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Chapter 1

Types

1.1 Cluster analysis

For the supervised learning approach, see Statistical clas-
sification.
Cluster analysis or clustering is the task of grouping

The result of a cluster analysis shown as the coloring of the
squares into three clusters.

a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense
or another) to each other than to those in other groups
(clusters). It is a main task of exploratory data min-
ing, and a common technique for statistical data analysis,
used in many fields, including machine learning, pattern
recognition, image analysis, information retrieval, and
bioinformatics.
Cluster analysis itself is not one specific algorithm, but
the general task to be solved. It can be achieved by var-
ious algorithms that differ significantly in their notion
of what constitutes a cluster and how to efficiently find
them. Popular notions of clusters include groups with
small distances among the cluster members, dense ar-
eas of the data space, intervals or particular statistical
distributions. Clustering can therefore be formulated as
a multi-objective optimization problem. The appropri-
ate clustering algorithm and parameter settings (includ-
ing values such as the distance function to use, a density
threshold or the number of expected clusters) depend on
the individual data set and intended use of the results.
Cluster analysis as such is not an automatic task, but an
iterative process of knowledge discovery or interactive

multi-objective optimization that involves trial and fail-
ure. It will often be necessary to modify data preprocess-
ing and model parameters until the result achieves the de-
sired properties.
Besides the term clustering, there are a number of terms
with similar meanings, including automatic classification,
numerical taxonomy, botryology (from Greek βότρυς

“grape”) and typological analysis. The subtle differences
are often in the usage of the results: while in data min-
ing, the resulting groups are the matter of interest, in au-
tomatic classification the resulting discriminative power
is of interest. This often leads to misunderstandings be-
tween researchers coming from the fields of data mining
and machine learning, since they use the same terms and
often the same algorithms, but have different goals.
Cluster analysis was originated in anthropology by Driver
and Kroeber in 1932 and introduced to psychology by
Zubin in 1938 and Robert Tryon in 1939*[1]*[2] and fa-
mously used by Cattell beginning in 1943*[3] for trait the-
ory classification in personality psychology.

1.1.1 Definition

According to Vladimir Estivill-Castro, the notion of a
“cluster”cannot be precisely defined, which is one of the

reasons why there are so many clustering algorithms.*[4]
There is a common denominator: a group of data objects.
However, different researchers employ different cluster
models, and for each of these cluster models again dif-
ferent algorithms can be given. The notion of a cluster,
as found by different algorithms, varies significantly in
its properties. Understanding these “cluster models”is
key to understanding the differences between the various
algorithms. Typical cluster models include:

• Connectivity models: for example hierarchical clus-
tering builds models based on distance connectivity.

• Centroid models: for example the k-means algo-
rithm represents each cluster by a single mean vec-
tor.

• Distribution models: clusters are modeled using sta-
tistical distributions, such as multivariate normal

1
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distributions used by the Expectation-maximization
algorithm.

• Density models: for example DBSCAN and
OPTICS defines clusters as connected dense regions
in the data space.

• Subspace models: in Biclustering (also known as
Co-clustering or two-mode-clustering), clusters are
modeled with both cluster members and relevant at-
tributes.

• Group models: some algorithms do not provide a
refined model for their results and just provide the
grouping information.

• Graph-based models: a clique, i.e., a subset of nodes
in a graph such that every two nodes in the subset are
connected by an edge can be considered as a proto-
typical form of cluster. Relaxations of the complete
connectivity requirement (a fraction of the edges can
be missing) are known as quasi-cliques.

A“clustering”is essentially a set of such clusters, usually
containing all objects in the data set. Additionally, it may
specify the relationship of the clusters to each other, for
example a hierarchy of clusters embedded in each other.
Clusterings can be roughly distinguished as:

• hard clustering: each object belongs to a cluster or
not

• soft clustering (also: fuzzy clustering): each object
belongs to each cluster to a certain degree (e.g. a
likelihood of belonging to the cluster)

There are also finer distinctions possible, for example:

• strict partitioning clustering: here each object be-
longs to exactly one cluster

• strict partitioning clustering with outliers: objects
can also belong to no cluster, and are considered
outliers.

• overlapping clustering (also: alternative clustering,
multi-view clustering): while usually a hard cluster-
ing, objects may belong to more than one cluster.

• hierarchical clustering: objects that belong to a child
cluster also belong to the parent cluster

• subspace clustering: while an overlapping cluster-
ing, within a uniquely defined subspace, clusters are
not expected to overlap.

1.1.2 Algorithms

Main category: Data clustering algorithms

Clustering algorithms can be categorized based on their
cluster model, as listed above. The following overview
will only list the most prominent examples of clustering
algorithms, as there are possibly over 100 published clus-
tering algorithms. Not all provide models for their clus-
ters and can thus not easily be categorized. An overview
of algorithms explained in Wikipedia can be found in the
list of statistics algorithms.
There is no objectively “correct”clustering algorithm,
but as it was noted, “clustering is in the eye of the be-
holder.”*[4] The most appropriate clustering algorithm
for a particular problem often needs to be chosen exper-
imentally, unless there is a mathematical reason to prefer
one cluster model over another. It should be noted that
an algorithm that is designed for one kind of model has
no chance on a data set that contains a radically differ-
ent kind of model.*[4] For example, k-means cannot find
non-convex clusters.*[4]

Connectivity based clustering (hierarchical cluster-
ing)

Main article: Hierarchical clustering

Connectivity based clustering, also known as hierarchical
clustering, is based on the core idea of objects being
more related to nearby objects than to objects farther
away. These algorithms connect“objects”to form“clus-
ters”based on their distance. A cluster can be described
largely by the maximum distance needed to connect parts
of the cluster. At different distances, different clusters
will form, which can be represented using a dendrogram,
which explains where the common name “hierarchical
clustering”comes from: these algorithms do not provide
a single partitioning of the data set, but instead provide
an extensive hierarchy of clusters that merge with each
other at certain distances. In a dendrogram, the y-axis
marks the distance at which the clusters merge, while the
objects are placed along the x-axis such that the clusters
don't mix.
Connectivity based clustering is a whole family of meth-
ods that differ by the way distances are computed. Apart
from the usual choice of distance functions, the user also
needs to decide on the linkage criterion (since a clus-
ter consists of multiple objects, there are multiple candi-
dates to compute the distance to) to use. Popular choices
are known as single-linkage clustering (the minimum of
object distances), complete linkage clustering (the max-
imum of object distances) or UPGMA (“Unweighted
Pair Group Method with Arithmetic Mean”, also known
as average linkage clustering). Furthermore, hierarchi-
cal clustering can be agglomerative (starting with single
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elements and aggregating them into clusters) or divisive
(starting with the complete data set and dividing it into
partitions).
These methods will not produce a unique partitioning of
the data set, but a hierarchy from which the user still
needs to choose appropriate clusters. They are not very
robust towards outliers, which will either show up as ad-
ditional clusters or even cause other clusters to merge
(known as “chaining phenomenon”, in particular with
single-linkage clustering). In the general case, the com-
plexity is O(n3) , which makes them too slow for large
data sets. For some special cases, optimal efficient meth-
ods (of complexity O(n2) ) are known: SLINK*[5] for
single-linkage and CLINK*[6] for complete-linkage clus-
tering. In the data mining community these methods are
recognized as a theoretical foundation of cluster analysis,
but often considered obsolete. They did however provide
inspiration for many later methods such as density based
clustering.

• Linkage clustering examples

• Single-linkage on Gaussian data. At 35 clusters, the
biggest cluster starts fragmenting into smaller parts,
while before it was still connected to the second
largest due to the single-link effect.

• Single-linkage on density-based clusters. 20 clusters
extracted, most of which contain single elements,
since linkage clustering does not have a notion of

“noise”.

Centroid-based clustering

Main article: k-means clustering

In centroid-based clustering, clusters are represented by
a central vector, which may not necessarily be a mem-
ber of the data set. When the number of clusters is fixed
to k, k-means clustering gives a formal definition as an
optimization problem: find the k cluster centers and as-
sign the objects to the nearest cluster center, such that the
squared distances from the cluster are minimized.
The optimization problem itself is known to be NP-hard,
and thus the common approach is to search only for ap-
proximate solutions. A particularly well known approx-
imative method is Lloyd's algorithm,*[7] often actually
referred to as "k-means algorithm". It does however only
find a local optimum, and is commonly run multiple times
with different random initializations. Variations of k-
means often include such optimizations as choosing the
best of multiple runs, but also restricting the centroids to
members of the data set (k-medoids), choosing medians
(k-medians clustering), choosing the initial centers less
randomly (K-means++) or allowing a fuzzy cluster as-
signment (Fuzzy c-means).

Most k-means-type algorithms require the number of
clusters - k - to be specified in advance, which is con-
sidered to be one of the biggest drawbacks of these al-
gorithms. Furthermore, the algorithms prefer clusters of
approximately similar size, as they will always assign an
object to the nearest centroid. This often leads to incor-
rectly cut borders in between of clusters (which is not sur-
prising, as the algorithm optimized cluster centers, not
cluster borders).
K-means has a number of interesting theoretical prop-
erties. On the one hand, it partitions the data space
into a structure known as a Voronoi diagram. On the
other hand, it is conceptually close to nearest neighbor
classification, and as such is popular in machine learn-
ing. Third, it can be seen as a variation of model based
classification, and Lloyd's algorithm as a variation of the
Expectation-maximization algorithm for this model dis-
cussed below.

• k-Means clustering examples

• K-means separates data into Voronoi-cells, which
assumes equal-sized clusters (not adequate here)

• K-means cannot represent density-based clusters

Distribution-based clustering

The clustering model most closely related to statistics is
based on distribution models. Clusters can then easily be
defined as objects belonging most likely to the same dis-
tribution. A convenient property of this approach is that
this closely resembles the way artificial data sets are gen-
erated: by sampling random objects from a distribution.
While the theoretical foundation of these methods is
excellent, they suffer from one key problem known as
overfitting, unless constraints are put on the model com-
plexity. A more complex model will usually be able to
explain the data better, which makes choosing the appro-
priate model complexity inherently difficult.
One prominent method is known as Gaussian mixture
models (using the expectation-maximization algorithm).
Here, the data set is usually modelled with a fixed (to
avoid overfitting) number of Gaussian distributions that
are initialized randomly and whose parameters are iter-
atively optimized to fit better to the data set. This will
converge to a local optimum, so multiple runs may pro-
duce different results. In order to obtain a hard clustering,
objects are often then assigned to the Gaussian distribu-
tion they most likely belong to; for soft clusterings, this is
not necessary.
Distribution-based clustering produces complex models
for clusters that can capture correlation and dependence
between attributes. However, these algorithms put an ex-
tra burden on the user: for many real data sets, there may
be no concisely defined mathematical model (e.g. assum-
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ing Gaussian distributions is a rather strong assumption
on the data).

• Expectation-Maximization (EM) clustering exam-
ples

• On Gaussian-distributed data, EM works well, since
it uses Gaussians for modelling clusters

• Density-based clusters cannot be modeled using
Gaussian distributions

Density-based clustering

In density-based clustering,*[8] clusters are defined as ar-
eas of higher density than the remainder of the data set.
Objects in these sparse areas - that are required to sepa-
rate clusters - are usually considered to be noise and bor-
der points.
The most popular*[9] density based clustering method
is DBSCAN.*[10] In contrast to many newer methods,
it features a well-defined cluster model called “density-
reachability”. Similar to linkage based clustering, it is
based on connecting points within certain distance thresh-
olds. However, it only connects points that satisfy a den-
sity criterion, in the original variant defined as a mini-
mum number of other objects within this radius. A clus-
ter consists of all density-connected objects (which can
form a cluster of an arbitrary shape, in contrast to many
other methods) plus all objects that are within these ob-
jects' range. Another interesting property of DBSCAN
is that its complexity is fairly low - it requires a linear
number of range queries on the database - and that it will
discover essentially the same results (it is deterministic
for core and noise points, but not for border points) in
each run, therefore there is no need to run it multiple
times. OPTICS*[11] is a generalization of DBSCAN
that removes the need to choose an appropriate value
for the range parameter ε , and produces a hierarchi-
cal result related to that of linkage clustering. DeLi-
Clu,*[12] Density-Link-Clustering combines ideas from
single-linkage clustering and OPTICS, eliminating the ε
parameter entirely and offering performance improve-
ments over OPTICS by using an R-tree index.
The key drawback of DBSCAN and OPTICS is that they
expect some kind of density drop to detect cluster bor-
ders. Moreover, they cannot detect intrinsic cluster struc-
tures which are prevalent in the majority of real life data.
A variation of DBSCAN, EnDBSCAN,*[13] efficiently
detects such kinds of structures. On data sets with, for
example, overlapping Gaussian distributions - a common
use case in artificial data - the cluster borders produced
by these algorithms will often look arbitrary, because
the cluster density decreases continuously. On a data set
consisting of mixtures of Gaussians, these algorithms are
nearly always outperformed by methods such as EM clus-
tering that are able to precisely model this kind of data.

Mean-shift is a clustering approach where each object is
moved to the densest area in its vicinity, based on kernel
density estimation. Eventually, objects converge to local
maxima of density. Similar to k-means clustering, these

“density attractors”can serve as representatives for the
data set, but mean-shift can detect arbitrary-shaped clus-
ters similar to DBSCAN. Due to the expensive iterative
procedure and density estimation, mean-shift is usually
slower than DBSCAN or k-Means.

• Density-based clustering examples

• Density-based clustering with DBSCAN.

• DBSCAN assumes clusters of similar density, and
may have problems separating nearby clusters

• OPTICS is a DBSCAN variant that handles different
densities much better

Recent developments

In recent years considerable effort has been put
into improving the performance of existing algo-
rithms.*[14]*[15] Among them are CLARANS (Ng and
Han, 1994),*[16] and BIRCH (Zhang et al., 1996).*[17]
With the recent need to process larger and larger data sets
(also known as big data), the willingness to trade seman-
tic meaning of the generated clusters for performance
has been increasing. This led to the development of pre-
clustering methods such as canopy clustering, which can
process huge data sets efficiently, but the resulting“clus-
ters”are merely a rough pre-partitioning of the data set
to then analyze the partitions with existing slower meth-
ods such as k-means clustering. Various other approaches
to clustering have been tried such as seed based cluster-
ing.*[18]
For high-dimensional data, many of the existing meth-
ods fail due to the curse of dimensionality, which ren-
ders particular distance functions problematic in high-
dimensional spaces. This led to new clustering algorithms
for high-dimensional data that focus on subspace clus-
tering (where only some attributes are used, and clus-
ter models include the relevant attributes for the cluster)
and correlation clustering that also looks for arbitrary ro-
tated (“correlated”) subspace clusters that can be mod-
eled by giving a correlation of their attributes. Exam-
ples for such clustering algorithms are CLIQUE*[19] and
SUBCLU.*[20]
Ideas from density-based clustering methods (in partic-
ular the DBSCAN/OPTICS family of algorithms) have
been adopted to subspace clustering (HiSC,*[21] hier-
archical subspace clustering and DiSH*[22]) and cor-
relation clustering (HiCO,*[23] hierarchical correlation
clustering, 4C*[24] using“correlation connectivity”and
ERiC*[25] exploring hierarchical density-based correla-
tion clusters).
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Several different clustering systems based on mutual in-
formation have been proposed. One is Marina Meilă's
variation of information metric;*[26] another provides
hierarchical clustering.*[27] Using genetic algorithms, a
wide range of different fit-functions can be optimized,
including mutual information.*[28] Also message pass-
ing algorithms, a recent development in Computer Sci-
ence and Statistical Physics, has led to the creation of new
types of clustering algorithms.*[29]

Other methods

• Basic sequential algorithmic scheme (BSAS)

1.1.3 Evaluation and assessment

Evaluation of clustering results sometimes is referred to
as cluster validation.
There have been several suggestions for a measure of sim-
ilarity between two clusterings. Such a measure can be
used to compare how well different data clustering al-
gorithms perform on a set of data. These measures are
usually tied to the type of criterion being considered in
assessing the quality of a clustering method.

Internal evaluation

When a clustering result is evaluated based on the data
that was clustered itself, this is called internal evalua-
tion. These methods usually assign the best score to
the algorithm that produces clusters with high similarity
within a cluster and low similarity between clusters. One
drawback of using internal criteria in cluster evaluation
is that high scores on an internal measure do not nec-
essarily result in effective information retrieval applica-
tions.*[30] Additionally, this evaluation is biased towards
algorithms that use the same cluster model. For example
k-Means clustering naturally optimizes object distances,
and a distance-based internal criterion will likely overrate
the resulting clustering.
Therefore, the internal evaluation measures are best
suited to get some insight into situations where one algo-
rithm performs better than another, but this shall not im-
ply that one algorithm produces more valid results than
another.*[4] Validity as measured by such an index de-
pends on the claim that this kind of structure exists in the
data set. An algorithm designed for some kind of models
has no chance if the data set contains a radically differ-
ent set of models, or if the evaluation measures a radi-
cally different criterion.*[4] For example, k-means clus-
tering can only find convex clusters, and many evalua-
tion indexes assume convex clusters. On a data set with
non-convex clusters neither the use of k-means, nor of an
evaluation criterion that assumes convexity, is sound.

The following methods can be used to assess the quality
of clustering algorithms based on internal criterion:

• Davies–Bouldin index

The Davies–Bouldin index can be calculated by
the following formula:

DB = 1
n

∑n
i=1 maxj ̸=i

(
σi+σj

d(ci,cj)

)
where n is the number of clusters, cx is the
centroid of cluster x , σx is the average dis-
tance of all elements in cluster x to centroid
cx , and d(ci, cj) is the distance between cen-
troids ci and cj . Since algorithms that pro-
duce clusters with low intra-cluster distances
(high intra-cluster similarity) and high inter-
cluster distances (low inter-cluster similarity)
will have a low Davies–Bouldin index, the clus-
tering algorithm that produces a collection of
clusters with the smallest Davies–Bouldin in-
dex is considered the best algorithm based on
this criterion.

• Dunn index

The Dunn index aims to identify dense and
well-separated clusters. It is defined as the ratio
between the minimal inter-cluster distance to
maximal intra-cluster distance. For each clus-
ter partition, the Dunn index can be calculated
by the following formula:*[31]
D =

min1≤i<j≤n d(i,j)

max1≤k≤n d′(k) ,

where d(i,j) represents the distance between
clusters i and j, and d '(k) measures the intra-
cluster distance of cluster k. The inter-cluster
distance d(i,j) between two clusters may be
any number of distance measures, such as the
distance between the centroids of the clusters.
Similarly, the intra-cluster distance d '(k) may
be measured in a variety ways, such as the max-
imal distance between any pair of elements in
cluster k. Since internal criterion seek clusters
with high intra-cluster similarity and low inter-
cluster similarity, algorithms that produce clus-
ters with high Dunn index are more desirable.

• Silhouette coefficient

The silhouette coefficient contrasts the average
distance to elements in the same cluster with
the average distance to elements in other clus-
ters. Objects with a high silhouette value are
considered well clustered, objects with a low
value may be outliers. This index works well
with k-means clustering, and is also used to de-
termine the optimal number of clusters.
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External evaluation

In external evaluation, clustering results are evaluated
based on data that was not used for clustering, such
as known class labels and external benchmarks. Such
benchmarks consist of a set of pre-classified items, and
these sets are often created by human (experts). Thus, the
benchmark sets can be thought of as a gold standard for
evaluation. These types of evaluation methods measure
how close the clustering is to the predetermined bench-
mark classes. However, it has recently been discussed
whether this is adequate for real data, or only on syn-
thetic data sets with a factual ground truth, since classes
can contain internal structure, the attributes present may
not allow separation of clusters or the classes may contain
anomalies.*[32] Additionally, from a knowledge discov-
ery point of view, the reproduction of known knowledge
may not necessarily be the intended result.*[32]
A number of measures are adapted from variants used
to evaluate classification tasks. In place of counting the
number of times a class was correctly assigned to a sin-
gle data point (known as true positives), such pair count-
ing metrics assess whether each pair of data points that
is truly in the same cluster is predicted to be in the same
cluster.
Some of the measures of quality of a cluster algorithm
using external criterion include:

• Rand measure (William M. Rand 1971)*[33]

The Rand index computes how similar the clus-
ters (returned by the clustering algorithm) are
to the benchmark classifications. One can also
view the Rand index as a measure of the per-
centage of correct decisions made by the algo-
rithm. It can be computed using the following
formula:
RI = TP+TN

TP+FP+FN+TN

where TP is the number of true positives, TN
is the number of true negatives,FP is the num-
ber of false positives, and FN is the number
of false negatives. One issue with the Rand in-
dex is that false positives and false negatives are
equally weighted. This may be an undesirable
characteristic for some clustering applications.
The F-measure addresses this concern, as does
the chance-corrected adjusted Rand index.

• F-measure

The F-measure can be used to balance the con-
tribution of false negatives by weighting recall
through a parameter β ≥ 0 . Let precision and
recall be defined as follows:
P = TP

TP+FP

R = TP
TP+FN

where P is the precision rate and R is the recall
rate. We can calculate the F-measure by using
the following formula:*[30]

Fβ = (β2+1)·P ·R
β2·P+R

Notice that when β = 0 , F0 = P . In other
words, recall has no impact on the F-measure
when β = 0 , and increasing β allocates an in-
creasing amount of weight to recall in the final
F-measure.

• Jaccard index

The Jaccard index is used to quantify the simi-
larity between two datasets. The Jaccard index
takes on a value between 0 and 1. An index of
1 means that the two dataset are identical, and
an index of 0 indicates that the datasets have
no common elements. The Jaccard index is de-
fined by the following formula:
J(A,B) = |A∩B|

|A∪B| =
TP

TP+FP+FN

This is simply the number of unique elements
common to both sets divided by the total num-
ber of unique elements in both sets.

