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Reinforcement-learning algorithms1,2 are inspired by our under-
standing of decision making in humans and other animals in 
which learning is supervised through the use of reward signals 

in response to the observed outcomes of actions. As our understanding 
of this class of problems improves, so does our ability to bring it to bear 
in practical settings. Reinforcement learning is having a considerable 
impact on nuts-and-bolts questions such as how to create more effec-
tive personalized Web experiences, as well as esoteric questions such 
as how to design better computerized players for the traditional board 
game Go or 1980s video games. Reinforcement learning is also provid-
ing a valuable conceptual framework for work in psychology, cognitive 
science, behavioural economics and neuroscience that seeks to explain 
the process of decision making in the natural world.

One way to think about machine learning is as a set of techniques 
to try to answer the question: when I am in situation x, what response 
should I choose? As a concrete example, consider the problem of assign-
ing patrons to tables in a restaurant. Parties of varying sizes arrive in 
an unknown order and the host allocates each party to a table. The 
host maps the current situation x (size of the latest party and informa-
tion about which tables are occupied and for how long) to a decision 
(which table to assign to the party), trying to satisfy a set of competing 
goals such as minimizing the waiting time for a table, balancing the load 
among the various servers, and ensuring that the members of a party 
can sit together. Similar allocation challenges come up in games such 
as Tetris and computational problems such as data-centre task alloca-
tion. Viewed more broadly, this framework fits any problem in which a 
sequence of decisions needs to be made to maximize a scoring function 
over uncertain outcomes.

The kinds of approaches needed to learn good behaviour for the 
patron-assignment problem depend on what kinds of feedback infor-
mation are available to the decision maker while learning (Fig. 1).

Exhaustive versus sampled feedback is concerned with the cover-
age of the training examples. A learner given exhaustive feedback is 
exposed to all possible situations. Sampled feedback is weaker, in that 
the learner is only provided with experience of a subset of situations. 
The central problem in classic supervised learning is generalizing from 
sampled examples.

Supervised versus evaluative feedback is concerned with how the 
learner is informed of right and wrong answers. A requirement for 
applying supervised learning methods is the availability of examples 
with known optimal decisions. In the patron-assignment problem, a 

host-in-training could work as an apprentice to a much more expe-
rienced supervisor to learn how to handle a range of situations. If the 
apprentice can only learn from supervised feedback, however, she would 
have no opportunities to improve after the apprenticeship ends.

By contrast, evaluative feedback provides the learner with an assess-
ment of the effectiveness of the decisions that she made; no information 
is available on the appropriateness of alternatives. For example, a host 
might learn about the ability of a server to handle unruly patrons by trial 
and error: when the host makes an assignment of a difficult customer, 
it is possible to tell whether things went smoothly with the selected 
server, but no direct information is available as to whether one of the 
other servers might have been a better choice. The central problem in 
the field of reinforcement learning is addressing the challenge of evalu-
ative feedback.

One-shot versus sequential feedback is concerned with the rela-
tive timing of learning signals. Evaluative feedback can be subdivided 
into whether it is provided directly for each decision or whether it has 
longer-term impacts that are evaluated over a sequence of decisions. 
For example, if a host needs to seat a party of 12 and there are no large 
tables available, some past decision to seat a small party at a big table 
might be to blame. Reinforcement learners must solve this temporal 
credit assignment problem to be able to derive good behaviour in the 
face of this weak sequential feedback.

From the beginning, reinforcement-learning methods have con-
tended with all three forms of weak feedback simultaneously — sam-
pled, evaluative and sequential feedback. As such, the problem is 
considerably harder than that of supervised learning. However, methods 
that can learn from weak sources of feedback are more generally appli-
cable and can be mapped to a variety of naturally occurring problems, 
as suggested by the patron-assignment problem.

The following sections describe recent advances in several sub-areas 
of reinforcement learning that are expanding its power and applicability.

