
are often used to integrate the background geometric infor-
mation to trajectory sample points for the road network. The
trajectories consist of a set of stops and moves. In the work of
[231], a framework for mining and modeling moving patterns
was proposed from a semantic point of view. Different kinds
of patterns can be discovered considering stops and moves in
trajectories: 1) the most frequent stops during a certain period
of time; 2) frequent stops that have duration higher than a given
threshold; 3) frequent moves at a certain time interval; 4) most
frequent moves inside a certain region; 5) frequent moves that
intersect a given spatial feature type, and so on. They developed
the novel and efficient framework to find one specific kind of
pattern and frequent moves between two stops. A clustering-
based algorithm was proposed to identify stops and moves
of trajectories, which is called clustering-based SMoT (CB-
SMoT) [232]. In the experiments, this method took buildings
and the geographic data corresponding to areas as candidate
stops and found the stops efficiently. To mine interesting loca-
tions, such as Tiananmen Square in Beijing, and classical travel
sequences between these locations, Zheng et al. [233] first
modeled multiple individuals’ location histories by using a tree-

based hierarchical graph (TBHG). A TBHG is the integration of
two structures, i.e., a tree-based hierarchy H and a graph G on
each level of this tree. The tree expresses the parent–children
(or ascendant–descendant) relationship of the nodes pertaining
to different levels, and the graphs specify the peer relationships
among the nodes on the same level. Then, based on the TBHG
architecture, they proposed a hypertext-induced-topic-search-
based inference model, which regards an individual’s access
on a location as a directed link from the user to that location.
This model infers a user’s travel experience and the interest of a
location. This system was evaluated with a real-world GPS data
set collected from 107 users over a period of one year.

Finding hot routes (traffic flow patterns) on the road network
is an important problem. They are beneficial to city planners,
police departments, real estate developers, and many others.
Knowing the hot routes allows the city to better direct traffic
or analyze congestion causes. If vehicles traveled in organized
clusters, it would be straightforward to use a clustering al-
gorithm to find the hot routes. However, in the real world,
vehicles move in unpredictable ways. Variations in speed, time,
route, and other factors cause them to travel in rather fleeting
“clusters”. Li et al. [234] proposed a density-based algorithm,
named FlowScan, to discover hot routes in the city. It handles
the complexities in the trajectory data, and they performed
extensive experiments verify the robustness of the algorithm. In
this research [235], hierarchical travel experience information
of road networks was given by statistical analysis on a large
amount of taxi GPS trajectories. According to taxi trajectories,
the roads can be divided into frequent roads, secondary frequent
roads, and seldom roads. These trajectories can well reflect
a hierarchical cognition of road networks by considering taxi
driver’s cognition of the road network.

IV. IMAGE ACQUISITION AND ITS SERVICES

In this section, we will discuss the layers of image acquisition
and ITS services, which are related to practical applications.

A. Image Acquisition of Traffic Scenes

In the layer of image acquisition, the characteristics of traffic
scenes and imaging technologies are two important aspects for
video-based traffic surveillance.

1) Characteristics of Traffic Scenes: From the perspective
of traffic surveillance, we analyze the characteristics of four
typical traffic scenes, including the road intersection, road
section, highway, and tunnel, to help guide algorithm design
for specific challenges.

• Road intersection: At road intersections, vehicles often
turn right, left, and around, which lead to various vehicle
poses, which cause recognition challenges. In addition to
vehicle objects, there are also many other objects of inter-
est, such as pedestrians, bicyclists, traffic signs, and other
infrastructures. Robust vehicle detectors must consider
variations between these different classes of intersection
objects.

• Road section: In road sections (mid-block), vehicles usu-
ally travel along only in the lane directions. During heavy



572 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

TABLE VI
CAMERA PARAMETERS OF SOME REPRESENTATIVE DEVICES DEPLOYED IN EXISTING VEHICLE SURVEILLANCE SYSTEMS

commute hours, vehicles move slowly or even stop, lead-
ing to long queues. In these situations, vehicle occlusion
occurs frequently, and stopped vehicles are lost completely
using motion-based detection techniques.