• Fowlkes–Mallows index (E. B. Fowlkes & C. L.
Mallows 1983)*[34]

The Fowlkes-Mallows index computes the sim-
ilarity between the clusters returned by the
clustering algorithm and the benchmark classi-
fications. The higher the value of the Fowlkes-
Mallows index the more similar the clusters
and the benchmark classifications are. It can
be computed using the following formula:

FM =
√

TP
TP+FP ·

TP
TP+FN

where TP is the number of true positives, FP
is the number of false positives, and FN is
the number of false negatives. The FM in-
dex is the geometric mean of the precision and
recall P and R , while the F-measure is their
harmonic mean.*[35] Moreover, precision and
recall are also known as Wallace's indices BI

and BII .*[36]

• The Mutual Information is an information theo-
retic measure of how much information is shared
between a clustering and a ground-truth classifica-
tion that can detect a non-linear similarity between
two clusterings. Adjusted mutual information is the
corrected-for-chance variant of this that has a re-
duced bias for varying cluster numbers.

• Confusion matrix
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A confusion matrix can be used to quickly vi-
sualize the results of a classification (or cluster-
ing) algorithm. It shows how different a cluster
is from the gold standard cluster.
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1.1.4 Applications

1.1.5 See also

Specialized types of cluster analysis

Others
Social science

Computer science
World wide web

Business and marketing
Medicine

Biology, computational biology and bioinformatics
Plant and animal ecologycluster analysis is used to

describe and to make spatial and temporal com-
parisons of communities (assemblages) of or-
ganisms in heterogeneous environments; it is
also used in plant systematics to generate artifi-
cial phylogenies or clusters of organisms (indi-
viduals) at the species, genus or higher level that
share a number of attributes

Transcriptomicsclustering is used to build groups
of genes with related expression patterns (also
known as coexpressed genes). Often such
groups contain functionally related proteins,
such as enzymes for a specific pathway, or genes
that are co-regulated. High throughput exper-
iments using expressed sequence tags (ESTs)
or DNA microarrays can be a powerful tool
for genome annotation, a general aspect of
genomics.

Sequence analysisclustering is used to group homol-
ogous sequences into gene families. This is a
very important concept in bioinformatics, and
evolutionary biology in general. See evolution
by gene duplication.

High-throughput genotyping platformsclustering al-
gorithms are used to automatically assign geno-
types.

Human genetic clusteringThe similarity of genetic
data is used in clustering to infer population
structures.

Medical imaging

On PET scans, cluster analysis can be used to
differentiate between different types of tissue
and blood in a three-dimensional image. In this
application, actual position does not matter,
but the voxel intensity is considered as a vector,
with a dimension for each image that was taken
over time. This technique allows, for example,
accurate measurement of the rate a radioactive
tracer is delivered to the area of interest,
without a separate sampling of arterial blood,
an intrusive technique that is most common
today.

Analysis of antimicrobial activityCluster analysis
can be used to analyse patterns of antibiotic
resistance, to classify antimicrobial compounds
according to their mechanism of action, to clas-
sify antibiotics according to their antibacterial
activity.

IMRT segmentationClustering can be used to divide
a fluence map into distinct regions for conver-
sion into deliverable fields in MLC-based Radi-
ation Therapy.

Market research

Cluster analysis is widely used in market re-
search when working with multivariate data
from surveys and test panels. Market re-
searchers use cluster analysis to partition
the general population of consumers into
market segments and to better understand
the relationships between different groups of
consumers/potential customers, and for use
in market segmentation, Product positioning,
New product development and Selecting test
markets.

Grouping of shopping itemsClustering can be used
to group all the shopping items available on the
web into a set of unique products. For example,
all the items on eBay can be grouped into unique
products. (eBay doesn't have the concept of a
SKU)

Social network analysis

In the study of social networks, clustering may
be used to recognize communities within large
groups of people.

Search result groupingIn the process of intelligent
grouping of the files and websites, clustering
may be used to create a more relevant set of
search results compared to normal search en-
gines like Google. There are currently a number
of web based clustering tools such as Clusty.

Slippy map optimizationFlickr's map of photos and
other map sites use clustering to reduce the
number of markers on a map. This makes it
both faster and reduces the amount of visual
clutter.

Software evolution

Clustering is useful in software evolution as
it helps to reduce legacy properties in code by
reforming functionality that has become dis-
persed. It is a form of restructuring and hence
is a way of direct preventative maintenance.

Image segmentationClustering can be used to divide
a digital image into distinct regions for border
detection or object recognition.

Evolutionary algorithmsClustering may be used to
identify different niches within the population
of an evolutionary algorithm so that reproduc-
tive opportunity can be distributed more evenly
amongst the evolving species or subspecies.

Recommender systemsRecommender systems are
designed to recommend new items based on a
user's tastes. They sometimes use clustering
algorithms to predict a user's preferences based
on the preferences of other users in the user's
cluster.

Markov chain Monte Carlo methodsClustering is of-
ten utilized to locate and characterize extrema
in the target distribution.

Crime analysis

Cluster analysis can be used to identify areas
where there are greater incidences of particular
types of crime. By identifying these distinct
areas or “hot spots”where a similar crime has
happened over a period of time, it is possible
to manage law enforcement resources more
effectively.

Educational data miningCluster analysis is for ex-
ample used to identify groups of schools or stu-
dents with similar properties.

TypologiesFrom poll data, projects such as those un-
dertaken by the Pew Research Center use clus-
ter analysis to discern typologies of opinions,
habits, and demographics that may be useful in
politics and marketing.

Field robotics

Clustering algorithms are used for robotic sit-
uational awareness to track objects and detect
outliers in sensor data.*[37]

Mathematical chemistryTo find structural similar-
ity, etc., for example, 3000 chemical compounds
were clustered in the space of 90 topological in-
dices.*[38]

ClimatologyTo find weather regimes or preferred sea
level pressure atmospheric patterns.*[39]

Petroleum geologyCluster analysis is used to recon-
struct missing bottom hole core data or missing
log curves in order to evaluate reservoir proper-
ties.

Physical geographyThe clustering of chemical prop-
erties in different sample locations.

•

Clustering high-dimensional data

• Conceptual clustering

• Consensus clustering

• Constrained clustering

• Data stream clustering

• Sequence clustering

• Spectral clustering

Techniques used in cluster analysis

• Artificial neural network (ANN)

• Nearest neighbor search

• Neighbourhood components analysis

• Latent class analysis

Data projection and preprocessing

• Dimension reduction

• Principal component analysis

• Multidimensional scaling

Other

• Cluster-weighted modeling

• Curse of dimensionality

• Determining the number of clusters in a data set

• Parallel coordinates

• Structured data analysis
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[39] Huth, R. et al. (2008). “Classifications of Atmospheric
Circulation Patterns: Recent Advances and Applications”
. Ann. N.Y. Acad. Sci. 1146: 105–152.

1.1.7 External links

• Data Mining at DMOZ

1.2 Hierarchical clustering

In data mining, hierarchical clustering (also called hi-
erarchical cluster analysis or HCA) is a method of
cluster analysis which seeks to build a hierarchy of clus-
ters. Strategies for hierarchical clustering generally fall
into two types: *[1]

• Agglomerative: This is a “bottom up”approach:
each observation starts in its own cluster, and pairs
of clusters are merged as one moves up the hierar-
chy.

• Divisive: This is a“top down”approach: all obser-
vations start in one cluster, and splits are performed
recursively as one moves down the hierarchy.

In general, the merges and splits are determined in a
greedy manner. The results of hierarchical clustering are
usually presented in a dendrogram.
In the general case, the complexity of agglomerative clus-
tering is O(n3) , which makes them too slow for large
data sets. Divisive clustering with an exhaustive search is
O(2n) , which is even worse. However, for some special
cases, optimal efficient agglomerative methods (of com-
plexityO(n2) ) are known: SLINK*[2] for single-linkage
and CLINK*[3] for complete-linkage clustering.

1.2.1 Cluster dissimilarity

In order to decide which clusters should be combined (for
agglomerative), or where a cluster should be split (for di-
visive), a measure of dissimilarity between sets of obser-
vations is required. In most methods of hierarchical clus-
tering, this is achieved by use of an appropriate metric (a
measure of distance between pairs of observations), and a
linkage criterion which specifies the dissimilarity of sets
as a function of the pairwise distances of observations in
the sets.

Metric

Further information: metric (mathematics)

The choice of an appropriate metric will influence the
shape of the clusters, as some elements may be close to
one another according to one distance and farther away
according to another. For example, in a 2-dimensional
space, the distance between the point (1,0) and the ori-
gin (0,0) is always 1 according to the usual norms, but
the distance between the point (1,1) and the origin (0,0)
can be 2 under Manhattan distance, √

2 under Euclidean
distance, or 1 under maximum distance.
Some commonly used metrics for hierarchical clustering
are:*[4]
For text or other non-numeric data, metrics such as the
Hamming distance or Levenshtein distance are often
used.
A review of cluster analysis in health psychology research
found that the most common distance measure in pub-
lished studies in that research area is the Euclidean dis-
tance or the squared Euclidean distance.

Linkage criteria

The linkage criterion determines the distance between
sets of observations as a function of the pairwise distances

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-86571-5
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1080%252F01969727408546059
https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
http://eecs.oregonstate.edu/research/multiclust/Evaluation-4.pdf
http://eecs.oregonstate.edu/research/multiclust/Evaluation-4.pdf
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/SIGKDD
https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.2307%252F2284239
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/2284239
https://www.dmoz.org/Computers/Software/Databases/Data_Mining
https://en.wikipedia.org/wiki/DMOZ
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Hierarchy
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Dendrogram
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
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between observations.
Some commonly used linkage criteria between two sets
of observations A and B are:*[5]*[6]
where d is the chosen metric. Other linkage criteria in-
clude:

• The sum of all intra-cluster variance.

• The decrease in variance for the cluster being
merged (Ward's criterion).*[7]

• The probability that candidate clusters spawn from
the same distribution function (V-linkage).

• The product of in-degree and out-degree on a k-
nearest-neighbor graph (graph degree linkage).*[8]

• The increment of some cluster descriptor (i.e., a
quantity defined for measuring the quality of a clus-
ter) after merging two clusters.*[9]*[10]*[11]

1.2.2 Discussion

Hierarchical clustering has the distinct advantage that any
valid measure of distance can be used. In fact, the obser-
vations themselves are not required: all that is used is a
matrix of distances.

1.2.3 Example for Agglomerative Cluster-
ing

For example, suppose this data is to be clustered, and the
Euclidean distance is the distance metric.
Cutting the tree at a given height will give a partitioning
clustering at a selected precision. In this example, cutting
after the second row of the dendrogram will yield clusters
{a} {b c} {d e} {f}. Cutting after the third row will yield
clusters {a} {b c} {d e f}, which is a coarser clustering,
with a smaller number but larger clusters.
The hierarchical clustering dendrogram would be as such:
This method builds the hierarchy from the individual ele-
ments by progressively merging clusters. In our example,
we have six elements {a} {b} {c} {d} {e} and {f}. The
first step is to determine which elements to merge in a
cluster. Usually, we want to take the two closest elements,
according to the chosen distance.
Optionally, one can also construct a distance matrix at
this stage, where the number in the i-th row j-th column
is the distance between the i-th and j-th elements. Then,
as clustering progresses, rows and columns are merged as
the clusters are merged and the distances updated. This is
a common way to implement this type of clustering, and
has the benefit of caching distances between clusters. A
simple agglomerative clustering algorithm is described in
the single-linkage clustering page; it can easily be adapted
to different types of linkage (see below).

a

b

c

d

e
f

Raw data

a b c d e

bc de

def

bcdef

abcdef

f

Traditional representation

Suppose we have merged the two closest elements b and
c, we now have the following clusters {a}, {b, c}, {d},
{e} and {f}, and want to merge them further. To do that,
we need to take the distance between {a} and {b c}, and
therefore define the distance between two clusters. Usu-
ally the distance between two clusters A and B is one of
the following:

• The maximum distance between elements of each
cluster (also called complete-linkage clustering):

max{ d(x, y) : x ∈ A, y ∈ B }.

• The minimum distance between elements of each
cluster (also called single-linkage clustering):

min{ d(x, y) : x ∈ A, y ∈ B }.

https://en.wikipedia.org/wiki/Ward%2527s_method
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Dendrogram
https://en.wikipedia.org/wiki/Distance_matrix
https://en.wikipedia.org/wiki/Single-linkage_clustering
https://en.wikipedia.org/wiki/Complete-linkage_clustering
https://en.wikipedia.org/wiki/Single-linkage_clustering
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• The mean distance between elements of each cluster
(also called average linkage clustering, used e.g. in
UPGMA):

1

|A| · |B|
∑
x∈A

∑
y∈B

d(x, y).

• The sum of all intra-cluster variance.

• The increase in variance for the cluster being merged
(Ward's method<ref name="*[7])

• The probability that candidate clusters spawn from
the same distribution function (V-linkage).

Each agglomeration occurs at a greater distance between
clusters than the previous agglomeration, and one can de-
cide to stop clustering either when the clusters are too far
apart to be merged (distance criterion) or when there is a
sufficiently small number of clusters (number criterion).

1.2.4 Software

Open Source Frameworks

• R has several functions for hierarchical clustering:
see CRAN Task View: Cluster Analysis & Finite
Mixture Models for more information.

• Cluster 3.0 provides a nice Graphical User Interface
to access to different clustering routines and is avail-
able for Windows, Mac OS X, Linux, Unix.

• ELKI includes multiple hierarchical clustering algo-
rithms, various linkage strategies and also includes
the efficient SLINK*[2] algorithm, flexible clus-
ter extraction from dendrograms and various other
cluster analysis algorithms.

• Octave, the GNU analog to MATLAB implements
hierarchical clustering in linkage function

• Orange, a free data mining software suite, module
orngClustering for scripting in Python, or cluster
analysis through visual programming.

• scikit-learn implements a hierarchical clustering.

• Weka includes hierarchical cluster analysis.

• fastCluster efficiently implements the seven most
widely used clustering schemes.

• SCaViS computing environment in Java that imple-
ments this algorithm.

Standalone implementations

• CrimeStat implements two hierarchical clustering
routines, a nearest neighbor (Nnh) and a risk-
adjusted(Rnnh).

• figue is a JavaScript package that implements some
agglomerative clustering functions (single-linkage,
complete-linkage, average-linkage) and functions to
visualize clustering output (e.g. dendrograms).

• hcluster is a Python implementation, based on
NumPy, which supports hierarchical clustering and
plotting.

• Hierarchical Agglomerative Clustering imple-
mented as C# visual studio project that includes real
text files processing, building of document-term
matrix with stop words filtering and stemming.

• MultiDendrograms An open source Java application
for variable-group agglomerative hierarchical clus-
tering, with graphical user interface.

• Graph Agglomerative Clustering (GAC) toolbox
implemented several graph-based agglomerative
clustering algorithms.

• Hierarchical Clustering Explorer provides tools for
interactive exploration of multidimensional data.

Commercial

• MATLAB includes hierarchical cluster analysis.

• SAS includes hierarchical cluster analysis.

• Mathematica includes a Hierarchical Clustering
Package.

• NCSS (statistical software) includes hierarchical
cluster analysis.

• SPSS includes hierarchical cluster analysis.

• Qlucore Omics Explorer includes hierarchical clus-
ter analysis.

• Stata includes hierarchical cluster analysis.

1.2.5 See also

• Statistical distance

• Brown clustering

• Cluster analysis

• CURE data clustering algorithm

• Dendrogram

• Determining the number of clusters in a data set
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https://en.wikipedia.org/wiki/Open_source
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https://en.wikipedia.org/wiki/Mathematica
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• Hierarchical clustering of networks

• Nearest-neighbor chain algorithm

• Numerical taxonomy

• OPTICS algorithm

• Nearest neighbor search

• Locality-sensitive hashing

1.2.6 Notes

[1] Rokach, Lior, and Oded Maimon. “Clustering meth-
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Springer US, 2005. 321-352.
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[3] D. Defays (1977).“An efficient algorithm for a complete
link method”. The Computer Journal (British Computer
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[4] “The DISTANCE Procedure: Proximity Measures”.
SAS/STAT 9.2 Users Guide. SAS Institute. Retrieved
2009-04-26.
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SAS/STAT 9.2 Users Guide. SAS Institute. Retrieved
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tering on a directed graph.”12th European Conference on
Computer Vision, Florence, Italy, October 7–13, 2012.
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[9] Zhang, et al. “Agglomerative clustering via maximum
incremental path integral.”Pattern Recognition (2013).

[10] Zhao, and Tang. “Cyclizing clusters via zeta function
of a graph."Advances in Neural Information Processing
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1.2.7 References and further reading

• Kaufman, L.; Rousseeuw, P.J. (1990). Finding
Groups in Data: An Introduction to Cluster Analy-
sis (1 ed.). New York: John Wiley. ISBN 0-471-
87876-6.

• Hastie, Trevor; Tibshirani, Robert; Friedman,
Jerome (2009). “14.3.12 Hierarchical clustering”
. The Elements of Statistical Learning (PDF) (2nd
ed.). New York: Springer. pp. 520–528. ISBN
0-387-84857-6. Retrieved 2009-10-20.

• Press, WH; Teukolsky, SA; Vetterling, WT; Flan-
nery, BP (2007).“Section 16.4. Hierarchical Clus-
tering by Phylogenetic Trees”. Numerical Recipes:
The Art of Scientific Computing (3rd ed.). New
York: Cambridge University Press. ISBN 978-0-
521-88068-8.

• Hierarchical Cluster Analysis

• Free statistical software. An overview of statistical
software and methods used in published microbio-
logical studies

1.3 Conceptual clustering

Conceptual clustering is a machine learning paradigm
for unsupervised classification developed mainly during
the 1980s. It is distinguished from ordinary data cluster-
ing by generating a concept description for each gener-
ated class. Most conceptual clustering methods are ca-
pable of generating hierarchical category structures; see
Categorization for more information on hierarchy. Con-
ceptual clustering is closely related to formal concept
analysis, decision tree learning, and mixture model learn-
ing.

1.3.1 Conceptual clustering vs. data clus-
tering

Conceptual clustering is obviously closely related to data
clustering; however, in conceptual clustering it is not only
the inherent structure of the data that drives cluster for-
mation, but also the Description language (disambigua-
tion) which is available to the learner. Thus, a statistically
strong grouping in the data may fail to be extracted by the
learner if the prevailing concept description language is
incapable of describing that particular regularity. In most
implementations, the description language has been lim-
ited to feature conjunction, although in COBWEB (see
"COBWEB" below), the feature language is probabilistic.
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1.3.2 List of published algorithms

A fair number of algorithms have been proposed for con-
ceptual clustering. Some examples are given below:

• CLUSTER/2 (Michalski & Stepp 1983)

• COBWEB (Fisher 1987)

• CYRUS (Kolodner 1983)

• GALOIS (Carpineto & Romano 1993),

• GCF (Talavera & Béjar 2001)

• INC (Hadzikadic & Yun 1989)

• ITERATE (Biswas, Weinberg & Fisher 1998),

• LABYRINTH (Thompson & Langley 1989)

• SUBDUE (Jonyer, Cook & Holder 2001).

• UNIMEM (Lebowitz 1987)

• WITT (Hanson & Bauer 1989),

More general discussions and reviews of conceptual clus-
tering can be found in the following publications:

• Michalski (1980)

• Gennari, Langley, & Fisher (1989)

• Fisher & Pazzani (1991)

• Fisher & Langley (1986)

• Stepp & Michalski (1986)

1.3.3 Example: A basic conceptual clus-
tering algorithm

This section discusses the rudiments of the conceptual
clustering algorithm COBWEB. There are many other al-
gorithms using different heuristics and "category good-
ness" or category evaluation criteria, but COBWEB is
one of the best known. The reader is referred to the
bibliography for other methods.

Knowledge representation

The COBWEB data structure is a hierarchy (tree)
wherein each node represents a given concept. Each con-
cept represents a set (actually, a multiset or bag) of ob-
jects, each object being represented as a binary-valued
property list. The data associated with each tree node
(i.e., concept) are the integer property counts for the ob-
jects in that concept. For example (see figure), let a con-
cept C1 contain the following four objects (repeated ob-
jects being permitted).

Sample COBWEB knowledge representation, probabilistic con-
cept hierarchy. Blue boxes list actual objects, purple boxes list
attribute counts. See text for details. Note: The diagram is in-
tended to be illustrative only of COBWEB's data structure; it does
not necessarily represent a“good”concept tree, or one that COB-
WEB would actually construct from real data.