Bandit problems
The k-armed bandit problem concerns learning to make decisions from 
one-shot, exhaustive evaluative feedback3. It is both harder (evaluative 
versus supervised feedback) and easier (exhaustive versus sampled feed-
back) than supervised learning. Initially, the problem was motivated by 
decision making in medical trials — prescribing a treatment to a test 
subject only reveals the outcome of that experiment and not the out-
come of competing treatments. Decision making in this setting involves 
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an inherent exploration–exploitation trade-off as the learner is trying 
to perform well, but also needs to test out courses of action that could 
possibly be better than the current best guess.

With increasing attention being paid to personalized medicine4, ban-
dit algorithms could become popular again in the health-care setting. 
However, the main driver of recent interest in these algorithms is the 
problem of online content delivery. A company providing web pages to a 
large user base has many decisions it can make concerning the organiza-
tion of the information it is providing. Should the page include a large 
image or a smaller image with space for a brief textual description? A 
simple formulation of this decision is as a two-armed bandit problem. 
Each time the system needs to present a page to the user, it chooses 
between layout A and layout B. It can then estimate the appropriateness 
of its decision by whether the user clicks on the presented link and, if 
so, how long the user spends reading and exploring the resulting pages. 
This information can then be used to inform future layout decisions.

Good algorithms for this problem have been known for more than 
50 years. However, increased attention recently has resulted in new anal-
yses and a deeper understanding of which algorithms are most effec-
tive in which situations. One popular approach is the upper confidence 
bound (UCB) algorithm5. The idea of the algorithm is quite simple — on 
the basis of the number of times each alternative has been tested and 
the outcomes of these tests, the algorithm estimates the likelihood that 
a link will be selected (its ‘click-through rate’) for layout A and B sepa-
rately. Statistical confidence bounds of the form ‘with 95% probability, 
A has a click-through rate of 5%, plus or minus 10%’ are computed. The 
upper confidence bound is the sum of the estimated click-through rate 
and the confidence bound; 15%, in this case. There are two reasons a 
condition might have a higher upper confidence bound: it has a higher 
estimated click-through rate (because it seems to be a good option — 
exploitation is warranted) or it has a wider confidence range (because 
it has not received as many tests — exploration is warranted). The UCB 
heuristic, then, is to always choose the option with the highest upper 
confidence bound resulting in either high reward or valuable data for 
learning. UCB is related to an earlier algorithm called interval estima-
tion6, but it is defined so it achieves excellent guarantees on its long-run 

regret — roughly speaking, it minimizes the number of clicks lost owing 
to showing the wrong version of the page.

The UCB algorithm, as described, pays no attention to context. Its 
choices compare well with the best selection averaged over the entire 
population of users. Modern web pages have additional information 
that can be brought to bear, however. The situation at display time, x, 
includes facts that the system has about the user — recent pages visited, 
possibly demographic information and perhaps even a record of the 
user’s recent purchases. The system can use this information to create 
the most valuable, interesting or engaging page possible. For example, 
a news site might select a business or sports headline tailored to the 
current user’s preferences. We, thus, need a way to make good decisions 
in spite of both evaluative feedback and sampled feedback, a setting 
that combines aspects of k-armed bandits and supervised learning, now 
known as contextual bandits. UCB has been extended for use in this 
context7. Indeed, contextual bandit algorithms are increasingly being 
used by companies with a major Web presence.

A modern approach to bandit problems with quite deep roots is a 
method now known as Thompson sampling8. It bears some similarity 
to a phenomenon known in psychology as probability matching9; as a 
bandit algorithm, the idea is to use the observations obtained thus far 
to maintain a posterior distribution over the click-through rate of the 
alternatives. When it is time to make a decision, the algorithm samples a 
click-through rate for each alternative from its corresponding posterior 
distribution, then selects the alternative that was assigned the highest 
value. Or, more simply, it chooses among the alternatives proportion-
ally to the probability that each is best. Thompson sampling behaves 
somewhat like a noisier version of UCB, in that uncertain alternatives 
or confident-but-high-scoring alternatives are most likely to be selected. 
It can be used in similar scenarios as UCB and can also be shown to 
possess similar guarantees on its performance10,11. One highly desirable 
property, however, is that it provides a direct way of applying the emerg-
ing class of non-parametric Bayesian methods12 to decision making — if 
you can model a process probabilistically, you can use that model to 
make a selection. This makes it very well suited to decision making in 
contextual bandit problems.