• Highway: Vehicles move fast on highways (urban express-
ways) and have limited time in the camera FOV. Cameras
need to have a high frame rate, and detection, tracking,
and analysis algorithms must be efficient for real-time
performance.

• City tunnel: City tunnel scenarios are similar to nighttime
conditions with some supplemental lighting. However,
the lighting is localized and does not provide uniform
coverage as under sunlight.

2) Imaging Technology for Image Acquisition: As the basis
of vision-based surveillance systems, the task of this layer is to
obtain images from traffic scenes using image sensors. Because
of improvements in image sensor technology in recent years,
captured traffic images now have higher resolution and better
image quality. Clearer images make it possible to recognize
more detailed information about vehicles and other objects.

In the context of traffic surveillance, it is crucial to investigate
the devices that are currently deployed in existing vehicle
surveillance systems. In Table VI, we list the camera parameters
of some representative devices with respect to applications
and traffic scenarios, including camera resolution, frame rate
[frames per second (FPS)], and camera coverage.

With the great progress of image sensors, more advanced
cameras may be deployed for traffic surveillance in the next
decade. For example, Sony has developed a 20.68 mega-pixel
(5256 × 3934) high-speed CMOS image sensor [245] with the

frame rate of 22 FPS. ON Semiconductor VITA 25 K series
image sensor [246] can achieve 53 FPS at full resolution of
5120 × 5120 pixel. With higher resolution images, we can
obtain more detailed information about all visible vehicles, such
as vehicle license plate numbers, model badging, or parking
stickers. A high frame rate enables capture of faster vehicles
and better estimation of slight vehicle movements such as
braking or rapid starting.

B. ITS Services

In this section, we present a few ITS services that will high-
light the impact of video-based networked vehicle surveillance
system, including security monitoring, traffic flow analysis, and
environment impact assessment.

• Illegal activity and anomaly detection: Illegal driving leads
to traffic accidents and causes hidden traffic troubles. By
means of video-based surveillance, illegal driving behav-
iors, i.e., red light running and reverse driving, will be
detected, and the evidence will be reported to authorities.

• Security monitoring: To monitor a specific vehicle of inter-
est, the network-based surveillance system can report the
trajectory on the road network. This functionality along
with real video streams can help law enforcement monitor
activities and prevent crimes.

• Electronic toll collection: When a vehicle travels through
charging ports, i.e., the entrances and exits of the high-
way or the parking port, a camera sensor will recognize
the attributes of the vehicle, particularly its license plate
number. A toll system can then be implemented based on
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visual recognition results rather than currently more pop-
ular RFID-based toll methods. Electronic toll collection
becomes more efficient and reliable when using vision
systems since the toll is assessed to a vehicle and not
the RFID tag, which can be compromised by fraudulent
activities.

• Traffic flow analysis: Real-time traffic information should
be provided to drivers in a timely manner to better manage
congestion due to incidents such as emergency events,
special events, weather, work zones, or daily commute
patterns. By analyzing traffic flow, ITS systems can find
congested road sections and regions; furthermore, the traf-
fic flow might be predicted, and road users can be guided
to alternative routes before traffic jams.

• Transportation planning and road construction: A net-
worked surveillance system can report the traffic pattern
and find the traffic jams and other anomaly of traffic flow.
This information might be fed back to the department
of transportation to provide suggestive data transportation
planning and road construction.

• Environment impact assessment: Different types of vehi-
cles, e.g., truck, bus, and car, will bring different influ-
ences to the environments. Impact models of environment
influences for all types of vehicles can be constructed,
respectively. Environment impact assessment can be done
by analyzing and forecasting the trend of the traffic flow
using the networked video surveillance system.

V. DISCUSSION OF FUTURE DEVELOPMENTS

In the previous sections, we have provided the state-of-the-art
techniques for vehicle surveillance in ITS. There are many open
issues, and further research will be carried out to fully realize
the promise of video traffic surveillance systems. Here, we
provide our perspective on future developments of networked
video surveillance systems.