1. [1 0 1]

2. [0 1 1]

3. [0 1 0]

4. [0 1 1]

The three properties might be, for example, [is_male,
has_wings, is_nocturnal]. Then what is stored at this con-
cept node is the property count [1 3 3], indicating that 1 of
the objects in the concept is male, 3 of the objects have
wings, and 3 of the objects are nocturnal. The concept
description is the category-conditional probability (likeli-
hood) of the properties at the node. Thus, given that an
object is a member of category (concept) C1 , the likeli-
hood that it is male is 1/4 = 0.25 . Likewise, the like-
lihood that the object has wings and likelihood that the
object is nocturnal or both is 3/4 = 0.75 . The concept
description can therefore simply be given as [.25 .75 .75],
which corresponds to the C1 -conditional feature likeli-
hood, i.e., p(x|C1) = (0.25, 0.75, 0.75) .
The figure to the right shows a concept tree with five con-
cepts. C0 is the root concept, which contains all ten ob-
jects in the data set. Concepts C1 and C2 are the children
of C0 , the former containing four objects, and the later
containing six objects. Concept C2 is also the parent of
concepts C3 , C4 , and C5 , which contain three, two, and
one object, respectively. Note that each parent node (rel-
ative superordinate concept) contains all the objects con-
tained by its child nodes (relative subordinate concepts).
In Fisher's (1987) description of COBWEB, he indicates
that only the total attribute counts (not conditional proba-
bilities, and not object lists) are stored at the nodes. Any
probabilities are computed from the attribute counts as
needed.

https://en.wikipedia.org/wiki/Cobweb_(clustering)
https://en.wikipedia.org/wiki/Category_goodness
https://en.wikipedia.org/wiki/Category_goodness
https://en.wikipedia.org/wiki/Conceptual%2520clustering#References
https://en.wikipedia.org/wiki/Multiset


1.3. CONCEPTUAL CLUSTERING 15

The COBWEB language The description language of
COBWEB is a “language”only in a loose sense, be-
cause being fully probabilistic it is capable of describing
any concept. However, if constraints are placed on the
probability ranges which concepts may represent, then a
stronger language is obtained. For example, we might
permit only concepts wherein at least one probability dif-
fers from 0.5 by more than α . Under this constraint,
with α = 0.3 , a concept such as [.6 .5 .7] could not be
constructed by the learner; however a concept such as [.6
.5 .9] would be accessible because at least one probability
differs from 0.5 by more than α . Thus, under constraints
such as these, we obtain something like a traditional con-
cept language. In the limiting case where α = 0.5 for ev-
ery feature, and thus every probability in a concept must
be 0 or 1, the result is a feature language base on con-
junction; that is, every concept that can be represented
can then be described as a conjunction of features (and
their negations), and concepts that cannot be described in
this way cannot be represented.

Evaluation criterion

In Fisher's (1987) description of COBWEB, the mea-
sure he uses to evaluate the quality of the hierarchy is
Gluck and Corter's (1985) category utility (CU) measure,
which he re-derives in his paper. The motivation for the
measure is highly similar to the "information gain" mea-
sure introduced by Quinlan for decision tree learning. It
has previously been shown that the CU for feature-based
classification is the same as the mutual information be-
tween the feature variables and the class variable (Gluck
& Corter, 1985; Corter & Gluck, 1992), and since this
measure is much better known, we proceed here with mu-
tual information as the measure of category“goodness”
.
What we wish to evaluate is the overall utility of grouping
the objects into a particular hierarchical categorization
structure. Given a set of possible classification structures,
we need to determine whether one is better than another.

1.3.4 References

• Biswas, G.; Weinberg, J. B.; Fisher, Douglas H.
(1998).“Iterate: A conceptual clustering algorithm
for data mining”. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Re-
views 28: 100–111.

• Carpineto, C.; Romano, G. (1993). “Galois: An
order-theoretic approach to conceptual clustering”
. Proceedings of 10th International Conference on
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quisition via incremental conceptual cluster-
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1.3.5 External links

• Bibliography of conceptual clustering

• Working python implementation of COBWEB

1.4 Consensus clustering

Clustering is the assignment of objects into groups
(called clusters) so that objects from the same cluster are
more similar to each other than objects from different
clusters.*[1] Often similarity is assessed according to a
distance measure. Clustering is a common technique for
statistical data analysis, which is used in many fields, in-
cluding machine learning, data mining, pattern recogni-
tion, image analysis*[2]*[3] and bioinformatics.
Consensus clustering has emerged as an important elab-
oration of the classical clustering problem. Consensus
clustering, also called aggregation of clustering (or parti-
tions), refers to the situation in which a number of differ-
ent (input) clusterings have been obtained for a particular
dataset and it is desired to find a single (consensus) clus-
tering which is a better fit in some sense than the existing
clusterings.*[4]*[5] Consensus clustering is thus the prob-
lem of reconciling clustering information about the same
data set coming from different sources or from different
runs of the same algorithm. When cast as an optimization
problem, consensus clustering is known as median parti-
tion, and has been shown to be NP-complete.*[6] Con-
sensus clustering for unsupervised learning is analogous
to ensemble learning in supervised learning.*[5]

1.4.1 Issues with existing clustering tech-
niques

• Current clustering techniques do not address all the
requirements adequately.

• Dealing with large number of dimensions and large
number of data items can be problematic because of
time complexity;

• Effectiveness of the method depends on the defini-
tion of “distance”(for distance based clustering)

• If an obvious distance measure doesn t̓ exist we must
“define”it, which is not always easy, especially in

multidimensional spaces.

• The result of the clustering algorithm (that in many
cases can be arbitrary itself) can be interpreted in
different ways.

1.4.2 Justification for using consensus
clustering

There are potential shortcomings for all existing cluster-
ing techniques. This may cause interpretation of results
to become difficult, especially when there is no knowl-
edge about the number of clusters. Clustering methods
are also very sensitive to the initial clustering settings,
which can cause non-significant data to be amplified in
non-reiterative methods. An extremely important issue in
cluster analysis is the validation of the clustering results,
that is, how to gain confidence about the significance of
the clusters provided by the clustering technique (cluster
numbers and cluster assignments). Lacking an external
objective criterion (the equivalent of a known class la-
bel in supervised analysis), this validation becomes some-
what elusive. Iterative descent clustering methods, such
as the SOM and K-means clustering circumvent some
of the shortcomings of Hierarchical clustering by pro-
viding for univocally defined clusters and cluster bound-
aries. Consensus clustering provides a method that rep-
resents the consensus across multiple runs of a cluster-
ing algorithm, to determine the number of clusters in the
data, and to assess the stability of the discovered clusters.
The method can also be used to represent the consensus
over multiple runs of a clustering algorithm with random
restart (such as K-means, model-based Bayesian cluster-
ing, SOM, etc.), so as to account for its sensitivity to the
initial conditions. It can provide data for a visualization
tool to inspect cluster number, membership, and bound-
aries. However, they lack the intuitive and visual appeal
of Hierarchical clustering dendrograms, and the number
of clusters must be chosen a priori.

1.4.3 Over-interpretation potential of con-
sensus clustering

Consensus clustering can be a powerful tool for identify-
ing clusters, but it needs to be applied with caution. It
has been shown that consensus clustering is able to claim
apparent stability of chance partitioning of null datasets
drawn from a unimodal distribution, and thus has the po-
tential to lead to over-interpretation of cluster stability
in a real study.*[7]*[8] If clusters are not well separated,
consensus clustering could lead one to conclude apparent
structure when there is none, or declare cluster stability
when it is subtle. To reduce the false positive potential in
clustering samples (observations), Şenbabaoğlu et al *[7]
recommends (1) doing a formal test of cluster strength us-
ing simulated unimodal data with the same feature-space
correlation structure as in the empirical data, (2) not re-
lying solely on the consensus matrix heatmap to declare
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PAC measure (proportion of ambiguous clustering) explained.
Optimal K is the K with lowest PAC value.

the existence of clusters, or to estimate optimal K, (3) ap-
plying the proportion of ambiguous clustering (PAC) as
a simple yet powerful method to infer optimal K.
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Inferred optimal K values of different methods on simulated
datasets with known number of clusters and known degree of
separation between clusters. Consensus clustering followed by
PAC outperforms other methods.

PAC: In the CDF curve of a consensus matrix, the lower
left portion represents sample pairs rarely clustered to-
gether, the upper right portion represents those almost
always clustered together, whereas the middle segment
represent those with ambiguous assignments in different
clustering runs. The “proportion of ambiguous cluster-
ing”(PAC) measure quantifies this middle segment; and
is defined as the fraction of sample pairs with consensus
indices falling in the interval (u1, u2) ∈ [0, 1] where u1 is
a value close to 0 and u2 is a value close to 1 (for instance
u1=0.1 and u2=0.9). A low value of PAC indicates a flat
middle segment, and a low rate of discordant assignments
across permuted clustering runs. We can therefore infer
the optimal number of clusters by the K value having the

lowest PAC.
In simulated datasets with known number of clusters,
consensus clustering+PAC has been shown to perform
better than several other commonly used methods such as
consensus clustering+Δ(K), CLEST, GAP, and silhouette
width.*[7]*[8]

1.4.4 Related work

1. Clustering ensemble (Strehl andGhosh): They con-
sidered various formulations for the problem, most of
which reduce the problem to a hyper-graph partitioning
problem. In one of their formulations they considered the
same graph as in the correlation clustering problem. The
solution they proposed is to compute the best k-partition
of the graph, which does not take into account the penalty
for merging two nodes that are far apart.
2. Clustering aggregation (Fern and Brodley): They
applied the clustering aggregation idea to a collection
of soft clusterings they obtained by random projections.
They used an agglomerative algorithm and did not penal-
ize for merging dissimilar nodes.
3. Fred and Jain: They proposed to use a single link-
age algorithm to combine multiple runs of the k-means
algorithm.
4. Dana Cristofor and Dan Simovici: They observed
the connection between clustering aggregation and clus-
tering of categorical data. They proposed information
theoretic distance measures, and they propose genetic al-
gorithms for finding the best aggregation solution.
5. Topchy et al.: They defined clustering aggregation as
a maximum likelihood estimation problem, and they pro-
posed an EM algorithm for finding the consensus cluster-
ing.
6. Abu-Jamous et al.: They proposed their binarization
of consensus partition matrices (Bi-CoPaM) method to
enhance ensemble clustering in two major aspects. The
first is to consider clustering the same set of objects by
various clustering methods as well as by considering their
features measured in multiple datasets; this seems per-
fectly relevant in the context of microarray gene expres-
sion clustering, which is the context they initially pro-
posed the method in. The second aspect is the format
of the final result; based on the consistency of inclusion
of a data object in the same cluster by the multiple sin-
gle clustering results, they allowed any single data object
to have any of the three eventualities; to be exclusively
assigned to one and only one cluster, to be unassigned
from all clusters, or to be simultaneously assigned to mul-
tiple clusters at the same time. They made it possible
to produce, in a perfectly tunable way, wide overlapping
clusters, tight specific clusters, as well as complementary
clusters. Therefore, they proposed their work as a new
paradigm of clustering rather than merely a new ensem-
ble clustering method.*[5]*[9]

https://en.wikipedia.org/wiki/Binarization_of_consensus_partition_matrices
https://en.wikipedia.org/wiki/Binarization_of_consensus_partition_matrices
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1.4.5 Hard ensemble clustering

This approach by Strehl and Ghosh introduces the prob-
lem of combining multiple partitionings of a set of ob-
jects into a single consolidated clustering without access-
ing the features or algorithms that determined these par-
titionings. They discuss three approaches towards solving
this problem to obtain high quality consensus functions.
Their techniques have low computational costs and this
makes it feasible to evaluate each of the techniques dis-
cussed below and arrive at the best solution by comparing
the results against the objective function.

Efficient consensus functions

1. Cluster-based similarity partitioning algorithm
(CSPA)
In CSPA the similarity between two data-points is defined
to be directly proportional to number of constituent clus-
terings of the ensemble in which they are clustered to-
gether. The intuition is that the more similar two data-
points are the higher is the chance that constituent clus-
terings will place them in the same cluster. CSPA is the
simplest heuristic, but its computational and storage com-
plexity are both quadratic in n. The following two meth-
ods are computationally less expensive:
2. Hyper-graph partitioning algorithm (HGPA)
The HGPA algorithm takes a very different approach
to finding the consensus clustering than the previous
method. The cluster ensemble problem is formulated as
partitioning the hypergraph by cutting a minimal number
of hyperedges. They make use of hMETIS which is a
hypergraph partitioning package system.
3. Meta-clustering algorithm (MCLA)
The meta-cLustering algorithm (MCLA) is based on
clustering clusters. First, it tries to solve the cluster cor-
respondence problem and then uses voting to place data-
points into the final consensus clusters. The cluster cor-
respondence problem is solved by grouping the clusters
identified in the individual clusterings of the ensemble.
The clustering is performed using METIS and Spectral
clustering.

1.4.6 Soft clustering ensembles

Punera and Ghosh extended the idea of hard clustering
ensembles to the soft clustering scenario. Each instance
in a soft ensemble is represented by a concatenation of r
posterior membership probability distributions obtained
from the constituent clustering algorithms. We can de-
fine a distance measure between two instances using the
Kullback–Leibler (KL) divergence, which calculates the

“distance”between two probability distributions.
1. sCSPA

sCSPA extends CSPA by calculating a similarity matrix.
Each object is visualized as a point in dimensional space,
with each dimension corresponding to probability of its
belonging to a cluster. This technique first transforms the
objects into a label-space and then interprets the dot prod-
uct between the vectors representing the objects as their
similarity.
2. sMCLA
sMCLA extends MCLA by accepting soft clusterings as
input. sMCLAʼs working can be divided into the fol-
lowing steps:

• Construct Soft Meta-Graph of Clusters

• Group the Clusters into Meta-Clusters

• Collapse Meta-Clusters using Weighting

• Compete for Objects

3. sHBGF
HBGF represents the ensemble as a bipartite graph with
clusters and instances as nodes, and edges between the
instances and the clusters they belong to.*[10] This ap-
proach can be trivially adapted to consider soft ensem-
bles since the graph partitioning algorithm METIS ac-
cepts weights on the edges of the graph to be partitioned.
In sHBGF, the graph has n + t vertices, where t is the total
number of underlying clusters.

1.4.7 Tunable-tightness partitions

In this different form of clustering, each data object is
allowed to be exclusively assigned to one and only one
cluster, to be unassigned from all clusters, or to be simul-
taneously assigned to multiple clusters, in a completely
tunable way.*[5] In some applications like gene cluster-
ing, this matches the biological reality that many of the
genes considered for clustering in a particular gene dis-
covery study might be irrelevant to the case of study in
hand and should be ideally not assigned to any of the out-
put clusters, moreover, any single gene can be participat-
ing in multiple processes and would be useful to be in-
cluded in multiple clusters simultaneously. This has been
proposed in the recent method of the binarization of con-
sensus partition matrices (Bi-CoPaM)*[5] and is being
used currently in the field of bioinformatics.*[9]
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1.5 Sequence clustering

In bioinformatics, sequence clustering algorithms at-
tempt to group biological sequences that are some-
how related. The sequences can be either of genomic,
"transcriptomic" (ESTs) or protein origin. For pro-
teins, homologous sequences are typically grouped into
families. For EST data, clustering is important to group
sequences originating from the same gene before the
ESTs are assembled to reconstruct the original mRNA.
Some clustering algorithms use single-linkage cluster-
ing, constructing a transitive closure of sequences with
a similarity over a particular threshold. UCLUST*[1]
and CD-HIT*[2] use a greedy algorithm that identifies
a representative sequence for each cluster and assigns a
new sequence to that cluster if it is sufficiently similar to
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the representative; if a sequence is not matched then it
becomes the representative sequence for a new cluster.
The similarity score is often based on sequence align-
ment. Sequence clustering is often used to make a non-
redundant set of representative sequences.
Sequence clusters are often synonymous with (but not
identical to) protein families. Determining a represen-
tative tertiary structure for each sequence cluster is the
aim of many structural genomics initiatives.

1.5.1 Sequence clustering algorithms and
packages

• UCLUST in USEARCH*[1]

• CD-HIT*[2]

• nrdb90.pl*[3]

• TribeMCL: a method for clustering proteins into re-
lated groups*[4]

• BAG: a graph theoretic sequence clustering algo-
rithm*[5]

• JESAM: Open source parallel scalable DNA align-
ment engine with optional clustering software com-
ponent

• UICluster: Parallel Clustering of EST (Gene) Se-
quences

• BLASTClust single-linkage clustering with BLAST

• (Multi)netclust: fast and memory-efficient detection
of connected clusters in (multi-parametric) data net-
works*[6]

• Clusterer: extendable java application for sequence
grouping and cluster analyses

• PATDB: a program for rapidly identifying perfect
substrings

• nrdb: a program for merging trivially redundant
(identical) sequences

• CluSTr: A single-linkage protein sequence cluster-
ing database from Smith-Waterman sequence sim-
ilarities; covers over 7 mln sequences including
UniProt and IPI

• ICAtools - original (ancient) DNA clustering pack-
age with many algorithms useful for artifact discov-
ery or EST clustering

• Virus Orthologous Clusters: A viral protein se-
quence clustering database; contains all predicted
genes from eleven virus families organized into or-
tholog groups by BLASTP similarity

• Skipredudant EMBOSS tool to remove redundant
sequences from a set

1.5.2 Non-redundant sequence databases

• PISCES: A Protein Sequence Culling Server*[7]

• RDB90*[3]

• UniRef: A non-redundant UniProt sequence
database*[8]

1.5.3 See also

• Cluster analysis
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1.6 Data stream clustering

In computer science, data stream clustering is defined
as the clustering of data that arrive continuously such
as telephone records, multimedia data, financial trans-
actions etc. Data stream clustering is usually studied as
a streaming algorithm and the objective is, given a se-
quence of points, to construct a good clustering of the
stream, using a small amount of memory and time.

1.6.1 History

Data stream clustering has recently attracted attention
for emerging applications that involve large amounts of
streaming data. For clustering, k-means is a widely used
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heuristic but alternate algorithms have also been devel-
oped such as k-medoids, CURE and the popular BIRCH.
For data streams, one of the first results appeared in
1980*[1] but the model was formalized in 1998.*[2]

1.6.2 Definition

The problem of data stream clustering is defined as:
Input: a sequence of n points in metric space and an in-
teger k.
Output: k centers in the set of the n points so as to mini-
mize the sum of distances from data points to their closest
cluster centers.
This is the streaming version of the k-median problem.

1.6.3 Algorithms

STREAM

STREAM is an algorithm for clustering data streams de-
scribed by Guha, Mishra, Motwani and O'Callaghan*[3]
which achieves a constant factor approximation for the
k-Median problem in a single pass and using small space.
Theorem: STREAM can solve the k-Median problem on
a data stream in a single pass, with time O(n*1+e) and
space θ(n*ε) up to a factor 2*O(1/e), where n the number
of points and e<1/2.
To understand STREAM, the first step is to show that
clustering can take place in small space (not caring about
the number of passes). Small-Space is a divide-and-
conquer algorithm that divides the data, S, into ℓ pieces,
clusters each one of them (using k-means) and then clus-
ters the centers obtained.

Small-Space Algorithm representation

Algorithm Small-Space(S)

1. Divide S into ℓ disjoint pieces X1,...,X
ℓ
.

2. For each i, find O(k) centers in Xᵢ. Assign each point
in Xi to its closest center.

3. Let X' be the O( ℓ k) centers obtained in (2),
where each center c is weighted by the number
of points assigned to it.

4. Cluster X' to find k centers.

Where, if in Step 2 we run a bicriteria (a,b)-
approximation algorithm which outputs at most ak me-
dians with cost at most b times the optimum k-Median
solution and in Step 4 we run a c-approximation algo-
rithm then the approximation factor of Small-Space() al-
gorithm is 2c(1+2b)+2b. We can also generalize Small-
Space so that it recursively calls itself i times on a suc-
cessively smaller set of weighted centers and achieves a
constant factor approximation to the k-median problem.
The problem with the Small-Space is that the number of
subsets ℓ that we partition S into is limited, since it has
to store in memory the intermediate medians in X. So,
if M is the size of memory, we need to partition S into
ℓ subsets such that each subset fits in memory, (n/ ℓ )
and so that the weighted ℓ k centers also fit in memory,
ℓ k<M''. But such an <math>\ell</math> may not
always exist.
The STREAM algorithm solves the problem of storing in-
termediate medians and achieves better running time and
space requirements. The algorithm works as follows:*[3]

1. Input the first m points; using the randomized algo-
rithm presented in*[3] reduce these to O(k) (say 2k)
points.

2. Repeat the above till we have seen m2/(2k) of the
original data points. We now have m intermediate
medians.

3. Using a local search algorithm, cluster these m first-
level medians into 2k second-level medians and pro-
ceed.

4. In general, maintain at most m level-i medians, and,
on seeingm, generate 2k level-i+ 1 medians, with the
weight of a new median as the sum of the weights of
the intermediate medians assigned to it.

5. When we have seen all the original data points, we
cluster all the intermediate medians into k final me-
dians, using the primal dual algorithm.*[4]

Other Algorithms

Other well-known algorithms used for data stream clus-
tering are:

• BIRCH:*[5] builds a hierarchical data structure to
incrementally cluster the incoming points using the
available memory and minimizing the amount of
I/O required. The complexity of the algorithm is
O(N) since one pass suffices to get a good clustering
(though, results can be improved by allowing several
passes).
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• COBWEB:*[6]*[7] is an incremental clustering
technique that keeps a hierarchical clustering model
in the form of a classification tree. For each new
point. COBWEB descends the tree, updates the
nodes along the way and looks for the best node to
put the point on (using a category utility function).