Temporal difference learning
Learning from sequential feedback, also known as the temporal credit 
assignment problem, is an essential challenge faced by decision makers 
whose choices have both immediate and indirect effects. The essence 
of the idea can be illustrated through noughts and crosses. Imagine the 
computer is playing a nought against a strong opponent playing a cross. 
In a series of boards (Fig. 2), nought makes two moves (B and D) and 
ultimately loses. Which move should be blamed for the loss? A natural 
assumption is that both moves participated in the loss and therefore 
both are equally responsible, or that the move that was closer in time to 
the loss (D) has more responsibility. In this case, however, it was one of 
nought’s earlier moves (B) that set the stage for its defeat.

The concept of temporal difference learning13 provides an algorithmic 
way to make predictions about the long-term implications of selections. 
Over a series of games, the learner can estimate whether she is more 
likely to win or lose from each of the boards it encounters. We can write 
V(A) = 0 to represent the fact that nought is likely to tie from board A, 
and V(B) = V(C) = V(D) = V(E) = −1 to represent the fact that nought 
should be expected to lose from the other boards. The temporal differ-
ence error between two consecutive boards x and xʹ is V(xʹ) − V(x). Here, 
the temporal difference error is 0 everywhere except for the transition 
from A to B — it is the decision that changed nought’s situation from a 
tie to a loss that should be held responsible for the loss.

Leveraging its utility as a marker of successful and unsuccessful deci-
sions, the temporal difference error can be used as a learning signal for 
improving the value estimates. In particular, an ideal predictor of value 
will have the property that the long-term prediction for a situation x 
should be the same as the expected immediate outcome plus the pre-
diction for the resulting situation xʹ: V(x) ≈ Exʹ[r(xʹ) + V(xʹ)]. Here, r(xʹ) 

Figure 1 | Decisions of machine-learning feedback.  Three kinds of feedback 
(sequential versus one-shot, sampled versus exhaustive and evaluative versus 
supervised) in machine learning and examples of learning problems (bandits, 
tabular reinforcement learning, reinforcement learning, contextual bandits 
and supervised machine learning) that result from their combination. 
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represents the feedback received from the environment for the transi-
tion to xʹ. Classic temporal difference methods set about minimizing 
the difference between these quantities.

Reinforcement learning in the face of evaluative, sampled and sequen-
tial feedback requires combining methods for temporal credit assign-
ment with methods for generalization. Concretely, if the V values are 
represented with a neural network or similar representation, finding 
predictions such that V(x) ≈ Exʹ[r(xʹ) + V(xʹ)] can lead to instability and 
divergence in the learning process14,15.

Recent work16 has modified the goal of learning slightly by incor-
porating the generalization process into the learning objective 
itself. Specifically, consider the goal of seeking V values such that 
V(x) ≈ ∏Exʹ[r (xʹ) + V(xʹ)] where ∏ is the projection of the values resulting 
from their representation by the generalization method. When feedback 
is exhaustive and no generalization is used, ∏ is the identity function 
and this goal is no different from classic temporal difference learning. 
However, when linear functions are used to represent values, this modi-
fied goal can be used to create provably convergent learning algorithms17.

This insight was rapidly generalized to non-linear function approxi-
mators that are smooth (locally linear)18, to the control setting19, and to 
the use of eligibility traces in the learning process20. This line of work 
holds a great deal of promise for creating reliable methods for learning 
effective behaviour from very weak feedback.

Planning
A closely related problem to that of temporal credit assignment is 
planning. The essence of both of these problems is that when actions 
have both immediate and situation-altering effects, decisions need to 

be sensitive to both immediate and long-term outcomes. Temporal 
difference learning provides one mechanism for factoring long-term 
outcomes into the decision process. Planning is another in that it consid-
ers the implications of taking entire sequences of actions and explicitly 
makes a trade-off among them. Planning has long been studied in arti-
ficial intelligence21, but research in reinforcement learning has brought 
about a number of powerful innovations.