1) Improving the System Performance: The performance of
most existing surveillance systems will degrade in complex
traffic scenarios (e.g., vehicle occlusion, pose variation, and
illumination change), as listed in Section I. In the previous
sections, we have discussed the challenges with respect to each
module of video surveillance system and the corresponding
existing solutions. Here, we describe our views of some special
challenging issues.

a) Occlusion handling: Vehicle occlusion is caused by
the mapping from 3-D traffic scenes into 2-D images, which
result in loss of vehicle’s visual information [58]. This will lead
to false detection of the occluded objects. Common methods
of occlusion handling are to use the visual information of the
object to detect it while ignoring the features of the occluded
parts [43], [53], [58], [60], [247]. Overall, vehicle occlusion can
be handled with two steps. First, the system should determine
the presence of occlusion. Often times, object occlusion is a
gradual process, and one can infer the presence of occlusion by
observing previous detection results. The presence of occlusion
can also be determined by the quality of response of the object
detection model [248], [249] in a still image. Second, the
occluded object can be detected by explicit occlusion handling.

One common practice is the use machine learning methods to
learn the model of the occluded object samples [250] and detect
with the learned model. The other method is to learn the object
model without occlusion and detect with a designated mask.

b) Dealing with pose variation and different vehicle types:
Vehicles often change their poses while traveling on the road
(e.g., changing lanes and turn). This results in completely
different appearance in the image for the same object. The dual
problem that arises during video surveillance is the apparent
appearance similarity between two different vehicle types, such
as between a van and SUV. The wide variability in intrave-
hicle appearance with little intervehicle differentiation makes
appearance-based algorithms difficult to apply in practice. For
example, detectors can be trained with different models for
different poses, but this increases complexity and affects real-
time performance. Although, motion-based detection will be
not affected by these influence, the detected moving object
might be not a vehicle, and it is susceptible to the shadow
problem. In these cases, shadows must be explicitly detected
and removed for implementation [54]–[57].

c) Adapting to illumination change: Various weather pat-
terns and different times of day lead to illumination variation
and yield great differences in object appearance. Under strong
lighting conditions, the texture of the vehicle is obvious, while
much information of the vehicle is not visible under insufficient
lighting conditions, e.g., at nighttime. In order to suppress the
influence of illumination change, features that are not sensitive
to the lighting condition are usually used, including SIFT [21]
and HOG [23]. Particularly during the nighttime, most features
of the vehicle are not visible. One solution is to use additional
supplemental lighting equipment for the camera or focus on the
only visible parts of the vehicle, such as the headlight and the
taillight [61]–[65].

d) Surveillance with CVISs.: With the development of
telematics and cooperative vehicle–infrastructure systems
(CVISs), the communication between a vehicle and roadside
infrastructure, including cameras, becomes feasible. Usually,
CVIS is used to publish warnings and other information to
vehicles. In our view, the roadside camera can detect the vehi-
cles by combining with the sensors on the vehicle, such as the
vehicle cameras. For example, in the case of vehicle occlusion,
the cameras on the nonoccluded vehicles can be used to detect
the occluded vehicles and transmit the detection result to the
roadside camera [251]. By this method, the surveillance system
is strengthened. Similar approaches are worth studying in future
research.

2) Networked Surveillance System: Single-camera-based
surveillance systems can only monitor traffic objects in the
FOV of the camera, limiting global awareness. With the great
advances of network technology and the Internet of Things,
there is a trend that the cameras on the road are networked. The
HNVS framework presented in this paper not only monitors a
vehicle’s behavior at a single camera node but also analyzes its
behavior over the road network. Since the physical location of
cameras on the road network is fixed, they can serve as an LBS.
Currently, RFID and GPS are the most commonly used sensors
to obtain the object trajectories within a wide range. (GPS is the
primary means for extracting vehicle trajectories.) Researchers
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have carried out many GPS-based trajectory analyses, as shown
in Section III-B; however, these studies are mostly based on
fleet vehicles, such as taxis or trucks, which may not reflect
“typical” driving patterns. Compared with the GPS sensors,
which mainly collect the location information, the networked
surveillance system has the following characteristics.