• C2ICM:*[8] builds a flat partitioning clustering
structure by selecting some objects as cluster
seeds/initiators and a non-seed is assigned to the
seed that provides the highest coverage, addition
of new objects can introduce new seeds and falsify
some existing old seeds, during incremental cluster-
ing new objects and the members of the falsified
clusters are assigned to one of the existing new/old
seeds.
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1.7 Constrained clustering

In computer science, constrained clustering is a class
of semi-supervised learning algorithms. Typically, con-
strained clustering incorporates either a set of must-link
constraints, cannot-link constraints, or both, with a Data

clustering algorithm. Both a must-link and a cannot-
link constraint define a relationship between two data in-
stances. A must-link constraint is used to specify that
the two instances in the must-link relation should be as-
sociated with the same cluster. A cannot-link constraint
is used to specify that the two instances in the cannot-
link relation should not be associated with the same clus-
ter. These sets of constraints acts as a guide for which a
constrained clustering algorithm will attempt to find clus-
ters in a data set which satisfy the specified must-link and
cannot-link constraints. Some constrained clustering al-
gorithms will abort if no such clustering exists which sat-
isfies the specified constraints. Others will try to mini-
mize the amount of constraint violation should it be im-
possible to find a clustering which satisfies the constraints.
Examples of constrained clustering algorithms include:

• COP K-means *[1]

• PCKmeans

• CMWK-Means *[2]
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1.8 Fuzzy clustering

Data clustering is the process of dividing data elements
into classes or clusters so that items in the same class
are as similar as possible, and items in different classes
are as dissimilar as possible. Depending on the nature
of the data and the purpose for which clustering is be-
ing used, different measures of similarity may be used
to place items into classes, where the similarity measure
controls how the clusters are formed. Some examples of
measures that can be used as in clustering include dis-
tance, connectivity, and intensity.
In hard clustering, data is divided into distinct clusters,
where each data element belongs to exactly one cluster.
In fuzzy clustering (also referred to as soft clustering),
data elements can belong to more than one cluster, and as-
sociated with each element is a set of membership levels.
These indicate the strength of the association between
that data element and a particular cluster. Fuzzy cluster-
ing is a process of assigning these membership levels, and
then using them to assign data elements to one or more
clusters.
One of the most widely used fuzzy clustering algorithms
is the Fuzzy C-Means (FCM) Algorithm (Bezdek 1981).
The FCM algorithm attempts to partition a finite collec-
tion of n elements X = {x1, ..., xn} into a collection
of c fuzzy clusters with respect to some given criterion.
Given a finite set of data, the algorithm returns a list of
c cluster centres C = {c1, ..., cc} and a partition matrix
W = wi,j ∈ [0, 1], i = 1, ..., n, j = 1, ..., c , where
each element wij tells the degree to which element xi
belongs to cluster cj . Like the K-means clustering, the
FCM aims to minimize an objective function:

arg min
C

n∑
i=1

c∑
j=1

wm
ij ∥xi − cj∥

2
,

where:

wij =
1∑c

k=1

(
∥xi−cj∥
∥xi−ck∥

) 2
m−1

.

This differs from the k-means objective function by the
addition of the membership values wij and the fuzzifier
m ∈ R , with m ≥ 1 . The fuzzifier m determines
the level of cluster fuzziness. A large m results in smaller
memberships wij and hence, fuzzier clusters. In the limit
m = 1 , the memberships wij converge to 0 or 1, which
implies a crisp partitioning. In the absence of experimen-
tation or domain knowledge, m is commonly set to 2.

1.8.1 Fuzzy c-means clustering

In fuzzy clustering, every point has a degree of belonging
to clusters, as in fuzzy logic, rather than belonging com-
pletely to just one cluster. Thus, points on the edge of a
cluster, may be in the cluster to a lesser degree than points
in the center of cluster. An overview and comparison of
different fuzzy clustering algorithms is available.*[1]
Any point x has a set of coefficients giving the degree of
being in the kth cluster wk(x). With fuzzy c-means, the
centroid of a cluster is the mean of all points, weighted
by their degree of belonging to the cluster:

ck =

∑
x wk(x)

m
x∑

x wk(x)
m .

The degree of belonging, wk(x), is related inversely to the
distance from x to the cluster center as calculated on the
previous pass. It also depends on a parameter m that con-
trols how much weight is given to the closest center. The
fuzzy c-means algorithm is very similar to the k-means
algorithm:*[2]

• Choose a number of clusters.

• Assign randomly to each point coefficients for being
in the clusters.

• Repeat until the algorithm has converged (that is,
the coefficients' change between two iterations is no
more than ε , the given sensitivity threshold) :

• Compute the centroid for each cluster, using
the formula above.
• For each point, compute its coefficients of be-

ing in the clusters, using the formula above.
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The algorithm minimizes intra-cluster variance as well,
but has the same problems as k-means; the minimum is
a local minimum, and the results depend on the initial
choice of weights.
Using a mixture of Gaussians along with the expectation-
maximization algorithm is a more statistically formalized
method which includes some of these ideas: partial mem-
bership in classes.
Another algorithm closely related to Fuzzy C-Means is
Soft K-means.
Fuzzy c-means has been a very important tool for im-
age processing in clustering objects in an image. In the
70's, mathematicians introduced the spatial term into the
FCM algorithm to improve the accuracy of clustering un-
der noise.*[3]

1.8.2 See also

• FLAME Clustering

• Cluster Analysis

• Expectation-maximization algorithm (a similar, but
more statistically formalized method)
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1.8.4 External links

• Fuzzy Clustering in Wolfram Research

• Extended Fuzzy Clustering Algorithms by Kaymak,
U. and Setnes, M.

• Fuzzy Clustering in C++ and Boost by Antonio Gulli

• Concise description with examples

1.9 Spectral clustering

In multivariate statistics and the clustering of data, spec-
tral clustering techniques make use of the spectrum

(eigenvalues) of the similarity matrix of the data to per-
form dimensionality reduction before clustering in fewer
dimensions. The similarity matrix is provided as an input
and consists of a quantitative assessment of the relative
similarity of each pair of points in the dataset.
In application to image segmentation, spectral clustering
is known as segmentation-based object categorization.

1.9.1 Algorithms

Given an enumerated set of data points, the similarity
matrix may be defined as a symmetric matrix A , where
Aij ≥ 0 represents a measure of the similarity between
data points with indexes i and j .
One spectral clustering technique is the normalized cuts
algorithm or Shi–Malik algorithm introduced by Jianbo
Shi and Jitendra Malik,*[1] commonly used for image
segmentation. It partitions points into two sets (B1, B2)
based on the eigenvector v corresponding to the second-
smallest eigenvalue of the symmetric normalized Lapla-
cian defined as

Lnorm := I −D−1/2AD−1/2

where D is the diagonal matrix

Dii =
∑
j

Aij .

A mathematically equivalent algorithm *[2] takes the
eigenvector corresponding to the largest eigenvalue of the
random walk normalized Laplacian matrix P = D−1A .
Another possibility is to use the Laplacian matrix defined
as

L := D −A

rather than the symmetric normalized Laplacian matrix.
Partitioning may be done in various ways, such as by com-
puting the median m of the components of the second
smallest eigenvector v , and placing all points whose com-
ponent in v is greater than m in B1 , and the rest in B2 .
The algorithm can be used for hierarchical clustering by
repeatedly partitioning the subsets in this fashion.
Alternatively to computing just one eigenvector, k
eigenvectors for some k, are computed, and then another
algorithm (e.g. k-means clustering) is used to cluster
points by their respective k components in these eigen-
vectors.
The efficiency of spectral clustering may be improved if
the solution to the corresponding eigenvalue problem is
performed in a matrix-free fashion, i.e., without explicitly
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manipulating or even computing the similarity matrix, as,
e.g., in the Lanczos algorithm.
For large-sized graphs, the second eigenvalue of the (nor-
malized) graph Laplacian matrix is often ill-conditioned,
leading to slow convergence of iterative eigenvalue
solvers. Preconditioning is a key technology accelerat-
ing the convergence, e.g., in the matrix-free LOBPCG
method. Spectral clustering has been successfully applied
on large graphs by first identifying their community struc-
ture, and then clustering communities.*[3]
Spectral clustering is closely related to Nonlinear dimen-
sionality reduction, and dimension reduction techniques
such as locally-linear embedding can be used to reduce
errors from noise or outliers.*[4]

1.9.2 Relationship with k-means

The kernel k-means problem is an extension of the k-
means problem where the input data points are mapped
non-linearly into a higher-dimensional feature space via
a kernel function k(xi, xj) = ϕT (xi)ϕ(xj) . The
weighted kernel k-means problem further extends this
problem by defining a weight wr for each cluster as the
reciprocal of the number of elements in the cluster,

max
{Cs}

k∑
r=1

wr

∑
xi,xj∈Cr

k(xi, xj).

Suppose F is a matrix of the normalizing coefficients for
each point for each clusterFij = wr if i, j ∈ Cr and zero
otherwise. Suppose K is the kernel matrix for all points.
The weighted kernel k-means problem with n points and
k clusters is given as,

max
F

trace (KF )

such that,

F = Gn×kG
T
n×k

GTG = I

such that rank(G) = k . In addition, there are identity
constrains on F given by,

F · I = I

where I represents a vector of ones.

FT I = I

This problem can be recast as,

max
G

trace
(
GTG

)
.

This problem is equivalent to the spectral clustering prob-
lem when the identity constraints on F are relaxed. In
particular, the weighted kernel k-means problem can be
reformulated as a spectral clustering (graph partitioning)
problem and vice versa. The output of the algorithms
are eigenvectors which do not satisfy the identity require-
ments for indicator variables defined by F . Hence, post-
processing of the eigenvectors is required for the equiva-
lence between the problems.*[5] Transforming the spec-
tral clustering problem into a weighted kernel k-means
problem greatly reduces the computational burden.*[6]

1.9.3 See also

• Affinity propagation

• Kernel principal component analysis

• Cluster analysis

• Spectral graph theory
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Chapter 2

General

2.1 Determining the number of
clusters in a data set

Determining the number of clusters in a data set, a
quantity often labeled k as in the k-means algorithm, is
a frequent problem in data clustering, and is a distinct
issue from the process of actually solving the clustering
problem.
For a certain class of clustering algorithms (in particular
k-means, k-medoids and Expectation-maximization algo-
rithm), there is a parameter commonly referred to as k
that specifies the number of clusters to detect. Other algo-
rithms such as DBSCAN and OPTICS algorithm do not
require the specification of this parameter; hierarchical
clustering avoids the problem altogether.
The correct choice of k is often ambiguous, with inter-
pretations depending on the shape and scale of the distri-
bution of points in a data set and the desired clustering
resolution of the user. In addition, increasing k without
penalty will always reduce the amount of error in the re-
sulting clustering, to the extreme case of zero error if each
data point is considered its own cluster (i.e., when k equals
the number of data points, n). Intuitively then, the optimal
choice of k will strike a balance between maximum com-
pression of the data using a single cluster, and maximum
accuracy by assigning each data point to its own cluster.
If an appropriate value of k is not apparent from prior
knowledge of the properties of the data set, it must be
chosen somehow. There are several categories of meth-
ods for making this decision.

2.1.1 Rule of thumb

One simple rule of thumb sets the number to*[1]*:365

k ≈
√

n/2

with n as the number of objects (data points).

Explained Variance. The“elbow”is indicated by the red circle.
The number of clusters chosen should therefore be 4.

2.1.2 The Elbow Method

Another method looks at the percentage of variance ex-
plained as a function of the number of clusters: One
should choose a number of clusters so that adding an-
other cluster doesn't give much better modeling of the
data. More precisely, if one plots the percentage of vari-
ance explained by the clusters against the number of clus-
ters, the first clusters will add much information (ex-
plain a lot of variance), but at some point the marginal
gain will drop, giving an angle in the graph. The num-
ber of clusters is chosen at this point, hence the “el-
bow criterion”. This “elbow”cannot always be un-
ambiguously identified.*[2] Percentage of variance ex-
plained is the ratio of the between-group variance to the
total variance, also known as an F-test. A slight variation
of this method plots the curvature of the within group
variance.*[3] The method can be traced to speculation
by Robert L. Thorndike in 1953.*[4]

2.1.3 Information Criterion Approach

Another set of methods for determining the number of
clusters are information criteria, such as the Akaike in-
formation criterion (AIC), Bayesian information criterion
(BIC), or the Deviance information criterion (DIC) ̶if
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it is possible to make a likelihood function for the clus-
tering model. For example: The k-means model is “al-
most”a Gaussian mixture model and one can construct a
likelihood for the Gaussian mixture model and thus also
determine information criterion values.*[5]

2.1.4 An Information Theoretic Ap-
proach*[6]

Rate distortion theory has been applied to choosing k
called the“jump”method, which determines the number
of clusters that maximizes efficiency while minimizing
error by information theoretic standards. The strategy of
the algorithm is to generate a distortion curve for the in-
put data by running a standard clustering algorithm such
as k-means for all values of k between 1 and n, and com-
puting the distortion (described below) of the resulting
clustering. The distortion curve is then transformed by
a negative power chosen based on the dimensionality of
the data. Jumps in the resulting values then signify rea-
sonable choices for k, with the largest jump representing
the best choice.
The distortion of a clustering of some input data is for-
mally defined as follows: Let the data set be modeled
as a p-dimensional random variable, X, consisting of
a mixture distribution of G components with common
covariance, Γ . If we let c1...cK be a set of K cluster
centers, with cX the closest center to a given sample of
X, then the minimum average distortion per dimension
when fitting the K centers to the data is:
dK = 1

p minc1...cK E[(X − cX)TΓ−1(X − cX)]

This is also the average Mahalanobis distance per dimen-
sion between X and the set of cluster centers C. Because
the minimization over all possible sets of cluster centers is
prohibitively complex, the distortion is computed in prac-
tice by generating a set of cluster centers using a standard
clustering algorithm and computing the distortion using
the result. The pseudo-code for the jump method with an
input set of p-dimensional data points X is:
JumpMethod(X): Let Y = (p/2) Init a list D, of size n+1
Let D[0] = 0 For k = 1 ... n: Cluster X with k clusters
(e.g., with k-means) Let d = Distortion of the resulting
clustering D[k] = d^(-Y) Define J(i) = D[i] - D[i-1] Re-
turn the k between 1 and n that maximizes J(k)
The choice of the transform power Y = (p/2) is mo-
tivated by asymptotic reasoning using results from rate
distortion theory. Let the data X have a single, arbitrar-
ily p-dimensional Gaussian distribution, and let fixed K =
floor( αp ), for some α greater than zero. Then the dis-
tortion of a clustering of K clusters in the limit as p goes
to infinity is α−2 . It can be seen that asymptotically, the
distortion of a clustering to the power (−p/2) is propor-
tional to αp , which by definition is approximately the
number of clusters K. In other words, for a single Gaus-
sian distribution, increasing K beyond the true number of

clusters, which should be one, causes a linear growth in
distortion. This behavior is important in the general case
of a mixture of multiple distribution components.
Let X be a mixture of G p-dimensional Gaussian distribu-
tions with common covariance. Then for any fixed K less
than G, the distortion of a clustering as p goes to infinity
is infinite. Intuitively, this means that a clustering of less
than the correct number of clusters is unable to describe
asymptotically high-dimensional data, causing the distor-
tion to increase without limit. If, as described above, K is
made an increasing function of p, namely, K = floor( αp

), the same result as above is achieved, with the value of
the distortion in the limit as p goes to infinity being equal
to α−2 . Correspondingly, there is the same proportional
relationship between the transformed distortion and the
number of clusters, K.
Putting the results above together, it can be seen that
for sufficiently high values of p, the transformed distor-
tion d

−p/2
K is approximately zero for K < G, then jumps

suddenly and begins increasing linearly for K >= G. The
jump algorithm for choosing K makes use of these behav-
iors to identify the most likely value for the true number
of clusters.
Although the mathematical support for the method is
given in terms of asymptotic results, the algorithm has
been empirically verified to work well in a variety of
data sets with reasonable dimensionality. In addition to
the localized jump method described above, there ex-
ists a second algorithm for choosing K using the same
transformed distortion values known as the broken line
method. The broken line method identifies the jump
point in the graph of the transformed distortion by doing
a simple least squares error line fit of two line segments,
which in theory will fall along the x-axis for K < G, and
along the linearly increasing phase of the transformed dis-
tortion plot for K >= G. The broken line method is more
robust than the jump method in that its decision is global
rather than local, but it also relies on the assumption of
Gaussian mixture components, whereas the jump method
is fully non-parametric and has been shown to be viable
for general mixture distributions.

2.1.5 Choosing k Using the Silhouette

The average silhouette of the data is another useful cri-
terion for assessing the natural number of clusters. The
silhouette of a datum is a measure of how closely it is
matched to data within its cluster and how loosely it is
matched to data of the neighbouring cluster, i.e. the clus-
ter whose average distance from the datum is lowest.*[7]
A silhouette close to 1 implies the datum is in an appro-
priate cluster, while a silhouette close to −1 implies the
datum is in the wrong cluster. Optimization techniques
such as genetic algorithms are useful in determining the
number of clusters that gives rise to the largest silhou-
ette.*[8]
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2.1.6 Cross-validation

One can also use the process of cross-validation to an-
alyze the number of clusters. In this process, the data is
partitioned into v parts. Each of the parts is then set aside
at turn as a test set, a clustering model computed on the
other v−1 training sets, and the value of the goal func-
tion (for example, the sum of the squared distances to the
centroids for k-means) calculated for the test set. These
v values are calculated and averaged for each alternative
number of clusters, and the cluster number selected that
minimizes the test set errors.*[9]

2.1.7 Finding Number of Clusters in Text
Databases

In text databases, a document collection defined by a doc-
ument by term D matrix (of size m by n, m: number of
documents, n: number of terms) number of clusters can
roughly be estimated by the following formula (m×n)/t
where t is the number of non-zero entries in D. Note that
in D each row and each column must contain at least one
non-zero element. *[10]

2.1.8 Analyzing the Kernel Matrix

Kernel matrix defines the proximity of the input infor-
mation. For example, in Gaussian Radial basis func-
tion, determines the dot product of the inputs in a higher-
dimensional space, called feature space. It is believed that
the data become more linearly separable in the feature
space, and hence, linear algorithms can be applied on the
data with a higher success.
The kernel matrix can thus be analyzed in order to find the
optimal number of clusters .*[11] The method proceeds
by the eigenvalue decomposition of the kernel matrix. It
will then analyze the eigenvalues and eigenvectors to ob-
tain a measure of the compactness of the input distribu-
tion. Finally, a plot will be drawn, where the elbow of
that plot indicates the optimal number of clusters in the
data set. Unlike previous methods, this technique does
not need to perform any clustering a-priori. It directly
find the number of clusters from the data.

2.1.9 External links

• Clustergram - cluster diagnostic plot - for visual di-
agnostics of choosing the number of (k) clusters (R
code)

• Six methods for determining an optimal k value for
k-means analysis - Answer on stackoverflow con-
taining R code for several methods of computing an
optimal value of k for k-means cluster analysis
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2.2 Expectation–maximization al-
gorithm

In statistics, an expectation–maximization (EM) algo-
rithm is an iterative method for finding maximum like-
lihood or maximum a posteriori (MAP) estimates of
parameters in statistical models, where the model de-
pends on unobserved latent variables. The EM iteration
alternates between performing an expectation (E) step,
which creates a function for the expectation of the log-
likelihood evaluated using the current estimate for the
parameters, and a maximization (M) step, which com-
putes parameters maximizing the expected log-likelihood
found on the E step. These parameter-estimates are then
used to determine the distribution of the latent variables
in the next E step.

EM clustering of Old Faithful eruption data. The random initial
model (which, due to the different scales of the axes, appears to
be two very flat and wide spheres) is fit to the observed data.
In the first iterations, the model changes substantially, but then
converges to the two modes of the geyser. Visualized using ELKI.

2.2.1 History

The EM algorithm was explained and given its name
in a classic 1977 paper by Arthur Dempster, Nan
Laird, and Donald Rubin.*[1] They pointed out that
the method had been “proposed many times in spe-
cial circumstances”by earlier authors. In particu-
lar, a very detailed treatment of the EM method
for exponential families was published by Rolf Sund-
berg in his thesis and several papers*[2]*[3]*[4] fol-
lowing his collaboration with Per Martin-Löf and
Anders Martin-Löf.*[5]*[6]*[7]*[8]*[9]*[10]*[11] The
Dempster-Laird-Rubin paper in 1977 generalized the
method and sketched a convergence analysis for a wider
class of problems. Regardless of earlier inventions, the
innovative Dempster-Laird-Rubin paper in the Journal
of the Royal Statistical Society received an enthusiastic
discussion at the Royal Statistical Society meeting with

Sundberg calling the paper“brilliant”. The Dempster-
Laird-Rubin paper established the EM method as an im-
portant tool of statistical analysis.
The convergence analysis of the Dempster-Laird-Rubin
paper was flawed and a correct convergence analysis was
published by C.F. Jeff Wu in 1983.*[12] Wu's proof
established the EM method's convergence outside of
the exponential family, as claimed by Dempster-Laird-
Rubin.*[13]

2.2.2 Introduction

The EM algorithm is used to find (locally) maximum like-
lihood parameters of a statistical model in cases where
the equations cannot be solved directly. Typically these
models involve latent variables in addition to unknown
parameters and known data observations. That is, either
there are missing values among the data, or the model
can be formulated more simply by assuming the exis-
tence of additional unobserved data points. For exam-
ple, a mixture model can be described more simply by
assuming that each observed data point has a correspond-
ing unobserved data point, or latent variable, specifying
the mixture component that each data point belongs to.
Finding a maximum likelihood solution typically requires
taking the derivatives of the likelihood function with re-
spect to all the unknown values ̶viz. the parameters
and the latent variables ̶and simultaneously solving the
resulting equations. In statistical models with latent vari-
ables, this usually is not possible. Instead, the result is
typically a set of interlocking equations in which the so-
lution to the parameters requires the values of the latent
variables and vice versa, but substituting one set of equa-
tions into the other produces an unsolvable equation.
The EM algorithm proceeds from the observation that the
following is a way to solve these two sets of equations nu-
merically. One can simply pick arbitrary values for one
of the two sets of unknowns, use them to estimate the
second set, then use these new values to find a better es-
timate of the first set, and then keep alternating between
the two until the resulting values both converge to fixed
points. It's not obvious that this will work at all, but in fact
it can be proven that in this particular context it does, and
that the derivative of the likelihood is (arbitrarily close
to) zero at that point, which in turn means that the point
is either a maximum or a saddle point. In general there
may be multiple maxima, and there is no guarantee that
the global maximum will be found. Some likelihoods also
have singularities in them, i.e. nonsensical maxima. For
example, one of the “solutions”that may be found by
EM in a mixture model involves setting one of the com-
ponents to have zero variance and the mean parameter for
the same component to be equal to one of the data points.
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2.2.3 Description

Given a statistical model which generates a set X of ob-
served data, a set of unobserved latent data or missing
values Z , and a vector of unknown parameters θ , along
with a likelihood function L(θ;X,Z) = p(X,Z|θ) , the
maximum likelihood estimate (MLE) of the unknown pa-
rameters is determined by the marginal likelihood of the
observed data

L(θ;X) = p(X|θ) =
∑
Z

p(X,Z|θ)

However, this quantity is often intractable (e.g. if Z is a
sequence of events, so that the number of values grows
exponentially with the sequence length, making the exact
calculation of the sum extremely difficult).
The EM algorithm seeks to find the MLE of the marginal
likelihood by iteratively applying the following two steps:

Expectation step (E step): Calculate the
expected value of the log likelihood function,
with respect to the conditional distribution of
Z givenX under the current estimate of the pa-
rameters θ(t) :

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)]

Maximization step (M step): Find the pa-
rameter that maximizes this quantity:

θ(t+1) = arg max
θ

Q(θ|θ(t))

Note that in typical models to which EM is applied:

1. The observed data points X may be discrete (tak-
ing values in a finite or countably infinite set) or
continuous (taking values in an uncountably infinite
set). There may in fact be a vector of observations
associated with each data point.