A particularly challenging kind of planning that is relevant in the 
reinforcement-learning setting is planning under uncertainty. Here, 
outcomes of decisions are modelled as being drawn from a probabil-
ity distribution over alternatives conditioned on the learner’s decision 
(Box 1). A familiar example of this kind of planning is move selection 
in board games. If a computer program is playing against a human, it 
needs to make moves that are likely to lead to a win despite not know-
ing precisely which moves its opponent will take. For a game such as 
noughts and crosses, a computer program can exhaustively enumerate 
all the reachable boards — the so-called game tree — and calculate 

Figure 2 | A series of boards in noughts and crosses leading to a loss for 
nought.  Against a strong opponent, cross (moves A, C and E), nought makes 
two moves (B and D) and ultimately loses. In this example, nought’s earlier 
move (B) set the stage for the defeat. 
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Reinforcement learning is characterized as an interaction between a 
learner and an environment that provides evaluative feedback. The 
environment is often conceptualized as a Markov decision process — a 
formal mathematical model that dates back to the 1950s (refs 55, 56). 
A Markov decision process is defined by a set of states S (situations 
in which a decision can be made), and actions A (the decisions or 
interventions the decision maker can select). These quantities can 
be taken to be finite, but continuous state and action spaces are 
often valuable for capturing interactions in important reinforcement-
learning applications such as robotic control57. A transition function 
P (sʹ|s, a) defines the probability of the state changing from s to sʹ under 
the influence of action a. It specifies the ‘physics’ or ‘dynamics’ of the 
environment. 

The decision maker’s task is defined by a reward function R(s, a) 
and discount factor γ Є [0, 1]. Rewards are delivered to the decision 
maker with each transition and maximizing the cumulative discounted 
expected reward is its objective. Specifically, the decision maker seeks 
a behaviour π* mapping states to actions generating a sequence of 
rewards r0, r1, r2, r3, … such that Er0, r1, … [r0 + γr1 + γ2r2 + γ3r3 + …] is as 

large as possible. The relation between the environmental interaction 
(state, action, reward, state, action, reward, …) and the cumulative 
discounted expected reward is captured by the Bellman equation 
(Figure) for the optimal state–action value function Q*. The solution 
to the Bellman equation can be used to define optimal behaviour by 
π*(s)  = arg maxaQ*(s, a). The cumulative discounted expected reward 
for the policy that takes action a from state s and then behaving 
optimally thereafter is the immediate reward received plus the 
discounted expected value of the cumulative discounted expected 
reward from the resulting state sʹ given that the best action is chosen.

Planning methods use knowledge of P and R to compute a good 
policy π. Reinforcement-learning methods have access to P and R only 
through their ongoing interactions with the environment and must 
learn good behaviour. Note that the Markov decision process model 
captures both sequential feedback and the more specific one-shot 
feedback (when P(sʹ|s, a) is independent of s and a). It also captures 
both exhaustive feedback and the more general sampled feedback 
(when states are represented by features that allow R(s, a) to be 
represented compactly).  

BOX 1

Markov decision processes specify setting and tasks

State Action State ActionReward State ActionReward
a π*(s)

Q*(s, a) = R(s, a) + γΣP(s′ls, a) maxa′ Q*(s′, a′)

R(s, a) P(s′ls, a)
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whether its moves will lead to a win, a loss or a tie from each. In a game 
such as chess, however, the size of the game tree is astronomical and the 
best an algorithm can hope for is to assemble a representative sample of 
boards to consider. The classic approach for dealing with this problem 
is to use an evaluation function. Programs search as deeply in the game 
tree as they can, but if they cannot reach the end of the game where the 
outcome is known, a heuristic evaluation function is used to estimate 
how the game will end. Even a moderately good guess can lead to excel-
lent game play in this context — evaluation-function methods have 
been used in chess from the earliest days of artificial intelligence to the 
decision making in the Deep Blue system that beat the World Chess 
Champion Garry Kasparov22.

A powerful variation of this idea is to use machine learning to 
improve the evaluation function over time. Here, temporal difference 

learning can be used in simulated games to provide opportunities to 
learn an accurate evaluation function represented as, for example, a 
neural network. Celebrated examples of the use of temporal difference 
methods combined with generalization were in the domains of check-
ers23 and backgammon24. A similar approach was responsible for Daily 
Double wagering in the Watson system for playing the US television 
game show Jeopardy!25.