• Similar to a GPS sensor, a camera can report the vehi-
cle location on the road network. The networked system
can only obtain the discrete locations within deployed
camera views, whereas GPS can obtain continuous trajec-
tory. However, vehicle behaviors on the road network are
mostly analyzed based on specific road sections, so that the
granularity of the camera network is sufficient for network
behavior analysis.

• The networked surveillance system can also perceive the
detailed characteristics of the vehicle, including license
plate number, vehicle color, vehicle type, vehicle logo,
etc., as shown in Section II-C. Thus, the trajectory anal-
ysis can be performed according to these attributes, e.g.,
analyzing the bus trajectories, the car trajectories, and
even analyzing the vehicles with various manufacturers
and colors. From this perspective, the networked system
is more flexible than the GPS-based system, making the
study of trajectory pattern discovery, motion prediction,
anomaly detection, and other issues worthwhile.

While there have been studies on multicamera tracking, they
typically relay on overlapped or spatially adjacent cameras that
cannot always be used on road networks since cameras are
often far in distance. Vehicle reidentification techniques to track
the same vehicle over these large distances are applicable in
these scenarios [252]. The camera usually needs to maintain
the models of the objects detected by other cameras to perform
reidentification task. For the networked cameras on the road
network, the topology of the networked cameras is difficult
to obtain, and the number of camera nodes is large, making
maintenance of object models across all cameras difficult.
One solution is to perform multicamera tracking within the
neighborhood of each camera because a vehicle should usually
drive from a camera node to one of its neighborhood cameras.
Another more convenient way is for the cameras to transmit the
detection results to a remote central server, and the trajectory is
obtained based on the vehicles’ dynamic and static attributes by
the server.

3) Deeper Understanding of Traffic Scenes: Behavior un-
derstanding is defined as the analysis and interpretation of
individual behaviors and interactions between objects for visual
surveillance [154]. From our point of view, traffic surveillance
is to monitor the dynamic and static attributes of the traffic
objects and then analyze how they affect the traffic scenes in
feedback. It is feasible to perform deeper understanding of
traffic scenes with a networked surveillance system.

1) The dynamic and static attributes of each vehicle driving
on the road should be extracted and analyzed, including
their attributes on the road network, as described in
Sections II and III.

2) The complete transportation and traffic situation should
be considered. For traffic surveillance, other traffic ob-

jects such as pedestrians, traffic signals, and traffic signs
can be detected to further understand the vehicle be-
havior. For example, a red light run behavior can be
recognized by considering both the vehicle trajectory and
the state of the traffic signal.

3) Higher level transportation analysis can be built on top of
basic vehicle monitoring. As an example, transportation
environmental pollution impacts can be assessed along
the road network by utilizing emission models for specific
vehicles along with vehicle tracking and type classifica-
tion [253]. In addition, regular patterns of traffic flow and
traffic jams can be discovered with the vehicle trajectory
analysis. This can provide suggestions about traffic flow
induction and road design in turn.

VI. CONCLUSION

The video-based traffic surveillance system has become an
important part in ITSs. These systems can acquire the images
of traffic scenes, analyze the information of the traffic objects,
and understand their behaviors and activities. In this paper,
we have presented the HNVS architecture in ITSs to review
the state-of-the-art literature. The aim of vehicle surveillance
is to extract the vehicles’ attributes and understand vehicles’
behaviors. Based on this consideration, the HNVS framework
first extracts vehicles’ dynamic and static attributes by a single
camera node and then analyzes vehicles’ behaviors on the
road network. HNVS is both hierarchical and networked. First,
the functions have very little overlap between different layers.
Second, HNVS is a networked surveillance framework that
makes it possible to capture and understand the vehicle behav-
iors over the entire road network. We have provided a com-
prehensive survey of the state-of-the-art methods on attribute
extraction, including techniques of vehicle detection, tracking,
recognition, and tracking on the road network. Detailed dis-
cussions on the challenges are carried out with each module.
Then, research related to vehicle behavior understanding is
reviewed, and it is noted that most research about network
vehicle behavior understanding is not based on video sensors,
but there is potential for application in networked vehicle
surveillance systems. Further achievements in this field of re-
search will provide more effective ITS services for widespread
implementation.
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