2. The missing values (aka latent variables) Z are
discrete, drawn from a fixed number of values, and
there is one latent variable per observed data point.

3. The parameters are continuous, and are of two
kinds: Parameters that are associated with all data
points, and parameters associated with a particular
value of a latent variable (i.e. associated with all
data points whose corresponding latent variable has
a particular value).

However, it is possible to apply EM to other sorts of mod-
els.

The motivation is as follows. If we know the value of
the parameters θ , we can usually find the value of the
latent variables Z by maximizing the log-likelihood over
all possible values of Z , either simply by iterating over Z
or through an algorithm such as the Viterbi algorithm for
hidden Markov models. Conversely, if we know the value
of the latent variables Z , we can find an estimate of the
parameters θ fairly easily, typically by simply grouping
the observed data points according to the value of the as-
sociated latent variable and averaging the values, or some
function of the values, of the points in each group. This
suggests an iterative algorithm, in the case where both θ
and Z are unknown:

1. First, initialize the parameters θ to some random
values.

2. Compute the best value for Z given these parameter
values.

3. Then, use the just-computed values of Z to compute
a better estimate for the parameters θ . Parame-
ters associated with a particular value of Z will use
only those data points whose associated latent vari-
able has that value.

4. Iterate steps 2 and 3 until convergence.

The algorithm as just described monotonically ap-
proaches a local minimum of the cost function, and is
commonly called hard EM. The k-means algorithm is an
example of this class of algorithms.
However, one can do somewhat better: Rather than mak-
ing a hard choice for Z given the current parameter val-
ues and averaging only over the set of data points asso-
ciated with a particular value of Z , one can instead de-
termine the probability of each possible value of Z for
each data point, and then use the probabilities associated
with a particular value of Z to compute a weighted aver-
age over the entire set of data points. The resulting al-
gorithm is commonly called soft EM, and is the type of
algorithm normally associated with EM. The counts used
to compute these weighted averages are called soft counts
(as opposed to the hard counts used in a hard-EM-type
algorithm such as k-means). The probabilities computed
for Z are posterior probabilities and are what is computed
in the E step. The soft counts used to compute new pa-
rameter values are what is computed in the M step.

2.2.4 Properties

Speaking of an expectation (E) step is a bit of a
misnomer. What is calculated in the first step are the
fixed, data-dependent parameters of the function Q. Once
the parameters of Q are known, it is fully determined and
is maximized in the second (M) step of an EM algorithm.
Although an EM iteration does increase the observed data
(i.e. marginal) likelihood function there is no guarantee
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that the sequence converges to a maximum likelihood es-
timator. For multimodal distributions, this means that an
EM algorithm may converge to a local maximum of the
observed data likelihood function, depending on starting
values. There are a variety of heuristic or metaheuristic
approaches for escaping a local maximum such as random
restart (starting with several different random initial esti-
mates θ*(t)), or applying simulated annealing methods.
EM is particularly useful when the likelihood is an
exponential family: the E step becomes the sum of ex-
pectations of sufficient statistics, and the M step involves
maximizing a linear function. In such a case, it is usu-
ally possible to derive closed form updates for each step,
using the Sundberg formula (published by Rolf Sundberg
using unpublished results of Per Martin-Löf and Anders
Martin-Löf).*[3]*[4]*[7]*[8]*[9]*[10]*[11]
The EM method was modified to compute maximum a
posteriori (MAP) estimates for Bayesian inference in the
original paper by Dempster, Laird, and Rubin.
There are other methods for finding maximum likeli-
hood estimates, such as gradient descent, conjugate gra-
dient or variations of the Gauss–Newton method. Unlike
EM, such methods typically require the evaluation of first
and/or second derivatives of the likelihood function.

2.2.5 Proof of correctness

Expectation-maximization works to improve Q(θ|θ(t))
rather than directly improving log p(X|θ) . Here we show
that improvements to the former imply improvements to
the latter.*[14]
For any Z with non-zero probability p(Z|X,θ) , we can
write

log p(X|θ) = log p(X,Z|θ)− log p(Z|X,θ) .

We take the expectation over values of Z by multiplying
both sides by p(Z|X,θ(t)) and summing (or integrating)
over Z . The left-hand side is the expectation of a con-
stant, so we get:

log p(X|θ) =
∑
Z

p(Z|X,θ(t)) log p(X,Z|θ)−
∑
Z

p(Z|X,θ(t)) log p(Z|X,θ)

= Q(θ|θ(t)) +H(θ|θ(t)) ,

where H(θ|θ(t)) is defined by the negated sum it is re-
placing. This last equation holds for any value of θ in-
cluding θ = θ(t) ,

log p(X|θ(t)) = Q(θ(t)|θ(t))+H(θ(t)|θ(t)) ,

and subtracting this last equation from the previous equa-
tion gives

log p(X|θ)−log p(X|θ(t)) = Q(θ|θ(t))−Q(θ(t)|θ(t))+H(θ|θ(t))−H(θ(t)|θ(t)) ,

However, Gibbs' inequality tells us that H(θ|θ(t)) ≥
H(θ(t)|θ(t)) , so we can conclude that

log p(X|θ)−log p(X|θ(t)) ≥ Q(θ|θ(t))−Q(θ(t)|θ(t)) .

In words, choosing θ to improve Q(θ|θ(t)) be-
yond Q(θ(t)|θ(t)) will improve log p(X|θ) beyond
log p(X|θ(t)) at least as much.

2.2.6 Alternative description

Under some circumstances, it is convenient to view
the EM algorithm as two alternating maximization
steps.*[15]*[16] Consider the function:

F (q, θ) = Eq[logL(θ;x,Z)]+H(q) = −DKL
(
q
∥∥pZ|X(·|x; θ)

)
+logL(θ;x)

where q is an arbitrary probability distribution over the
unobserved data z, pZ|X(·|x;θ) is the conditional distribu-
tion of the unobserved data given the observed data x, H is
the entropy and DKL is the Kullback–Leibler divergence.
Then the steps in the EM algorithm may be viewed as:

Expectation step: Choose q to maximize F:

q(t) = * argmaxq F (q, θ(t))

Maximization step: Choose θ to maximize F:

θ(t+1) = * argmaxθ F (q(t), θ)

2.2.7 Applications

EM is frequently used for data clustering in machine
learning and computer vision. In natural language pro-
cessing, two prominent instances of the algorithm are the
Baum-Welch algorithm and the inside-outside algorithm
for unsupervised induction of probabilistic context-free
grammars.
In psychometrics, EM is almost indispensable for estimat-
ing item parameters and latent abilities of item response
theory models.
With the ability to deal with missing data and observe
unidentified variables, EM is becoming a useful tool to
price and manage risk of a portfolio.[ref?]
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The EM algorithm (and its faster variant Ordered subset
expectation maximization) is also widely used in medical
image reconstruction, especially in positron emission to-
mography and single photon emission computed tomog-
raphy. See below for other faster variants of EM.

2.2.8 Filtering and smoothing EM algo-
rithms

A Kalman filter is typically used for on-line state esti-
mation and a minimum-variance smoother may be em-
ployed for off-line or batch state estimation. However,
these minimum-variance solutions require estimates of
the state-space model parameters. EM algorithms can
be used for solving joint state and parameter estimation
problems.
Filtering and smoothing EM algorithms arise by repeating
the following two-step procedure:

E-step Operate a Kalman filter or a minimum-variance
smoother designed with current parameter estimates
to obtain updated state estimates.

M-step Use the filtered or smoothed state estimates
within maximum-likelihood calculations to obtain
updated parameter estimates.

Suppose that a Kalman filter or minimum-variance
smoother operates on noisy measurements of a single-
input-single-output system. An updated measurement
noise variance estimate can be obtained from the
maximum likelihood calculation

σ̂2
v =

1

N

N∑
k=1

(zk − x̂k)
2

where x̂k are scalar output estimates calculated by a filter
or a smoother from N scalar measurements zk . Simi-
larly, for a first-order auto-regressive process, an updated
process noise variance estimate can be calculated by

σ̂2
w =

1

N

N∑
k=1

(x̂k+1 − F̂ x̂k)
2

where x̂k and x̂k+1 are scalar state estimates calculated
by a filter or a smoother. The updated model coefficient
estimate is obtained via

F̂ =

∑N
k=1(x̂k+1 − F̂ x̂k)∑N

k=1 x̂
2
k

The convergence of parameter estimates such as those
above are well studied.*[17]*[18]*[19]

2.2.9 Variants

A number of methods have been proposed to acceler-
ate the sometimes slow convergence of the EM algo-
rithm, such as those using conjugate gradient and modi-
fied Newton–Raphson techniques.*[20] Additionally EM
can be used with constrained estimation techniques.
Expectation conditional maximization (ECM) re-
places each M step with a sequence of conditional maxi-
mization (CM) steps in which each parameter θi is maxi-
mized individually, conditionally on the other parameters
remaining fixed.*[21]
This idea is further extended in generalized expecta-
tionmaximization (GEM) algorithm, in which one only
seeks an increase in the objective function F for both the
E step and M step under the alternative description.*[15]
It is also possible to consider the EM algorithm as
a subclass of the MM (Majorize/Minimize or Mi-
norize/Maximize, depending on context) algorithm,*[22]
and therefore use any machinery developed in the more
general case.

α-EM algorithm

The Q-function used in the EM algorithm is based on the
log likelihood. Therefore, it is regarded as the log-EM al-
gorithm. The use of the log likelihood can be generalized
to that of the α-log likelihood ratio. Then, the α-log like-
lihood ratio of the observed data can be exactly expressed
as equality by using the Q-function of the α-log likelihood
ratio and the α-divergence. Obtaining this Q-function is
a generalized E step. Its maximization is a generalized M
step. This pair is called the α-EM algorithm *[23] which
contains the log-EM algorithm as its subclass. Thus, the
α-EM algorithm by Yasuo Matsuyama is an exact gen-
eralization of the log-EM algorithm. No computation of
gradient or Hessian matrix is needed. The α-EM shows
faster convergence than the log-EM algorithm by choos-
ing an appropriate α. The α-EM algorithm leads to a
faster version of the Hidden Markov model estimation al-
gorithm α-HMM. *[24]

2.2.10 Relation to variational Bayes meth-
ods

EM is a partially non-Bayesian, maximum likelihood
method. Its final result gives a probability distribution
over the latent variables (in the Bayesian style) together
with a point estimate for θ (either a maximum likeli-
hood estimate or a posterior mode). We may want a fully
Bayesian version of this, giving a probability distribution
over θ as well as the latent variables. In fact the Bayesian
approach to inference is simply to treat θ as another la-
tent variable. In this paradigm, the distinction between
the E and M steps disappears. If we use the factorized
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Q approximation as described above (variational Bayes),
we may iterate over each latent variable (now including
θ) and optimize them one at a time. There are now k
steps per iteration, where k is the number of latent vari-
ables. For graphical models this is easy to do as each
variable's new Q depends only on its Markov blanket, so
local message passing can be used for efficient inference.

2.2.11 Geometric interpretation

For more details on this topic, see Information geometry.

In information geometry, the E step and the M step
are interpreted as projections under dual affine connec-
tions, called the e-connection and the m-connection; the
Kullback–Leibler divergence can also be understood in
these terms.

2.2.12 Examples

Gaussian mixture

An animation demonstrating the EM algorithm fitting a two com-
ponent Gaussian mixture model to the Old Faithful dataset. The
algorithm steps through from a random initialization to conver-
gence.

Let x = (x1, x2, . . . , xn) be a sample of n independent
observations from a mixture of two multivariate normal
distributions of dimension d , and let z = (z1, z2, . . . , zn)
be the latent variables that determine the component from
which the observation originates.*[16]

Xi|(Zi = 1) ∼ Nd(µ1,Σ1) and Xi|(Zi =
2) ∼ Nd(µ2,Σ2)

where

P(Zi = 1) = τ1 and P(Zi = 2) = τ2 =
1− τ1

The aim is to estimate the unknown parameters repre-
senting the “mixing”value between the Gaussians and
the means and covariances of each:

θ =
(
τ ,µ1,µ2,Σ1,Σ2

)
where the incomplete-data likelihood function is

L(θ; x) =
n∏

i=1

2∑
j=1

τj f(xi;µj ,Σj)

and the complete-data likelihood function is

L(θ; x, z) = P (x, z|θ) =
n∏

i=1

2∑
j=1

I(zi = j) f(xi;µj ,Σj)τj

or

L(θ; x, z) = exp


n∑

i=1

2∑
j=1

I(zi = j)
[
− 1

2 log |Σj | − 1
2 (xi − µj)

⊤Σ−1
j (xi − µj)− d

2 log(2π)
] .

where I is an indicator function and f is the probability
density function of a multivariate normal.
To see the last equality, note that for each i all indicators
I(zi = j) are equal to zero, except for one which is equal
to one. The inner sum thus reduces to a single term.

E step Given our current estimate of the parameters
θ*(t), the conditional distribution of the Zi is determined
by Bayes theorem to be the proportional height of the nor-
mal density weighted by τ:

T
(t)
j,i := P(Zi = j|Xi = xi; θ(t)) =

τ
(t)
j f(xi;µ(t)

j ,Σ
(t)
j )

τ
(t)
1 f(xi;µ(t)

1 ,Σ
(t)
1 ) + τ

(t)
2 f(xi;µ(t)

2 ,Σ
(t)
2 )

These are called the“membership probabilities”which
are normally considered the output of the E step (although
this is not the Q function of below).
Note that this E step corresponds with the following func-
tion for Q:
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Q(θ|θ(t)) = E[logL(θ; x,Z)]

= E[log
n∏

i=1

L(θ; xi, zi)]

= E[
n∑

i=1

logL(θ; xi, zi)]

=
n∑

i=1

E[logL(θ; xi, zi)]

=
n∑

i=1

2∑
j=1

T
(t)
j,i

[
log τj − 1

2 log |Σj | − 1
2 (xi − µj)

⊤Σ−1
j (xi − µj)− d

2 log(2π)
]

This does not need to be calculated, because in the M
step we only require the terms depending on τ when we
maximize for τ, or only the terms depending on μ if we
maximize for μ.

M step The fact that Q(θ|θ*(t)) is quadratic in form
means that determining the maximizing values of θ is rel-
atively straightforward. Note that τ, (μ1,Σ1) and (μ2,Σ2)
may all be maximized independently since they all appear
in separate linear terms.
To begin, consider τ, which has the constraint τ1 + τ2=1:

τ (t+1) = arg max
τ

Q(θ|θ(t))

= arg max
τ

{[
n∑

i=1

T
(t)
1,i

]
log τ1 +

[
n∑

i=1

T
(t)
2,i

]
log τ2

}

This has the same form as the MLE for the binomial dis-
tribution, so

τ
(t+1)
j =

∑n
i=1 T

(t)
j,i∑n

i=1(T
(t)
1,i + T

(t)
2,i )

=
1

n

n∑
i=1

T
(t)
j,i

For the next estimates of (μ1,σ1):
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This has the same form as a weighted MLE for a normal
distribution, so
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and, by symmetry
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Termination Conclude the iterative process if
logL(θt; x,Z) ≤ logL(θ(t−1); x,Z) + ϵ for ϵ below
some preset threshold.

Generalization The algorithm illustrated above can be
generalized for mixtures of more than two multivariate
normal distributions.

Truncated and censored regression

The EM algorithm has been implemented in the case
where there is an underlying linear regression model ex-
plaining the variation of some quantity, but where the val-
ues actually observed are censored or truncated versions
of those represented in the model.*[25] Special cases of
this model include censored or truncated observations
from a single normal distribution.*[25]

2.2.13 Alternatives to EM

EM typically converges to a local optimum--not necessar-
ily the global optimum--and there is no bound on the con-
vergence rate in general. It is possible that it can be arbi-
trarily poor in high dimensions and there can be an expo-
nential number of local optima. Hence, there is a need for
alternative techniques for guaranteed learning, especially
in the high-dimensional setting. There are alternatives to
EM with better guarantees in terms of consistency which
are known as moment-based approaches or the so-called

“spectral techniques”. Moment-based approaches*[26]
to learning the parameters of a probabilistic model are of
increasing interest recently since they enjoy guarantees
such as global convergence under certain conditions un-
like EM which is often plagued by the issue of getting
stuck in local optima. Algorithms with guarantees for
learning can be derived for a number of important mod-
els such as mixture models, Hidden Markov models *[27]
and community models.*[28] For these spectral methods,
there are no spurious local optima and the true parame-
ters can be consistently estimated under some regularity
conditions.

2.2.14 See also

• Density estimation

• Total absorption spectroscopy

• The EM algorithm can be viewed as a special case of
the majorize-minimization (MM) algorithm.*[29]
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2.2.15 Further reading
• Robert Hogg, Joseph McKean and Allen Craig. In-

troduction to Mathematical Statistics. pp. 359–364.
Upper Saddle River, NJ: Pearson Prentice Hall,
2005.

• The on-line textbook: Information Theory, In-
ference, and Learning Algorithms, by David J.C.
MacKay includes simple examples of the EM algo-
rithm such as clustering using the soft k-means al-
gorithm, and emphasizes the variational view of the
EM algorithm, as described in Chapter 33.7 of ver-
sion 7.2 (fourth edition).

• Dellaert, Frank. “The Expectation Maximization
Algorithm”. CiteSeerX: 10 .1 .1 .9 .9735, gives an
easier explanation of EM algorithm in terms of
lowerbound maximization.

• Bishop, Christopher M. (2006). Pattern Recogni-
tion and Machine Learning. Springer. ISBN 0-387-
31073-8.

• M. R. Gupta and Y. Chen (2010). Theory and Use
of the EM Algorithm. doi:10.1561/2000000034. A
well-written short book on EM, including detailed
derivation of EM for GMMs, HMMs, and Dirichlet.

• Bilmes, Jeff. “A Gentle Tutorial of the EM Algo-
rithm and its Application to Parameter Estimation
for Gaussian Mixture and Hidden Markov Models”
. CiteSeerX: 10 .1 .1 .28 .613, includes a simplified
derivation of the EM equations for Gaussian Mix-
tures and Gaussian Mixture Hidden Markov Mod-
els.

• Variational Algorithms for Approximate Bayesian
Inference, by M. J. Beal includes comparisons of
EM to Variational Bayesian EM and derivations
of several models including Variational Bayesian
HMMs (chapters).

• The Expectation Maximization Algorithm: A short
tutorial, A self-contained derivation of the EM Al-
gorithm by Sean Borman.

• The EM Algorithm, by Xiaojin Zhu.
• EM algorithm and variants: an informal tutorial by

Alexis Roche. A concise and very clear description
of EM and many interesting variants.

• Einicke, G.A. (2012). Smoothing, Filtering and Pre-
diction: Estimating the Past, Present and Future. Ri-
jeka, Croatia: Intech. ISBN 978-953-307-752-9.
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2.2.17 External links

• Various 1D, 2D and 3D demonstrations of EM to-
gether with Mixture Modeling are provided as part
of the paired SOCR activities and applets. These
applets and activities show empirically the proper-
ties of the EM algorithm for parameter estimation
in diverse settings.

• k-MLE: A fast algorithm for learning statistical mix-
ture models

• Class hierarchy in C++ (GPL) including Gaussian
Mixtures

• Fast and clean C implementation of the Expectation
Maximization (EM) algorithm for estimating
Gaussian Mixture Models (GMMs).

2.3 Clustering high-dimensional
data

Clustering high-dimensional data is the cluster analy-
sis of data with anywhere from a few dozen to many thou-
sands of dimensions. Such high-dimensional data spaces
are often encountered in areas such as medicine, where
DNA microarray technology can produce a large number
of measurements at once, and the clustering of text doc-
uments, where, if a word-frequency vector is used, the
number of dimensions equals the size of the vocabulary.

2.3.1 Problems

Four problems need to be overcome for clustering in high-
dimensional data:*[1]

• Multiple dimensions are hard to think in, impossible
to visualize, and, due to the exponential growth of
the number of possible values with each dimension,
complete enumeration of all subspaces becomes in-
tractable with increasing dimensionality. This prob-
lem is known as the curse of dimensionality.

• The concept of distance becomes less precise as the
number of dimensions grows, since the distance be-
tween any two points in a given dataset converges.
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The discrimination of the nearest and farthest point
in particular becomes meaningless:

lim
d→∞

distmax − distmin
distmin

= 0

• A cluster is intended to group objects that are re-
lated, based on observations of their attribute's val-
ues. However, given a large number of attributes
some of the attributes will usually not be meaning-
ful for a given cluster. For example, in newborn
screening a cluster of samples might identify new-
borns that share similar blood values, which might
lead to insights about the relevance of certain blood
values for a disease. But for different diseases, dif-
ferent blood values might form a cluster, and other
values might be uncorrelated. This is known as the
local feature relevance problem: different clusters
might be found in different subspaces, so a global
filtering of attributes is not sufficient.

• Given a large number of attributes, it is likely that
some attributes are correlated. Hence, clusters
might exist in arbitrarily oriented affine subspaces.