In spite of their impressive, indeed superhuman, performance in 
some games, evaluation-function methods have not been universally 
successful. A notable example is the game of Go, in which good evalua-
tion functions have been hard to come by, resulting in subpar game play. 
A relatively recent breakthrough was the introduction of Monte Carlo 
tree search (MCTS) methods that swap an estimate of the evaluation 
function for an estimate of a good policy. Whereas evaluation-function 
methods try all possible actions out to a fixed depth and estimate the 
value of the resulting boards, Monte Carlo methods search all the way to 
the end of the game where evaluations are exact, but use a heuristic rule 
to suggest which subset of actions are worth considering (Fig. 3). Use of 
the upper confidence intervals in trees (UCT) algorithm26 resulted in a 
quantum leap in performance in Go27. It leverages the UCB algorithm 
to intelligently allocate search resources at each point in the tree. 

Model-based reinforcement learning
To plan, a learning algorithm needs to be able to predict the imme-
diate outcomes of its actions. Since it can try an action and observe 
the effects right away, this part of the problem can be addressed using 
supervised learning methods. In model-based reinforcement-learning 
approaches, experiences are used to estimate a transition model, map-
ping from situations and decisions to resulting situations, and then a 
planning approach is used to make decisions that maximize predicted 
long-term outcomes.

Model-based reinforcement-learning methods and model-free meth-
ods such as temporal differences strike a different balance between com-
putational expense and experience efficiency — to a first approximation, 
model-free methods are inexpensive, but slow to learn; whereas model-
based methods are computationally intensive, but squeeze the most out 
of each experience (Box 2). In applications such as learning to manage 
memory resources in a central processing unit, decisions need to be 
made at the speed of a computer’s clock and data are abundant, making 
temporal difference learning an excellent fit28. In applications such as a 
robot helicopter learning acrobatic tricks, experience is slow to collect 
and there is ample time offline to compute decision policies, making a 
model-based approach appropriate29. There are also methods that draw 
on both styles of learning30 to try to get the complementary advantages.

Model-based algorithms can make use of insights from supervised 
learning to deal with sampled feedback when learning their transition 

Figure 3 | Schematic comparison of evaluation-function and Monte Carlo 
methods for planning.  The top of the tree represents the current state for 
which a decision is needed. The red area represents the entire search tree 
— too large to be examined. The green area represents the nodes of the tree 
visited by evaluation-function methods — they expand to a fixed depth and 
then use an evaluation function to approximate the value received at the end 
of the game. The blue area represents the nodes of the tree visited by Monte 
Carlo methods — they consider a subset of nodes that ignore some actions 
(making it narrow) but continue to the leaves of the search tree (making 
it deep). Some decision problems are much more amenable to this type of 
approximation.

Monte Carlo methods

Evaluation-function methods

Full tree

Tabular reinforcement-learning problems are those in which the 
state–action space can be explored exhaustively. Although challenging, 
there are a number of relatively simple algorithms that can be used 
effectively in this setting. Q-learning58 is a model-free algorithm that 
uses transition experience of the form <s, a, r, sʹ> (from state s, action a 
resulted in reward r and next state sʹ) to improve an estimate Qˆ  of the 
optimal state–action value function Q* . In particular, since r + γmaxaʹ 
Q*(sʹ, aʹ) is an unbiased estimator of Q*(s, a) as defined by the Bellman 
equation and Qˆ  is an estimate of Q*, the estimate can be updated as: 

where α is a learning-rate parameter that controls how new  
estimates are iteratively blended together over time. Indeed, 

if the learning rate is decayed at an appropriate rate,

for all state–action pairs59. 
A simple model-based approach to tabular reinforcement learning 

uses the observed transition experience to estimate R(s, a) (by 
averaging all rewards received from state s and action a) and P(sʹ|s, a) 
(by the fraction of transitions from state s and action a that transition to 
state sʹ). Solving the Bellman equation — through planning algorithms 
such as value iteration, policy iteration, UCT (upper confidence 
intervals in trees) or linear programming methods — using these 
estimates leads to an approximation Qˆ  of the state–action value 
function that converges to Q* in the limit of infinite data. 