Recent research indicates that the discrimination prob-
lems only occur when there is a high number of irrelevant
dimensions, and that shared-nearest-neighbor approaches
can improve results.*[2]

2.3.2 Approaches

Approaches towards clustering in axis-parallel or arbi-
trarily oriented affine subspaces differ in how they inter-
pret the overall goal, which is finding clusters in data with
high dimensionality.*[1] An overall different approach is
to find clusters based on pattern in the data matrix, often
referred to as biclustering, which is a technique frequently
utilized in bioinformatics.

Subspace clustering

Subspace clustering is the task of detecting all clusters in
all subspaces. This means that a point might be a mem-
ber of multiple clusters, each existing in a different sub-
space. Subspaces can either be axis-parallel or affine. The
term is often used synonymously with general clustering
in high-dimensional data.
The image on the right shows a mere two-dimensional
space where a number of clusters can be identified. In the
one-dimensional subspaces, the clusters ca (in subspace
{x} ) and cb , cc , cd (in subspace {y} ) can be found. cc
cannot be considered a cluster in a two-dimensional (sub-
)space, since it is too sparsely distributed in the x axis.

Example 2D space with subspace clusters

In two dimensions, the two clusters cab and cad can be
identified.
The problem of subspace clustering is given by the fact
that there are 2d different subspaces of a space with d
dimensions. If the subspaces are not axis-parallel, an
infinite number of subspaces is possible. Hence, sub-
space clustering algorithm utilize some kind of heuristic
to remain computationally feasible, at the risk of pro-
ducing inferior results. For example, the downward-
closure property (cf. association rules) can be used to
build higher-dimensional subspaces only by combining
lower-dimensional ones, as any subspace T containing a
cluster, will result in a full space S also to contain that
cluster (i.e. S ⊆ T), an approach taken by most of the tra-
ditional algorithms such as CLIQUE,*[3] SUBCLU.*[4]
It is also possible to define a subspace using different de-
grees of relevance for each dimension, an approach taken
by iMWK-Means.*[5]

Projected clustering

Projected clustering seeks to assign each point to a unique
cluster, but clusters may exist in different subspaces. The
general approach is to use a special distance function to-
gether with a regular clustering algorithm.
For example, the PreDeCon algorithm checks which at-
tributes seem to support a clustering for each point, and
adjusts the distance function such that dimensions with
low variance are amplified in the distance function.*[6]
In the figure above, the cluster cc might be found using
DBSCAN with a distance function that places less em-
phasis on the x -axis and thus exaggerates the low differ-
ence in the y -axis sufficiently enough to group the points
into a cluster.
PROCLUS uses a similar approach with a k-medoid
clustering.*[7] Initial medoids are guessed, and for each
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medoid the subspace spanned by attributes with low vari-
ance is determined. Points are assigned to the medoid
closest, considering only the subspace of that medoid in
determining the distance. The algorithm then proceeds
as the regular PAM algorithm.
If the distance function weights attributes differently, but
never with 0 (and hence never drops irrelevant attributes),
the algorithm is called a“soft"-projected clustering algo-
rithm.

Hybrid approaches

Not all algorithms try to either find a unique cluster as-
signment for each point or all clusters in all subspaces;
many settle for a result in between, where a number of
possibly overlapping, but not necessarily exhaustive set
of clusters are found. An example is FIRES, which is
from its basic approach a subspace clustering algorithm,
but uses a heuristic too aggressive to credibly produce all
subspace clusters.*[8]

Correlation clustering

Another type of subspaces is considered in Correlation
clustering (Data Mining).

2.3.3 Software

• ELKI includes various subspace and correlation
clustering algorithms
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doi:10.1137/1.9781611972740.23. ISBN 978-0-89871-
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“Minkowski metric, feature weighting and anomalous
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nition 45 (3): 1061. doi:10.1016/j.patcog.2011.08.012.
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doi:10.1109/ICDM.2004.10087. ISBN 0-7695-2142-8.

[7] Aggarwal, C. C.; Wolf, J. L.; Yu, P. S.; Procopiuc,
C.; Park, J. S. (1999). “Fast algorithms for pro-
jected clustering”. ACM SIGMOD Record 28 (2): 61.
doi:10.1145/304181.304188.
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2.4 Canopy clustering algorithm

The canopy clustering algorithm is an unsupervised
pre-clustering algorithm introduced by Andrew McCal-
lum, Kamal Nigam and Lyle Ungar in 2000.*[1] It is of-
ten used as preprocessing step for the K-means algorithm
or the Hierarchical clustering algorithm. It is intended to
speed up clustering operations on large data sets, where
using another algorithm directly may be impractical due
to the size of the data set.
The algorithm proceeds as follows, using two thresholds
T1 (the loose distance) and T2 (the tight distance), where
T1 > T2 .*[1]*[2]

1. Begin with the set of data points to be clustered.

2. Remove a point from the set, beginning a new
'canopy'.

3. For each point left in the set, assign it to the new
canopy if the distance less than the loose distance
T1 .

4. If the distance of the point is additionally less than
the tight distance T2 , remove it from the original
set.

5. Repeat from step 2 until there are no more data
points in the set to cluster.

6. These relatively cheaply clustered canopies can be
sub-clustered using a more expensive but accurate
algorithm.

An important note is that individual data points may be
part of several canopies. As an additional speed-up, an
approximate and fast distance metric can be used for 3,
where a more accurate and slow distance metric can be
used for step 4.
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Since the algorithm uses distance functions and requires
the specification of distance thresholds, its applicability
for high-dimensional data is limited by the curse of di-
mensionality. Only when a cheap and approximative –
low-dimensional – distance function is available, the pro-
duced canopies will preserve the clusters produced by K-
means.

2.4.1 Benefits

• The number of instances of training data that must
be compared at each step is reduced

• There is some evidence that the resulting clusters are
improved*[3]

2.4.2 References
[1] McCallum, A.; Nigam, K.; and Ungar L.H. (2000)

“Efficient Clustering of High Dimensional Data Sets
with Application to Reference Matching”, Proceed-
ings of the sixth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 169-178
doi:10.1145/347090.347123

[2] http://courses.cs.washington.edu/courses/cse590q/
04au/slides/DannyMcCallumKDD00.ppt Retrieved
2014-09-06.

[3] Mahout description of Canopy-Clustering Retrieved
2011-04-02.
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Chapter 3

Connectivity models

3.1 Single-linkage clustering

Single-linkage clustering is one of several methods of
agglomerative hierarchical clustering. In the beginning
of the process, each element is in a cluster of its own.
The clusters are then sequentially combined into larger
clusters, until all elements end up being in the same clus-
ter. At each step, the two clusters separated by the short-
est distance are combined. The definition of 'shortest
distance' is what differentiates between the different ag-
glomerative clustering methods. In single-linkage cluster-
ing, the link between two clusters is made by a single el-
ement pair, namely those two elements (one in each clus-
ter) that are closest to each other. The shortest of these
links that remains at any step causes the fusion of the two
clusters whose elements are involved. The method is also
known as nearest neighbour clustering. The result of
the clustering can be visualized as a dendrogram, which
shows the sequence of cluster fusion and the distance at
which each fusion took place.*[1]
Mathematically, the linkage function – the distance
D(X,Y) between clusters X and Y – is described by the
expression

D(X,Y ) = min
x∈X,y∈Y

d(x, y),

where X and Y are any two sets of elements considered as
clusters, and d(x,y) denotes the distance between the two
elements x and y.
A drawback of this method is the so-called chaining phe-
nomenon, which refers to the gradual growth of a cluster
as one element at a time gets added to it. This may lead
to impractically heterogeneous clusters and difficulties in
defining classes that could usefully subdivide the data.

3.1.1 Naive Algorithm

The following algorithm is an agglomerative scheme that
erases rows and columns in a proximity matrix as old clus-
ters are merged into new ones. The N×N proximity ma-
trix D contains all distances d(i,j). The clusterings are as-
signed sequence numbers 0,1,......, (n − 1) and L(k) is the

level of the kth clustering. A cluster with sequence num-
ber m is denoted (m) and the proximity between clusters
(r) and (s) is denoted d[(r),(s)].
The algorithm is composed of the following steps:

1. Begin with the disjoint clustering having level L(0)
= 0 and sequence number m = 0.

2. Find the most similar pair of clusters in the current
clustering, say pair (r), (s), according to d[(r),(s)] =
min d[(i),(j)] where the minimum is over all pairs of
clusters in the current clustering.

3. Increment the sequence number: m = m + 1. Merge
clusters (r) and (s) into a single cluster to form the
next clustering m. Set the level of this clustering to
L(m) = d[(r),(s)]

4. Update the proximity matrix, D, by deleting the
rows and columns corresponding to clusters (r) and
(s) and adding a row and column corresponding to
the newly formed cluster. The proximity between
the new cluster, denoted (r,s) and old cluster (k) is
defined as d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)].

5. If all objects are in one cluster, stop. Else, go to step
2.

3.1.2 Optimally efficient algorithm

The algorithm explained above is easy to understand but
of complexity O(n3) . In 1973, R. Sibson proposed an
optimally efficient algorithm of only complexity O(n2)
known as SLINK.*[2]

3.1.3 Other linkages

This is essentially the same as Kruskal's algorithm for
minimum spanning trees. However, in single linkage
clustering, the order in which clusters are formed is im-
portant, while for minimum spanning trees what matters
is the set of pairs of points that form distances chosen by
the algorithm.
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Alternative linkage schemes include complete linkage
and Average linkage clustering - implementing a differ-
ent linkage in the naive algorithm is simply a matter of us-
ing a different formula to calculate inter-cluster distances
in the initial computation of the proximity matrix and in
step 4 of the above algorithm. An optimally efficient al-
gorithm is however not available for arbitrary linkages.
The formula that should be adjusted has been highlighted
using bold text.

3.1.4 References

[1] Legendre, P. & Legendre, L. 1998. Numerical Ecology.
Second English Edition. 853 pages.

[2] R. Sibson (1973). “SLINK: an optimally efficient al-
gorithm for the single-link cluster method” (PDF). The
Computer Journal (British Computer Society) 16 (1): 30–
34. doi:10.1093/comjnl/16.1.30.

3.1.5 External links

• Single linkage clustering algorithm implementation
in Ruby (AI4R)

• Linkages used in Matlab

3.2 Complete-linkage clustering

Complete-linkage clustering is one of several methods
of agglomerative hierarchical clustering. At the begin-
ning of the process, each element is in a cluster of its
own. The clusters are then sequentially combined into
larger clusters until all elements end up being in the same
cluster. At each step, the two clusters separated by the
shortest distance are combined. The definition of 'short-
est distance' is what differentiates between the different
agglomerative clustering methods. In complete-linkage
clustering, the link between two clusters contains all el-
ement pairs, and the distance between clusters equals
the distance between those two elements (one in each
cluster) that are farthest away from each other. The
shortest of these links that remains at any step causes
the fusion of the two clusters whose elements are in-
volved. The method is also known as farthest neigh-
bour clustering. The result of the clustering can be vi-
sualized as a dendrogram, which shows the sequence of
cluster fusion and the distance at which each fusion took
place.*[1]*[2]*[3]
Mathematically, the complete linkage function ̶the dis-
tance D(X,Y ) between clusters X and Y ̶is de-
scribed by the following expression : D(X,Y ) =
maxx∈X,y∈Y d(x, y)

where

• d(x, y) is the distance between elements x ∈ X and
y ∈ Y ;

• X and Y are two sets of elements (clusters)

Complete linkage clustering avoids a drawback of the al-
ternative single linkage method - the so-called chaining
phenomenon, where clusters formed via single linkage
clustering may be forced together due to single elements
being close to each other, even though many of the ele-
ments in each cluster may be very distant to each other.
Complete linkage tends to find compact clusters of ap-
proximately equal diameters.*[4]

3.2.1 Naive Algorithm

The following algorithm is an agglomerative scheme that
erases rows and columns in a proximity matrix as old clus-
ters are merged into new ones. The N×N proximity ma-
trix D contains all distances d(i,j). The clusterings are as-
signed sequence numbers 0,1,......, (n − 1) and L(k) is the
level of the kth clustering. A cluster with sequence num-
ber m is denoted (m) and the proximity between clusters
(r) and (s) is denoted d[(r),(s)].
The algorithm is composed of the following steps:

1. Begin with the disjoint clustering having level L(0)
= 0 and sequence number m = 0.

2. Find the most similar pair of clusters in the current
clustering, say pair (r), (s), according to d[(r),(s)] =
max d[(i),(j)] where the maximum is over all pairs
of clusters in the current clustering.

3. Increment the sequence number: m = m + 1. Merge
clusters (r) and (s) into a single cluster to form the
next clustering m. Set the level of this clustering to
L(m) = d[(r),(s)]

4. Update the proximity matrix, D, by deleting the
rows and columns corresponding to clusters (r) and
(s) and adding a row and column corresponding to
the newly formed cluster. The proximity between
the new cluster, denoted (r,s) and old cluster (k) is
defined as d[(k), (r,s)] = max d[(k),(r)], d[(k),(s)].

5. If all objects are in one cluster, stop. Else, go to step
2.

3.2.2 Optimally efficient algorithm

The algorithm explained above is easy to understand but
of complexity O(n3) . In May 1976, D. Defays pro-
posed an optimally efficient algorithm of only complexity
O(n2) known as CLINK (published 1977)*[5] inspired
by the similar algorithm SLINK for single-linkage clus-
tering.
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3.2.3 Other linkages

Alternative linkage schemes include single linkage and
average linkage clustering - implementing a different
linkage in the naive algorithm is simply a matter of us-
ing a different formula to calculate inter-cluster distances
in the initial computation of the proximity matrix and in
step 4 of the above algorithm. An optimally efficient al-
gorithm is however not available for arbitrary linkages.
The formula that should be adjusted has been highlighted
using bold text.

3.2.4 References

[1] T. Sorensen (1948). “A method of establishing groups
of equal amplitude in plant sociology based on similarity
of species and its application to analyses of the vegetation
on Danish commons.”. Biologiske Skrifter 5: 1–34.

[2] Legendre, P. & Legendre, L. 1998. Numerical Ecology.
Second English Edition. 853 pages.

[3] Brian S. Everitt; Sabine Landau; Morven Leese (2001).
Cluster Analysis (Fourth ed.). London: Arnold. ISBN 0-
340-76119-9.

[4] Everitt, Landau and Leese (2001), pp. 62-64.

[5] D. Defays (1977). “An efficient algorithm for a
complete link method” (PDF). The Computer Jour-
nal (British Computer Society) 20 (4): 364–366.
doi:10.1093/comjnl/20.4.364.

3.2.5 Other literature

• H. Späth (1980). Cluster Analysis Algorithms.
Chichester: Ellis Horwood.

3.3 Nearest-neighbor chain algo-
rithm

In the theory of cluster analysis, the nearest-neighbor
chain algorithm is a method that can be used to perform
several types of agglomerative hierarchical clustering, us-
ing an amount of memory that is linear in the number of
points to be clustered and an amount of time linear in the
number of distinct distances between pairs of points.*[1]
The main idea of the algorithm is to find pairs of clusters
to merge by following paths in the nearest neighbor graph
of the clusters until the paths terminate in pairs of mutual
nearest neighbors. The algorithm was developed and im-
plemented in 1982 by J. P. Benzécri*[2] and J. Juan,*[3]
based on earlier methods that constructed hierarchical
clusterings using mutual nearest neighbor pairs without
taking advantage of nearest neighbor chains.*[4]*[5]

3.3.1 Background

The input to a clustering problem consists of a set of
points. A cluster is any proper subset of the points, and
a hierarchical clustering is a maximal family of clusters
with the property that any two clusters in the family are ei-
ther nested or disjoint. Alternatively, a hierarchical clus-
tering may be represented as a binary tree with the points
at its leaves; the clusters of the clustering are the sets of
points in subtrees descending from each node of the tree.
In agglomerative clustering methods, the input also in-
cludes a distance function defined on the points, or a nu-
merical measure of their dissimilarity that is symmetric
(insensitive to the ordering within each pair of points) but
(unlike a distance) may not satisfy the triangle inequality.
Depending on the method, this dissimilarity function can
be extended in several different ways to pairs of clusters;
for instance, in the single-linkage clustering method, the
distance between two clusters is defined to be the mini-
mum distance between any two points from each cluster.
Given this distance between clusters, a hierarchical clus-
tering may be defined by a greedy algorithm that initially
places each point in its own single-point cluster and then
repeatedly merges the closest pair of clusters.*[6]
However, known methods for repeatedly finding the clos-
est pair of clusters in a dynamic set of clusters either re-
quire superlinear space to maintain a data structure that
can find closest pairs quickly, or they take greater than
linear time to find each closest pair.*[7]*[8] The nearest-
neighbor chain algorithm uses a smaller amount of time
and space than the greedy algorithm by merging pairs of
clusters in a different order. However, for many types of
clustering problem, it can be guaranteed to come up with
the same hierarchical clustering as the greedy algorithm
despite the different merge order.

3.3.2 The algorithm

Intuitively, the nearest neighbor chain algorithm repeat-
edly follows a chain of clusters A → B → C → ... where
each cluster is the nearest neighbor of the previous one,
until reaching a pair of clusters that are mutual nearest
neighbors.*[6]
More formally, the algorithm performs the following
steps:*[1]*[6]

• Initialize the set of active clusters to consist of n one-
point clusters, one for each input point.

• Let S be a stack data structure, initially empty, the
elements of which will be active clusters.

• While there is more than one cluster in the set of
clusters:

• If S is empty, choose an active cluster arbitrar-
ily and push it onto S.
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Animation of the algorithm using Ward's distance. Black dots
are points, grey regions are larger clusters, blue arrows point to
nearest neighbors, and the red bar indicates the current chain.
For visual simplicity, when a merge leaves the chain empty, it
continues with the recently merged cluster.

• Let C be the active cluster on the top of S.
Compute the distances from C to all other
clusters, and let D be the nearest other cluster.
• If D is already in S, it must be the immediate

predecessor of C. Pop both clusters from S,
merge them, and push the merged cluster onto
S.
• Otherwise, if D is not already in S, push it onto

S.

If there may be multiple equal nearest neighbors to a clus-
ter, the algorithm requires a consistent tie-breaking rule:
for instance, in this case, the nearest neighbor may be cho-
sen, among the clusters at equal minimum distance from
C, by numbering the clusters arbitrarily and choosing the
one with the smallest index.

3.3.3 Time and space analysis

Each iteration of the loop performs a single search for the
nearest neighbor of a cluster, and either adds one cluster
to the stack or removes two clusters from it. Every clus-
ter is only ever added once to the stack, because when
it is removed again it is immediately made inactive and
merged. There are a total of 2n − 2 clusters that ever
get added to the stack: n single-point clusters in the ini-
tial set, and n − 2 internal nodes other than the root in
the binary tree representing the clustering. Therefore, the
algorithm performs 2n − 2 pushing iterations and n − 1
popping iterations, each time scanning as many as n − 1
inter-cluster distances to find the nearest neighbor. The

total number of distance calculations it makes is there-
fore less than 3n2, and the total time it uses outside of the
distance calculations is O(n2).
Since the only data structure is the set of active clusters
and the stack containing a subset of the active clusters,
the space required is linear in the number of input points.

3.3.4 Correctness

The correctness of this algorithm relies on a property
of its distance function called reducibility, identified by
Bruynooghe (1977) in connection with an earlier cluster-
ing method that used mutual nearest neighbor pairs but
not chains of nearest neighbors.*[4] A distance function
d on clusters is defined to be reducible if, for every three
clusters A, B and C in the greedy hierarchical clustering
such that A and B are mutual nearest neighbors, the fol-
lowing inequality holds:

d(A ∪ B, C) ≥ min(d(A,C), d(B,C)).

If a distance function has the reducibility property, then
merging two clusters C and D can only cause the near-
est neighbor of E to change if that nearest neighbor was
one of C and D. This has two important consequences
for the nearest neighbor chain algorithm: first, it can be
shown using this property that, at each step of the algo-
rithm, the clusters on the stack S form a valid chain of
nearest neighbors, because whenever a nearest neighbor
becomes invalidated it is immediately removed from the
stack.
Second, and even more importantly, it follows from this
property that, if two clusters C and D both belong to
the greedy hierarchical clustering, and are mutual nearest
neighbors at any point in time, then they will be merged by
the greedy clustering, for they must remain mutual near-
est neighbors until they are merged. It follows that each
mutual nearest neighbor pair found by the nearest neigh-
bor chain algorithm is also a pair of clusters found by the
greedy algorithm, and therefore that the nearest neighbor
chain algorithm computes exactly the same clustering (al-
though in a different order) as the greedy algorithm.

3.3.5 Application to specific clustering dis-
tances

Ward's method

Ward's method is an agglomerative clustering method in
which the dissimilarity between two clusters A and B is
measured by the amount by which merging the two clus-
ters into a single larger cluster would increase the aver-
age squared distance of a point to its cluster centroid.*[9]
That is,
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d(A,B) =
∑

x∈A,y∈B

d2(x, y)

|A|+ |B|
−

∑
x,y∈A

d2(x, y)

|A|
−

∑
x,y∈B

d2(x, y)

|B|
.

Expressed in terms of the centroid cA and cardinality nA

of the two clusters, it has the simpler formula

d(A,B) =
d2(ca, cb)

1/nA + 1/nB
,

allowing it to be computed in constant time per distance
calculation. Although highly sensitive to outliers, Ward's
method is the most popular variation of agglomerative
clustering both because of the round shape of the clusters
it typically forms and because of its principled definition
as the clustering that at each step has the smallest vari-
ance within its clusters.*[10] Alternatively, this distance
can be seen as the difference in k-means cost between the
new cluster and the two old clusters.
Ward's distance is also reducible, as can be seen more
easily from a different formula of Lance–Williams type
for calculating the distance of a merged cluster from the
distances of the clusters it was merged from:*[9]*[11]

d(A∪B,C) =
nA + nC

nA + nB + nC
d(A,C)+

nB + nC

nA + nB + nC
d(B,C)− nC

nA + nB + nC
d(A,B).