BOX 2

Two approaches to tabular reinforcement learning 
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models and can tackle the problem of sequential feedback by planning 
actions to achieve their goals. The issue of evaluative feedback — the 
fact that the system can only learn about transitions it has actually expe-
rienced — makes it very important that learners balance exploration 
and exploitation. Several methods are known for achieving guaranteed 
efficiency in model-based reinforcement learning31,32 by explicitly mod-
elling the certainty of predictions and, much like UCB, taking an opti-
mistic view of the uncertainty. Concretely representing the uncertainty 
in learning leads to the framework ‘knows what it knows’33 (Box 3), 
which has been shown to work well with planning algorithms in model-
based reinforcement-learning settings.

Empirical methods
An important turning point in the development of practical super-
vised learning methods was a shift from artificial learning problems 
to learning problems grounded in measured data and careful experi-
mental design34. The reinforcement-learning community is showing 
signs of a similar evolution, which promises to help to solidify the 
technical gains described in the previous sections. Of particular inter-
est are new evaluation methodologies that go beyond case studies of 
individual algorithm learning in individual environments to con-
trolled studies of different learning algorithms and their performance 
across multiple natural domains. In supervised learning, data-set col-
lections such as the University of California, Irvine Machine Learning 
Repository (http://archive.ics.uci.edu/ml/) and the Weka Machine 
Learning library (http://www.cs.waikato.ac.nz/ml/weka/) facilitate 
this kind of research by providing data for learning problems and a 
suite of algorithms in a modular form. A challenge for the study of 
reinforcement learning, however, is that learning takes place through 
active exploration between the learner and her environment. Envi-
ronments are almost always represented by simulators, which can be 
difficult to standardize and share, and are rarely realistic stand-ins 
for the actual environment of interest.

One noteworthy exception is the Arcade Learning Environment35, 
which provides a reinforcement-leaning-friendly interface for an 
eclectic collection of more than 50 Atari 2600 video games. Although 
video games are by no means the only domain of interest, the diver-
sity of game types and the unity of the interface makes the Arcade 
Learning Environment an exciting platform for the empirical study of 
machine reinforcement learning. An extremely impressive example of 

research enabled by this repository is a recent study of deep learning 
in the reinforcement-learning setting. Researchers combined a set 
of existing and novel algorithm elements to create an agent capable 
of ‘human-level’ performance36 across the set of games. It remains to 
be seen whether the algorithmic approaches highlighted in this work 
become standard weapons in the reinforcement-learning arsenal, but 
the remarkable success on these challenging learning problems has 
attracted a great deal of attention and is likely to generate advances 
in the theory and practice of reinforcement learning.

A perspective on future impacts
There are several current directions that promise considerable impacts 
in the years to come.

Offline evaluation 
One challenge to designing practical, reliable learning systems for real-
life reinforcement-learning problems is that the learning problem is 
carried out online. That is, in contrast to supervised learning systems 
that work with a training set that contains measured, but frozen, data, 
reinforcement learning is defined with regard to a continual interaction 
between the learner and an environment.

To overcome this difficulty, several efforts are underway to col-
lect static data sets in a way that allows them to be used for evaluating 
reinforcement-learning algorithms. In the biostatistics community, a 
new type of clinical trial37 called a sequential, multiple assignment ran-
domized trial (SMART) has been developed that makes it possible to 
gather treatment responses in a way that supports the synthesis of adap-
tive treatment plans. That is, the trial assesses the effectiveness of treat-
ments expressed as flow charts in which an intervention is applied and, 
depending on the patient’s response, the plan follows up with different 
possible interventions. A typical SMART can evaluate a flow chart con-
taining eight different possible treatment plans using half the participants 
that would otherwise be needed.

SMARTs evaluate flow-chart-like treatment plans, but not complete 
learning algorithms. Learning algorithms can express extremely com-
plex contingent relationships between the data acquired during learning 
and the decisions made in response to it. Consider a simple two-armed 
bandit problem over a set of ten steps. The tenth decision in the sequence 
is conditioned on the outcomes of all the previous decisions. Thus, for 
each of the 29 = 512 possible contexts, our bandit algorithm needs to make 

The KWIK (‘knows what it knows’) learning setting33 provides a 
powerful set of algorithms for rapidly learning accurate predictions 
and confidently distinguishing learned from not-yet-learned instances. 
In the context of reinforcement-learning algorithms, this ability to 
tag predictions as uncertain can be exploited to drive exploration by 
substituting optimistic estimates for those that remain unknown. 

A growing set of KWIK-learnable function classes has been 
identified. As a simple example, consider trying to learn a function of 
the form f(x) = is x divisible by k? for some unknown natural number 
k. The Table shows what a KWIK learning algorithm for this problem 
would predict given training examples f(6) = yes and f(20) = no. It 
would know f(6) = yes and f(20) = no from these examples. It would be 
able to reason that the unknown kЄ {2, 3, 6} from these examples and 
therefore that f(25) = no. By contrast, f(15) = I don’t know because it 
would be ‘yes’ if k = 3 and ‘no’ if k = 6. Despite this lingering ambiguity, 
it could conclude that f(24) = yes, since that would be the answer for 
any of the remaining possible values of k. This last element lies at the 
heart of all KWIK-learning algorithms — not ‘wasting’ its I don’t know 
answers on examples whose outputs can be inferred from the data. 

For noisy function classes, a KWIK learner must be able to predict 
the probability of various outputs given an input. This property is 
important when learning Markov decision process transition functions. 
Some challenging function classes for which KWIK learning algorithms 
are known include noisy linear regression, and noisy union. Noisy 
union, also called the ‘adaptive k meteorologist’ problem60, lets the 
learner choose a function from a finite class when there is a non-zero 
probability that training examples are corrupted. 

BOX 3

Self-aware learning in reinforcement learning

Table 1 | A training set (f(6) = yes, f(20) = no) for a function of the 
form ‘f(x) = is x divisible by k?’ for some unknown natural number 
k, and the predictions made by a valid KWIK algorithm.

Input x Output f(x) Prediction for f(x)

6 Yes Yes

15 I don’t know

20 No No

24 Yes

25 No
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a good choice. Longer learning periods and contextual decisions make 
the number of possibilities to consider astronomically high. Despite 
this daunting combinatorial explosion, offline evaluation procedures 
for contextual bandit problems have been proposed38. The key idea is to 
collect a static (but enormous) set of contextual bandit decisions by run-
ning a uniform random selection algorithm on a real problem (a news 
article recommendation, for example). Then, to test a bandit algorithm 
using this collection, present the algorithm with the same series of con-
texts. Whenever the selection made by the algorithm does not match 
the selection made during data collection, the algorithm is forced to 
forget what it saw. Thus, as far as the algorithm ‘knows’, all of its choices 
during learning matched the choices made during data collection. The 
end result is an unbiased evaluation of a dynamic bandit algorithm using 
static pre-recorded data.

One reason that this approach works for contextual bandit problems 
is that — apart from the state of the learning algorithm — there are no 
dependencies from one round of decision making to the next. So, skip-
ping many rounds because the algorithm and the data collection do not 
match does not change the fundamental character of the learning prob-
lem. In the presence of sequential feedback, however, this trick no longer 
applies. Proposals have been made for creating reinforcement-learning 
data repositories39 and for evaluating policies using observational data 
sets40, but no solid solution for evaluating general learning algorithms 
has yet emerged.

Finding appropriate reward functions
Reinforcement-learning systems strive to identify behaviour that maxi-
mizes expected total reward. There is a sense, therefore, that they are 
‘programmable’ through their reward functions — the mappings from 
situation to score. A helpful analogy to consider is between learning 
and program interpretation in digital computers: a program (reward 
function) directs an interpreter (learning algorithm) to process inputs 
(environments) into desirable outputs (behaviour). The vast majority 
of research in reinforcement learning has been into the development 
of effective interpreters with little attention paid to how we should be 
programming them (providing reward functions).