If d(A,B) is the smallest of the three distances on the
right hand side (as would necessarily be true if A and B
are mutual nearest-neighbors) then the negative contribu-
tion from its term is cancelled by thenC coefficient of one
of the two other terms, leaving a positive value added to
the weighted average of the other two distances. There-
fore, the combined distance is always at least as large as
the minimum of d(A,C) and d(B,C) , meeting the def-
inition of reducibility.
Therefore, the nearest-neighbor chain algorithm using
Ward's distance calculates exactly the same clustering
as the standard greedy algorithm. For n points in a
Euclidean space of constant dimension, it takes time
O(n2) and space O(n).*[1]

Complete linkage and average distance

Complete-linkage or furthest-neighbor clustering is a
form of agglomerative clustering that uses the maximum
distance between any two points from the two clusters
as the dissimilarity, and similarly average-distance clus-
tering uses the average pairwise distance. Like Ward's
distance, these forms of clustering obey a formula of
Lance-Williams type: in complete linkage, the distance
d(A∪B,C) is the average of the distances d(A,C) and
d(B,C) plus a positive correction term, while for aver-
age distance it is just a weighted average of the distances
d(A,C) and d(B,C) .*[9]*[11] Thus, in both of these
cases, the distance is reducible.

Unlike Ward's method, these two forms of clustering do
not have a constant-time method for computing distances
between pairs of clusters. Instead it is possible to main-
tain an array of distances between all pairs of clusters,
using the Lance–Williams formula to update the array as
pairs of clusters are merged, in time and spaceO(n2). The
nearest-neighbor chain algorithm may be used in con-
junction with this array of distances to find the same clus-
tering as the greedy algorithm for these cases in total time
and space O(n2). The same O(n2) time and space bounds
can also be achieved by a different and more general
technique that overlays a quadtree-based priority queue
data structure on top of the distance matrix and uses it to
perform the standard greedy clustering algorithm, avoid-
ing the need for reducibility,*[7] but the nearest-neighbor
chain algorithm matches its time and space bounds while
using simpler data structures.*[12]

Single linkage

In single-linkage or nearest-neighbor clustering, the old-
est form of agglomerative hierarchical clustering,*[11]
the dissimilarity between clusters is measured as the min-
imum distance between any two points from the two clus-
ters. With this dissimilarity,

d(A ∪B,C) = min(d(A,C), d(B,C)),

meeting as an equality rather than an inequality the re-
quirement of reducibility. (Single-linkage also obeys a
Lance–Williams formula,*[9]*[11] but with a negative
coefficient from which it is more difficult to prove re-
ducibility.)
As with complete linkage and average distance, the dif-
ficulty of calculating cluster distances causes the nearest-
neighbor chain algorithm to take time and space O(n2)
to compute the single-linkage clustering. However, the
single-linkage clustering can be found more efficiently
by an alternative algorithm that computes the minimum
spanning tree of the input distances using Prim's algo-
rithm (with an unsorted list of vertices and their priori-
ties in place of the usual priority queue), and then sorts
the minimum spanning tree edges and uses this sorted list
to guide the merger of pairs of clusters. This alternative
method would take time O(n2) and space O(n), matching
the best bounds that could be achieved with the nearest-
neighbor chain algorithm for distances with constant-time
calculations.*[13]

Centroid distance

Another distance measure commonly used in agglom-
erative clustering is the distance between the centroids
of pairs of clusters, also known as the weighted group
method.*[9]*[11] It can be calculated easily in constant
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time per distance calculation. However, it is not re-
ducible: for instance, if the input forms the set of three
points of an equilateral triangle, merging two of these
points into a larger cluster causes the inter-cluster dis-
tance to decrease, a violation of reducibility. Therefore,
the nearest-neighbor chain algorithm will not necessarily
find the same clustering as the greedy algorithm. A dif-
ferent algorithm by Day and Edelsbrunner can be used to
find the clustering in O(n2) time for this distance mea-
sure.*[8]

Distances sensitive to merge order

The above presentation explicitly disallowed distances
sensitive to merge order; indeed, allowing such distances
can cause problems. In particular, there exist order-
sensitive cluster distances which satisfy reducibility, but
the above algorithm will return a hierarchy with subop-
timal costs.*[14] Following the earlier discussion of the
value of defining cluster distances recursively (so that
memoization can be used to greatly speed up distance
computations), care must be taken with recursively de-
fined distances so that they are not using the hierarchy in
a way which is sensitive to merge order.
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3.4 UPGMA

UPGMA (Unweighted Pair Group Method with
Arithmetic Mean) is a simple agglomerative (bottom-up)
hierarchical clustering method. It is one of the most
popular methods in ecology for the classification of
sampling units (such as vegetation plots) on the basis of
their pairwise similarities in relevant descriptor variables
(such as species composition).*[1] In bioinformatics,
UPGMA is used for the creation of phenetic trees
(phenograms). In a phylogenetic context, UPGMA
assumes a constant rate of evolution (molecular clock
hypothesis), and is not a well-regarded method for
inferring relationships unless this assumption has been
tested and justified for the data set being used. UPGMA
was initially designed for use in protein electrophoresis
studies, but is currently most often used to produce guide
trees for more sophisticated phylogenetic reconstruction
algorithms.
The UPGMA algorithm constructs a rooted tree
(dendrogram) that reflects the structure present in a pair-
wise similarity matrix (or a dissimilarity matrix).
At each step, the nearest two clusters are combined into a
higher-level cluster. The distance between any two clus-
ters A and B is taken to be the average of all distances
between pairs of objects “x”in A and “y”in B, that
is, the mean distance between elements of each cluster:

https://en.wikipedia.org/wiki/Memoization
http://books.google.com/books?id=_VI0LITp3ecC&pg=PA513
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4020-0489-6
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4020-0489-6
http://www.numdam.org/item?id=CAD_1982__7_2_209_0
http://www.numdam.org/item?id=CAD_1982__7_2_209_0
http://www.numdam.org/item?id=CAD_1982__7_2_209_0
http://www.numdam.org/item?id=CAD_1982__7_2_219_0
http://www.numdam.org/item?id=CAD_1982__7_2_219_0
http://www.numdam.org/item?id=CAD_1982__7_2_219_0
http://www.numdam.org/item?id=SAD_1977__2_3_24_0
http://www.numdam.org/item?id=SAD_1977__2_3_24_0
http://www.numdam.org/item?id=SAD_1977__2_3_24_0
http://www.numdam.org/item?id=CAD_1980__5_2_135_0
http://www.numdam.org/item?id=CAD_1980__5_2_135_0
http://thames.cs.rhul.ac.uk/~fionn/old-articles/Survey_of_hierarchical_clustering_algorithms.pdf
http://thames.cs.rhul.ac.uk/~fionn/old-articles/Survey_of_hierarchical_clustering_algorithms.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1093%252Fcomjnl%252F26.4.354
https://en.wikipedia.org/wiki/David_Eppstein
http://www.jea.acm.org/2000/EppsteinDynamic/
http://www.jea.acm.org/2000/EppsteinDynamic/
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/cs.DS/9912014
https://arxiv.org/abs/cs.DS/9912014
https://en.wikipedia.org/wiki/Herbert_Edelsbrunner
http://www.cs.duke.edu/~edels/Papers/1984-J-05-HierarchicalClustering.pdf
http://www.cs.duke.edu/~edels/Papers/1984-J-05-HierarchicalClustering.pdf
http://www.cs.duke.edu/~edels/Papers/1984-J-05-HierarchicalClustering.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%252FBF01890115
http://books.google.com/books?id=brzLe4X4ypEC&pg=PA140
http://books.google.com/books?id=brzLe4X4ypEC&pg=PA140
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7923-4159-7
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=1480413
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-470-68829-8
https://en.wikipedia.org/wiki/W._T._Williams
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1093%252Fcomjnl%252F9.4.373
https://en.wikipedia.org/wiki/Shlomo_Moran
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252Fj.ipl.2007.07.002
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=2353367
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/2346439
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=0242315
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1109.2378v1
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Ecology
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Phenetic
https://en.wikipedia.org/wiki/Phylogenetic_trees
https://en.wikipedia.org/wiki/Molecular_clock_hypothesis
https://en.wikipedia.org/wiki/Molecular_clock_hypothesis
https://en.wikipedia.org/wiki/Protein_electrophoresis
https://en.wikipedia.org/wiki/Dendrogram
https://en.wikipedia.org/wiki/Similarity_matrix
https://en.wikipedia.org/wiki/Distance_matrix


46 CHAPTER 3. CONNECTIVITY MODELS

1

|A| · |B|
∑
x∈A

∑
y∈B

d(x, y)

The method is generally attributed to Sokal and Mich-
ener.*[2] Fionn Murtagh found a time optimal O(n2)
time algorithm to construct the UPGMA tree.*[3]

3.4.1 See also

• Neighbor-joining

• Cluster analysis

• Single-linkage clustering

• Complete-linkage clustering

• Hierarchical clustering

• Models of DNA evolution

• Molecular clock

3.4.2 References
[1] Legendre, P. and Legendre, L. 1998. Numerical Ecology.

Second English Edition. Developments in Environmental
Modelling 20. Elsevier, Amsterdam.

[2] Sokal R and Michener C (1958).“A statistical method for
evaluating systematic relationships”. University of Kansas
Science Bulletin 38: 1409–1438.

[3] Murtagh F (1984). “Complexities of Hierarchic Clus-
tering Algorithms: the state of the art”. Computational
Statistics Quarterly 1: 101–113.

3.4.3 External links

• UPGMA clustering algorithm implementation in
Ruby (AI4R)

• Example calculation of UPGMA using a similarity
matrix

• Example calculation of UPGMA using a distance
matrix

3.5 BIRCH

This article is about the clustering algorithm. For the
tree, see Birch. For other uses, see Birch (disambigua-
tion).

BIRCH (balanced iterative reducing and clustering us-
ing hierarchies) is an unsupervised data mining algorithm
used to perform hierarchical clustering over particularly

large data-sets.*[1] An advantage of BIRCH is its abil-
ity to incrementally and dynamically cluster incoming,
multi-dimensional metric data points in an attempt to pro-
duce the best quality clustering for a given set of resources
(memory and time constraints). In most cases, BIRCH
only requires a single scan of the database.
Its inventors claim BIRCH to be the“first clustering algo-
rithm proposed in the database area to handle 'noise' (data
points that are not part of the underlying pattern) effec-
tively”,*[1] beating DBSCAN by two months. The algo-
rithm received the SIGMOD 10 year test of time award
in 2006.*[2]

3.5.1 Problem with previous methods

Previous clustering algorithms performed less effectively
over very large databases and did not adequately consider
the case wherein a data-set was too large to fit in main
memory. As a result, there was a lot of overhead main-
taining high clustering quality while minimizing the cost
of addition IO (input/output) operations. Furthermore,
most of BIRCH's predecessors inspect all data points (or
all currently existing clusters) equally for each 'clustering
decision' and do not perform heuristic weighting based on
the distance between these data points.

3.5.2 Advantages with BIRCH

It is local in that each clustering decision is made without
scanning all data points and currently existing clusters.
It exploits the observation that data space is not usually
uniformly occupied and not every data point is equally
important. It makes full use of available memory to de-
rive the finest possible sub-clusters while minimizing I/O
costs. It is also an incremental method that does not re-
quire the whole data set in advance.

3.5.3 Algorithm

The BIRCH algorithm takes as input a set of N data
points, represented as real-valued vectors, and a desired
number of clusters K. It operates in four phases, the sec-
ond of which is optional.
The first phase builds a CF tree out of the data points, a
height-balanced tree data structure, defined as follows:

• Given a set of N d-dimensional data points, the clus-
tering feature CF of the set is defined as the triple
CF = (N,LS, SS) , where LS is the linear sum
and SS is the square sum of data points.

• Clustering features are organized in a CF tree,
a height-balanced tree with two parameters:
branching factor B and threshold T . Each non-
leaf node contains at most B entries of the form
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[CFi, childi] , where childi is a pointer to its
i th child node and CFi the clustering feature
representing the associated subcluster. A leaf node
contains at most L entries each of the form [CFi]
. It also has two pointers prev and next which are
used to chain all leaf nodes together. The tree size
depends on the parameter T. A node is required to
fit in a page of size P. B and L are determined by P.
So P can be varied for performance tuning. It is a
very compact representation of the dataset because
each entry in a leaf node is not a single data point
but a subcluster.

In the second step, the algorithm scans all the leaf entries
in the initial CF tree to rebuild a smaller CF tree, while
removing outliers and grouping crowded subclusters into
larger ones. This step is marked optional in the original
presentation of BIRCH.
In step three an existing clustering algorithm is used to
cluster all leaf entries. Here an agglomerative hierarchi-
cal clustering algorithm is applied directly to the subclus-
ters represented by their CF vectors. It also provides the
flexibility of allowing the user to specify either the desired
number of clusters or the desired diameter threshold for
clusters. After this step a set of clusters is obtained that
captures major distribution pattern in the data. However
there might exist minor and localized inaccuracies which
can be handled by an optional step 4. In step 4 the cen-
troids of the clusters produced in step 3 are used as seeds
and redistribute the data points to its closest seeds to ob-
tain a new set of clusters. Step 4 also provides us with an
option of discarding outliers. That is a point which is too
far from its closest seed can be treated as an outlier.

3.5.4 Notes
[1] Zhang, T.; Ramakrishnan, R.; Livny, M. (1996).

“BIRCH: an efficient data clustering method for very large
databases”. Proceedings of the 1996 ACM SIGMOD in-
ternational conference on Management of data - SIGMOD
'96. pp. 103––114. doi:10.1145/233269.233324.

[2] “2006 SIGMOD Test of Time Award”.
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Chapter 4

Centroid models

4.1 k-nearest neighbors algorithm

In pattern recognition, the k-Nearest Neighbors algo-
rithm (or k-NN for short) is a non-parametric method
used for classification and regression.*[1] In both cases,
the input consists of the k closest training examples in
the feature space. The output depends on whether k-NN
is used for classification or regression:

• In k-NN classification, the output is a
class membership. An object is clas-
sified by a majority vote of its neigh-
bors, with the object being assigned to
the class most common among its k near-
est neighbors (k is a positive integer, typ-
ically small). If k = 1, then the object is
simply assigned to the class of that single
nearest neighbor.

• In k-NN regression, the output is the prop-
erty value for the object. This value is
the average of the values of its k nearest
neighbors.

k-NN is a type of instance-based learning, or lazy learn-
ing, where the function is only approximated locally and
all computation is deferred until classification. The k-NN
algorithm is among the simplest of all machine learning
algorithms.
Both for classification and regression, it can be useful to
assign weight to the contributions of the neighbors, so that
the nearer neighbors contribute more to the average than
the more distant ones. For example, a common weighting
scheme consists in giving each neighbor a weight of 1/d,
where d is the distance to the neighbor.*[2]
The neighbors are taken from a set of objects for which
the class (for k-NN classification) or the object prop-
erty value (for k-NN regression) is known. This can be
thought of as the training set for the algorithm, though no
explicit training step is required.
A shortcoming of the k-NN algorithm is that it is sensi-
tive to the local structure of the data. The algorithm has
nothing to do with and is not to be confused with k-means,
another popular machine learning technique.

4.1.1 Algorithm

?

Example of k-NN classification. The test sample (green circle)
should be classified either to the first class of blue squares or to
the second class of red triangles. If k = 3 (solid line circle) it
is assigned to the second class because there are 2 triangles and
only 1 square inside the inner circle. If k = 5 (dashed line circle)
it is assigned to the first class (3 squares vs. 2 triangles inside the
outer circle).

The training examples are vectors in a multidimensional
feature space, each with a class label. The training phase
of the algorithm consists only of storing the feature vec-
tors and class labels of the training samples.
In the classification phase, k is a user-defined constant,
and an unlabeled vector (a query or test point) is classified
by assigning the label which is most frequent among the
k training samples nearest to that query point.
A commonly used distance metric for continuous vari-
ables is Euclidean distance. For discrete variables, such
as for text classification, another metric can be used, such
as the overlap metric (or Hamming distance). In the
context of gene expression microarray data, for exam-
ple, k-NN has also been employed with correlation co-
efficients such as Pearson and Spearman.*[3] Often, the
classification accuracy of k-NN can be improved signifi-
cantly if the distance metric is learned with specialized
algorithms such as Large Margin Nearest Neighbor or
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Neighbourhood components analysis.
A drawback of the basic “majority voting”classifica-
tion occurs when the class distribution is skewed. That
is, examples of a more frequent class tend to dominate
the prediction of the new example, because they tend to
be common among the k nearest neighbors due to their
large number.*[4] One way to overcome this problem is
to weight the classification, taking into account the dis-
tance from the test point to each of its k nearest neighbors.
The class (or value, in regression problems) of each of
the k nearest points is multiplied by a weight proportional
to the inverse of the distance from that point to the test
point. Another way to overcome skew is by abstraction
in data representation. For example in a self-organizing
map (SOM), each node is a representative (a center) of a
cluster of similar points, regardless of their density in the
original training data. K-NN can then be applied to the
SOM.

4.1.2 Parameter selection

The best choice of k depends upon the data; generally,
larger values of k reduce the effect of noise on the clas-
sification,*[5] but make boundaries between classes less
distinct. A good k can be selected by various heuristic
techniques (see hyperparameter optimization). The spe-
cial case where the class is predicted to be the class of
the closest training sample (i.e. when k = 1) is called the
nearest neighbor algorithm.
The accuracy of the k-NN algorithm can be severely de-
graded by the presence of noisy or irrelevant features, or
if the feature scales are not consistent with their impor-
tance. Much research effort has been put into selecting or
scaling features to improve classification. A particularly
popular approach is the use of evolutionary algorithms to
optimize feature scaling.*[6] Another popular approach
is to scale features by the mutual information of the train-
ing data with the training classes.
In binary (two class) classification problems, it is helpful
to choose k to be an odd number as this avoids tied votes.
One popular way of choosing the empirically optimal k
in this setting is via bootstrap method.*[7]

4.1.3 Properties

k-NN is a special case of a variable-bandwidth, kernel
density “balloon”estimator with a uniform kernel.*[8]
*[9]
The naive version of the algorithm is easy to implement
by computing the distances from the test example to all
stored examples, but it is computationally intensive for
large training sets. Using an appropriate nearest neighbor
search algorithm makes k-NN computationally tractable
even for large data sets. Many nearest neighbor search
algorithms have been proposed over the years; these gen-

erally seek to reduce the number of distance evaluations
actually performed.
k-NN has some strong consistency results. As the amount
of data approaches infinity, the algorithm is guaranteed
to yield an error rate no worse than twice the Bayes error
rate (the minimum achievable error rate given the distri-
bution of the data).*[10] k-NN is guaranteed to approach
the Bayes error rate for some value of k (where k increases
as a function of the number of data points). Various
improvements to k-NN are possible by using proximity
graphs.*[11]

4.1.4 Metric Learning

The K-nearest neighbor classification performance can
often be significantly improved through (supervised)
metric learning. Popular algorithms are Neighbourhood
components analysis and Large margin nearest neighbor.
Supervised metric learning algorithms use the label infor-
mation to learn a new metric or pseudo-metric.

4.1.5 Feature extraction

When the input data to an algorithm is too large to be
processed and it is suspected to be notoriously redundant
(e.g. the same measurement in both feet and meters)
then the input data will be transformed into a reduced
representation set of features (also named features vec-
tor). Transforming the input data into the set of features
is called feature extraction. If the features extracted are
carefully chosen it is expected that the features set will ex-
tract the relevant information from the input data in order
to perform the desired task using this reduced represen-
tation instead of the full size input. Feature extraction is
performed on raw data prior to applying k-NN algorithm
on the transformed data in feature space.
An example of a typical computer vision computation
pipeline for face recognition using k-NN including fea-
ture extraction and dimension reduction pre-processing
steps (usually implemented with OpenCV):

1. Haar face detection

2. Mean-shift tracking analysis

3. PCA or Fisher LDA projection into feature space,
followed by k-NN classification

4.1.6 Dimension reduction

For high-dimensional data (e.g., with number of dimen-
sions more than 10) dimension reduction is usually per-
formed prior to applying the k-NN algorithm in order to
avoid the effects of the curse of dimensionality. *[12]
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The curse of dimensionality in the k-NN context basically
means that Euclidean distance is unhelpful in high di-
mensions because all vectors are almost equidistant to the
search query vector (imagine multiple points lying more
or less on a circle with the query point at the center; the
distance from the query to all data points in the search
space is almost the same).
Feature extraction and dimension reduction can be com-
bined in one step using principal component anal-
ysis (PCA), linear discriminant analysis (LDA), or
canonical correlation analysis (CCA) techniques as a
pre-processing step, followed by clustering by k-NN on
feature vectors in reduced-dimension space. In machine
learning this process is also called low-dimensional
embedding.*[13]
For very-high-dimensional datasets (e.g. when perform-
ing a similarity search on live video streams, DNA data
or high-dimensional time series) running a fast approxi-
mate k-NN search using locality sensitive hashing,“ran-
dom projections”,*[14]“sketches”*[15] or other high-
dimensional similarity search techniques from VLDB
toolbox might be the only feasible option.

4.1.7 Decision boundary

Nearest neighbor rules in effect implicitly compute the
decision boundary. It is also possible to compute the de-
cision boundary explicitly, and to do so efficiently, so that
the computational complexity is a function of the bound-
ary complexity.*[16]

4.1.8 Data reduction

Data reduction is one of the most important problems for
work with huge data sets. Usually, only some of the data
points are needed for accurate classification. Those data
are called the prototypes and can be found as follows:

1. Select the class-outliers, that is, training data that are
classified incorrectly by k-NN (for a given k)

2. Separate the rest of the data into two sets: (i) the
prototypes that are used for the classification deci-
sions and (ii) the absorbed points that can be cor-
rectly classified by k-NN using prototypes. The ab-
sorbed points can then be removed from the training
set.