There are a few approaches that have been explored for producing 
reward functions that induce a target behaviour given some conception 
of that behaviour. As a simple example, if one reward function for the 
target behaviour is known, the space of behaviour-preserving transfor-
mations to this reward function is well understood41; other, essentially 
equivalent, reward functions can be created. If a human teacher is avail-
able who can provide evaluative feedback, modifications to intended 
target reinforcement-learning algorithms can be used to search for the 
target behaviour42–44. The problem of inverse reinforcement learning45,46 
addresses the challenge of creating appropriate reward functions given 
the availability of behavioural traces from an expert executing the target 
behaviour. It is called ‘inverse’ reinforcement learning because the learner 
is given behaviour and needs to generate a reward function instead of 
the other way around. These methods infer a reward function that the 
demonstrated behaviour optimizes. One can turn to evolutionary opti-
mization47 to generate reward functions if there is an effective way to 
evaluate the appropriateness of the resulting behaviour. One advantage of 
the evolutionary approach is that, among the many possible reward func-
tions that generate good behaviour, it can identify ones that provide help-
ful but not too distracting hints that can speed up the learning process.

Looking forward, new techniques for specifying complex behaviour and 
translations of these specifications into appropriate reward functions are  
essential. Existing reward-function specifications lack the fundamental 
ideas that enable the design of today’s massive software systems, such as 
abstraction, modularity and encapsulation. Analogues of these ideas could 
greatly extend the practical utility of reinforcement-learning systems.

Reinforcement learning as a cognitive model
The term reinforcement learning itself originated in the animal-
learning community. It had long been observed that certain stimuli, 

if present after an animal selects a particular behavioural action, cause 
that behavioural action to become more frequent in the future. These 
stimuli became known as reinforcers because of their role in strength-
ening behaviour. The pioneers of artificial intelligence were aware of 
this idea48,49 and used the term to describe computational processes 
that would similarly increase the intensity or likelihood of a response. 
Indeed, according to the software tool Google Ngrams (which charts 
the frequency of phrases in its database of published books; https://
books.google.com/ngrams), the appearance of ‘reinforcement learning’ 
reached a local maximum in the mid-1960s, as it was in use by research-
ers studying the theory of animal learning, education and cybernetics.

The term lost ground through the 1970s and early 1980s, but was 
picked up again by computer scientists in the mid-to-late 1980s13,50 
and became a central area of study in machine learning. A subtle but 
important difference was introduced during this second wave. The term 
‘reinforcement’ came to refer to a generic reward signal that needs to 
be predicted over time instead of the activity of strengthening a behav-
ioural response. Classic learning problems could still be discussed in this 
way, but the door opened to a wide variety of other powerful algorithmic 
approaches, such as temporal difference learning, for which behavioural 
strengthening was not a direct design goal.

As already discussed, the predictive view proved to be powerful and 
productive. Recent work in neuroscience and cognitive psychology has 
leveraged this revised understanding of reinforcement learning to create 
new insights into biological learning. Of particular note is the discovery 
of a temporal difference signal encoded in the firing of dopamine neu-
rons51, which has created a bridge between computer scientists and cog-
nitive neuroscientists centred on reinforcement-learning algorithms52,53. 
In addition to temporal difference methods, cognitive scientists have 
found the distinction between model-based (goal-directed) and model-
free (habitual) learning to be a fertile one. For example, some aspects 
of how people make moral judgments54 can be fruitfully described by 
associating action-based preferences (do not do A because it is wrong) 
with model-free learning and outcome-based preferences (do not do 
A because it will lead to a bad situation) with model-based learning. 

In October 2013, the first Multi-disciplinary Conference on Rein-
forcement Learning and Decision Making was held at Princeton Uni-
versity in New Jersey. In addition to computer scientists, psychologists 
and neuroscientists, the invited speakers included engineers, roboticists, 
a zoologist, a psychiatrist and a behavioural game theorist. The talks 
were notable both for the breadth of topics and the convergence of the 
underlying conceptual framework discussed in this Review. As our for-
mal and practical understanding of learning from evaluative feedback 
expands, so does the community of scientists and engineers who can 
contribute to and benefit from these ideas. ■
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