Selection of class-outliers

A training example surrounded by examples of other
classes is called a class outlier. Causes of class outliers
include:

• random error

• insufficient training examples of this class (an iso-
lated example appears instead of a cluster)

• missing important features (the classes are separated
in other dimensions which we do not know)

• too many training examples of other classes (unbal-
anced classes) that create a “hostile”background
for the given small class

Class outliers with k-NN produce noise. They can be
detected and separated for future analysis. Given two
natural numbers, k>r>0, a training example is called a
(k,r)NN class-outlier if its k nearest neighbors include
more than r examples of other classes.

CNN for data reduction

Condensed nearest neighbor (CNN, the Hart algorithm)
is an algorithm designed to reduce the data set for k-
NN classification.*[17] It selects the set of prototypes U
from the training data, such that 1NN with U can classify
the examples almost as accurately as 1NN does with the
whole data set.

Calculation of the border ratio.

Three types of points: prototypes, class-outliers, and absorbed
points.

Given a training set X, CNN works iteratively:

1. Scan all elements of X, looking for an element x
whose nearest prototype from U has a different label
than x.
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2. Remove x from X and add it to U

3. Repeat the scan until no more prototypes are added
to U.

Use U instead of X for classification. The examples that
are not prototypes are called “absorbed”points.
It is efficient to scan the training examples in order of de-
creasing border ratio.*[18] The border ratio of a training
example x is defined as

a(x) = ||x'-y|| / ||x-y||

where ||x-y|| is the distance to the closest example y having
a different color than x, and ||x'-y|| is the distance from y
to its closest example x' with the same label as x.
The border ratio is in the interval [0,1] because ||x'-y||
never exceeds ||x-y||. This ordering gives preference to
the borders of the classes for inclusion in the set of proto-
typesU. A point of a different label than x is called exter-
nal to x. The calculation of the border ratio is illustrated
by the figure on the right. The data points are labeled by
colors: the initial point is x and its label is red. External
points are blue and green. The closest to x external point
is y. The closest to y red point is x' . The border ratio
a(x)=||x'-y||/||x-y|| is the attribute of the initial point x.
Below is an illustration of CNN in a series of figures.
There are three classes (red, green and blue). Fig. 1:
initially there are 60 points in each class. Fig. 2 shows
the 1NN classification map: each pixel is classified by
1NN using all the data. Fig. 3 shows the 5NN classifi-
cation map. White areas correspond to the unclassified
regions, where 5NN voting is tied (for example, if there
are two green, two red and one blue points among 5 near-
est neighbors). Fig. 4 shows the reduced data set. The
crosses are the class-outliers selected by the (3,2)NN rule
(all the three nearest neighbors of these instances belong
to other classes); the squares are the prototypes, and the
empty circles are the absorbed points. The left bottom
corner shows the numbers of the class-outliers, proto-
types and absorbed points for all three classes. The num-
ber of prototypes varies from 15% to 20% for different
classes in this example. Fig. 5 shows that the 1NN clas-
sification map with the prototypes is very similar to that
with the initial data set. The figures were produced using
the Mirkes applet.*[18]

• CNN model reduction for k-NN classifiers

• Fig. 1. The dataset.

• Fig. 2. The 1NN classification map.

• Fig. 3. The 5NN classification map.

• Fig. 4. The CNN reduced dataset.

• Fig. 5. The 1NN classification map based on the
CNN extracted prototypes.

4.1.9 k-NN regression

In k-NN regression, the k-NN algorithm is used for es-
timating continuous variables. One such algorithm uses
a weighted average of the k nearest neighbors, weighted
by the inverse of their distance. This algorithm works as
follows:

1. Compute the Euclidean or Mahalanobis distance
from the query example to the labeled examples.

2. Order the labeled examples by increasing distance.

3. Find a heuristically optimal number k of nearest
neighbors, based on RMSE. This is done using cross
validation.

4. Calculate an inverse distance weighted average with
the k-nearest multivariate neighbors.

4.1.10 Validation of results

A confusion matrix or“matching matrix”is often used
as a tool to validate the accuracy of k-NN classification.
More robust statistical methods such as likelihood-ratio
test can also be applied.

4.1.11 See also

• Instance-based learning

• Nearest neighbor search

• Statistical classification

• Cluster analysis

• Data mining

• Nearest centroid classifier

• Pattern recognition

• Curse of dimensionality

• Dimension reduction

• Principal Component Analysis

• Locality Sensitive Hashing

• MinHash

• Cluster hypothesis

• Closest pair of points problem
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4.2 k-means clustering

k-means clustering is a method of vector quantiza-
tion, originally from signal processing, that is popular for
cluster analysis in data mining. k-means clustering aims
to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean,
serving as a prototype of the cluster. This results in a
partitioning of the data space into Voronoi cells.
The problem is computationally difficult (NP-hard); how-
ever, there are efficient heuristic algorithms that are com-
monly employed and converge quickly to a local op-
timum. These are usually similar to the expectation-
maximization algorithm for mixtures of Gaussian distri-
butions via an iterative refinement approach employed by
both algorithms. Additionally, they both use cluster cen-
ters to model the data; however, k-means clustering tends
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to find clusters of comparable spatial extent, while the
expectation-maximization mechanism allows clusters to
have different shapes.
The algorithm has nothing to do with and should not
be confused with k-nearest neighbor, another popular
machine learning technique.

4.2.1 Description

Given a set of observations (x1, x2, …, xn), where each
observation is a d-dimensional real vector, k-means clus-
tering aims to partition the n observations into k (≤ n) sets
S = {S1, S2, …, Sk} so as to minimize the within-cluster
sum of squares (WCSS). In other words, its objective is
to find:

arg min
S

∑k
i=1

∑
x∈Si
∥x− µi∥

2

where μi is the mean of points in Si.

4.2.2 History

The term "k-means”was first used by James MacQueen
in 1967,*[1] though the idea goes back to Hugo Steinhaus
in 1957.*[2] The standard algorithm was first proposed by
Stuart Lloyd in 1957 as a technique for pulse-code mod-
ulation, though it wasn't published outside of Bell Labs
until 1982.*[3] In 1965, E.W.Forgy published essentially
the same method, which is why it is sometimes referred
to as Lloyd-Forgy.*[4] A more efficient version was pro-
posed and published in Fortran by Hartigan and Wong in
1975/1979.*[5]*[6]

4.2.3 Algorithms

Standard algorithm

The most common algorithm uses an iterative refinement
technique. Due to its ubiquity it is often called the k-
means algorithm; it is also referred to as Lloyd's algo-
rithm, particularly in the computer science community.
Given an initial set of k means m1

*(1),…,mk
*(1) (see be-

low), the algorithm proceeds by alternating between two
steps:*[7]

Assignment step: Assign each observation to
the cluster whose mean yields the least within-
cluster sum of squares (WCSS). Since the
sum of squares is the squared Euclidean dis-
tance, this is intuitively the“nearest”mean.*[8]
(Mathematically, this means partitioning the
observations according to the Voronoi diagram
generated by the means).

S
(t)
i =

{
xp :

∥∥xp − m
(t)
i

∥∥2 ≤∥∥xp −m
(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k
}
,

where each xp is assigned to exactly
one S(t) , even if it could be as-
signed to two or more of them.

Update step: Calculate the new means to be
the centroids of the observations in the new
clusters.

m
(t+1)
i = 1

|S(t)
i |

∑
xj∈S

(t)
i

xj

Since the arithmetic mean is a least-
squares estimator, this also min-
imizes the within-cluster sum of
squares (WCSS) objective.

The algorithm has converged when the assignments no
longer change. Since both steps optimize the WCSS ob-
jective, and there only exists a finite number of such par-
titionings, the algorithm must converge to a (local) opti-
mum. There is no guarantee that the global optimum is
found using this algorithm.
The algorithm is often presented as assigning objects to
the nearest cluster by distance. The standard algorithm
aims at minimizing the WCSS objective, and thus assigns
by“least sum of squares”, which is exactly equivalent to
assigning by the smallest Euclidean distance. Using a dif-
ferent distance function other than (squared) Euclidean
distance may stop the algorithm from converging. Vari-
ous modifications of k-means such as spherical k-means
and k-medoids have been proposed to allow using other
distance measures.

Initialization methods Commonly used initialization
methods are Forgy and Random Partition.*[9] The Forgy
method randomly chooses k observations from the data
set and uses these as the initial means. The Random Parti-
tion method first randomly assigns a cluster to each obser-
vation and then proceeds to the update step, thus comput-
ing the initial mean to be the centroid of the cluster's ran-
domly assigned points. The Forgy method tends to spread
the initial means out, while Random Partition places all
of them close to the center of the data set. According to
Hamerly et al.,*[9] the Random Partition method is gen-
erally preferable for algorithms such as the k-harmonic
means and fuzzy k-means. For expectation maximiza-
tion and standard k-means algorithms, the Forgy method
of initialization is preferable.

• Demonstration of the standard algorithm

• 1. k initial“means”(in this case k=3) are randomly
generated within the data domain (shown in color).

• 2. k clusters are created by associating every ob-
servation with the nearest mean. The partitions
here represent the Voronoi diagram generated by the
means.

https://en.wikipedia.org/wiki/K-nearest_neighbor
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Hugo_Steinhaus
https://en.wikipedia.org/wiki/K-means%2520clustering#Standard_algorithm
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Lloyd%2527s_algorithm
https://en.wikipedia.org/wiki/Lloyd%2527s_algorithm
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Centroids
https://en.wikipedia.org/wiki/Least-squares_estimation
https://en.wikipedia.org/wiki/Least-squares_estimation
https://en.wikipedia.org/wiki/K-medoids
https://en.wikipedia.org/wiki/Voronoi_diagram


54 CHAPTER 4. CENTROID MODELS

• 3. The centroid of each of the k clusters becomes
the new mean.

• 4. Steps 2 and 3 are repeated until convergence has
been reached.

As it is a heuristic algorithm, there is no guarantee that it
will converge to the global optimum, and the result may
depend on the initial clusters. As the algorithm is usu-
ally very fast, it is common to run it multiple times with
different starting conditions. However, in the worst case,
k-means can be very slow to converge: in particular it has
been shown that there exist certain point sets, even in 2 di-
mensions, on which k-means takes exponential time, that
is 2*Ω(n), to converge.*[10] These point sets do not seem
to arise in practice: this is corroborated by the fact that the
smoothed running time of k-means is polynomial.*[11]
The“assignment”step is also referred to as expectation
step, the“update step”as maximization step, making
this algorithm a variant of the generalized expectation-
maximization algorithm.

Complexity

Regarding computational complexity, finding the optimal
solution to the k-means clustering problem for observa-
tions in d dimensions is:

• NP-hard in general Euclidean space d even for 2
clusters *[12]*[13]

• NP-hard for a general number of clusters k even in
the plane *[14]

• If k and d (the dimension) are fixed, the problem can
be exactly solved in time O(ndk+1 logn) , where n
is the number of entities to be clustered *[15]

Thus, a variety of heuristic algorithms such as Lloyds al-
gorithm given above are generally used.
The running time of Lloyds algorithm is often given as
O(nkdi) , where n is the number of d-dimensional vec-
tors, k the number of clusters and i the number of itera-
tions needed until convergence. On data that does have
a clustering structure, the number of iterations until con-
vergence is often small, and results only improve slightly
after the first dozen iterations. Lloyds algorithm is there-
fore often considered to be of “linear”complexity in
practice.
Following are some recent insights into this algorithm
complexity behaviour.

• Lloyd's k-means algorithm has polynomial
smoothed running time. It is shown that *[11]
for arbitrary set of n points in [0, 1]d , if each point
is independently perturbed by a normal distribution
with mean 0 and variance σ2 , then the expected

running time of k -means algorithm is bounded by
O(n34k34d8log4(n)/σ6) , which is a polynomial
in n , k , d and 1/σ .

• Better bounds are proved for simple cases. For
example,*[16] showed that the running time of k-
means algorithm is bounded by O(dn4M2) for n
points in an integer lattice {1, . . . ,M}d .

Variations

• Jenks natural breaks optimization: k-means applied
to univariate data

• k-medians clustering uses the median in each di-
mension instead of the mean, and this way mini-
mizes L1 norm (Taxicab geometry).

• k-medoids (also: Partitioning Around Medoids,
PAM) uses the medoid instead of the mean, and this
way minimizes the sum of distances for arbitrary
distance functions.

• Fuzzy C-Means Clustering is a soft version of K-
means, where each data point has a fuzzy degree of
belonging to each cluster.

• Gaussian mixture models trained with expectation-
maximization algorithm (EM algorithm) maintains
probabilistic assignments to clusters, instead of de-
terministic assignments, and multivariate Gaussian
distributions instead of means.

• k-means++ chooses initial centers in a way that gives
a provable upper bound on the WCCS objective.

• The filtering algorithm uses kd-trees to speed up
each k-means step.*[17]

• Some methods attempt to speed up each k-means
step using coresets*[18] or the triangle inequal-
ity.*[19]

• Escape local optima by swapping points between
clusters.*[6]

• The Spherical k-means clustering algorithm is suit-
able for directional data.*[20]

• The Minkowski metric weighted k-means deals
with irrelevant features by assigning cluster specific
weights to each feature*[21]

4.2.4 Discussion

The two key features of k-means which make it efficient
are often regarded as its biggest drawbacks:

• Euclidean distance is used as a metric and variance
is used as a measure of cluster scatter.
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A typical example of the k-means convergence to a local mini-
mum. In this example, the result of k-means clustering (the right
figure) contradicts the obvious cluster structure of the data set.
The small circles are the data points, the four ray stars are the
centroids (means). The initial configuration is on the left figure.
The algorithm converges after five iterations presented on the fig-
ures, from the left to the right. The illustration was prepared with
the Mirkes Java applet.*[22]
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k-means clustering result for the Iris flower data set and actual
species visualized using ELKI. Cluster means are marked using
larger, semi-transparent symbols.
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EM Clustering

Different cluster analysis results on "mouse" data set:

k-means clustering and EM clustering on an artificial dataset (
“mouse”). The tendency of k-means to produce equi-sized clus-
ters leads to bad results, while EM benefits from the Gaussian
distribution present in the data set

• The number of clusters k is an input parameter: an
inappropriate choice of k may yield poor results.
That is why, when performing k-means, it is im-
portant to run diagnostic checks for determining the
number of clusters in the data set.

• Convergence to a local minimum may produce
counterintuitive (“wrong”) results (see example
in Fig.).

A key limitation of k-means is its cluster model. The con-
cept is based on spherical clusters that are separable in a
way so that the mean value converges towards the cluster
center. The clusters are expected to be of similar size,
so that the assignment to the nearest cluster center is the
correct assignment. When for example applying k-means
with a value of k = 3 onto the well-known Iris flower data
set, the result often fails to separate the three Iris species
contained in the data set. With k = 2 , the two visible
clusters (one containing two species) will be discovered,
whereas with k = 3 one of the two clusters will be split

into two even parts. In fact, k = 2 is more appropriate
for this data set, despite the data set containing 3 classes.
As with any other clustering algorithm, the k-means re-
sult relies on the data set to satisfy the assumptions made
by the clustering algorithms. It works well on some data
sets, while failing on others.
The result of k-means can also be seen as the Voronoi cells
of the cluster means. Since data is split halfway between
cluster means, this can lead to suboptimal splits as can be
seen in the“mouse”example. The Gaussian models used
by the Expectation-maximization algorithm (which can
be seen as a generalization of k-means) are more flexible
here by having both variances and covariances. The EM
result is thus able to accommodate clusters of variable size
much better than k-means as well as correlated clusters
(not in this example).

4.2.5 Applications

k-means clustering in particular when using heuristics
such as Lloyd's algorithm is rather easy to implement and
apply even on large data sets. As such, it has been success-
fully used in various topics, including market segmenta-
tion, computer vision, geostatistics,*[23] astronomy and
agriculture. It often is used as a preprocessing step for
other algorithms, for example to find a starting configu-
ration.

Vector quantization

Main article: Vector quantization
k-means originates from signal processing, and still finds

Two-channel (for illustration purposes -- red and green only)
color image.

use in this domain. For example in computer graphics,
color quantization is the task of reducing the color palette
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Vector quantization of colors present in the image above into
Voronoi cells using k-means.

of an image to a fixed number of colors k. The k-means
algorithm can easily be used for this task and produces
competitive results. Other uses of vector quantization
include non-random sampling, as k-means can easily be
used to choose k different but prototypical objects from
a large data set for further analysis.

Cluster analysis

Main article: Cluster analysis

In cluster analysis, the k-means algorithm can be used to
partition the input data set into k partitions (clusters).
However, the pure k-means algorithm is not very flexi-
ble, and as such of limited use (except for when vector
quantization as above is actually the desired use case!).
In particular, the parameter k is known to be hard to
choose (as discussed above) when not given by external
constraints. Another limitation of the algorithm is that
it cannot be used with arbitrary distance functions or on
non-numerical data. For these use cases, many other al-
gorithms have been developed since.

Feature learning

k-means clustering has been used as a feature learning
(or dictionary learning) step, in either (semi-)supervised
learning or unsupervised learning.*[24] The basic ap-
proach is first to train a k-means clustering representa-
tion, using the input training data (which need not be la-
belled). Then, to project any input datum into the new
feature space, we have a choice of “encoding”func-
tions, but we can use for example the thresholded matrix-
product of the datum with the centroid locations, the

distance from the datum to each centroid, or simply an
indicator function for the nearest centroid,*[24]*[25] or
some smooth transformation of the distance.*[26] Al-
ternatively, by transforming the sample-cluster distance
through a Gaussian RBF, one effectively obtains the hid-
den layer of a radial basis function network.*[27]
This use of k-means has been successfully combined with
simple, linear classifiers for semi-supervised learning in
NLP (specifically for named entity recognition)*[28] and
in computer vision. On an object recognition task,
it was found to exhibit comparable performance with
more sophisticated feature learning approaches such as
autoencoders and restricted Boltzmann machines.*[26]
However, it generally requires more data than the sophis-
ticated methods, for equivalent performance, because
each data point only contributes to one“feature”rather
than multiple.*[24]

4.2.6 Relation to other statistical machine
learning algorithms

k-means clustering, and its associated expectation-
maximization algorithm, is a special case of a Gaussian
mixture model, specifically, the limit of taking all covari-
ances as diagonal, equal, and small. It is often easy to
generalize a k-means problem into a Gaussian mixture
model.*[29] Another generalization of the k-means al-
gorithm is the K-SVD algorithm, which estimates data
points as a sparse linear combination of“codebook vec-
tors”. K-means corresponds to the special case of using
a single codebook vector, with a weight of 1.*[30]

Mean shift clustering

Basic mean shift clustering algorithms maintain a set of
data points the same size as the input data set. Initially,
this set is copied from the input set. Then this set is it-
eratively replaced by the mean of those points in the set
that are within a given distance of that point. By con-
trast, k-means restricts this updated set to k points usu-
ally much less than the number of points in the input data
set, and replaces each point in this set by the mean of all
points in the input set that are closer to that point than any
other (e.g. within the Voronoi partition of each updating
point). A mean shift algorithm that is similar then to k-
means, called likelihood mean shift, replaces the set of
points undergoing replacement by the mean of all points
in the input set that are within a given distance of the
changing set.*[31] One of the advantages of mean shift
over k-means is that there is no need to choose the num-
ber of clusters, because mean shift is likely to find only
a few clusters if indeed only a small number exist. How-
ever, mean shift can be much slower than k-means, and
still requires selection of a bandwidth parameter. Mean
shift has soft variants much as k-means does.
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Principal component analysis (PCA)

It was asserted in *[32]*[33] that the relaxed solution of
k-means clustering, specified by the cluster indicators, is
given by the PCA (principal component analysis) prin-
cipal components, and the PCA subspace spanned by the
principal directions is identical to the cluster centroid sub-
space. However, that PCA is a useful relaxation of k-
means clustering was not a new result (see, for exam-
ple,*[34]), and it is straightforward to uncover counterex-
amples to the statement that the cluster centroid subspace
is spanned by the principal directions.*[35]

Independent component analysis (ICA)

It has been shown in *[36] that under sparsity assumptions
and when input data is pre-processed with the whitening
transformation k-means produces the solution to the lin-
ear Independent component analysis task. This aids in ex-
plaining the successful application of k-means to feature
learning.

Bilateral filtering

k-means implicitly assumes that the ordering of the input
data set does not matter. The bilateral filter is similar to
K-means and mean shift in that it maintains a set of data
points that are iteratively replaced by means. However,
the bilateral filter restricts the calculation of the (kernel
weighted) mean to include only points that are close in the
ordering of the input data.*[31] This makes it applicable
to problems such as image denoising, where the spatial
arrangement of pixels in an image is of critical impor-
tance.

4.2.7 Similar problems

The set of squared error minimizing cluster functions also
includes the k-medoids algorithm, an approach which
forces the center point of each cluster to be one of the
actual points, i.e., it uses medoids in place of centroids.

4.2.8 Software Implementations

Free

• Apache Mahout

• Apache Spark MLlib implements a k-means algo-
rithm.

• CrimeStat implements two spatial k-means algo-
rithms, one of which allows the user to define the
starting locations.

• ELKI contains k-means (with Lloyd and MacQueen
iteration, along with different initializations such

as k-means++ initialization) and various more ad-
vanced clustering algorithms

• Julia contains a k-means implementation in the
Clustering package*[37]

• MLPACK contains a C++ implementation of k-
means

• R *[1]*[3]*[6]

• SciPy

• Torch contains an unsup package that provides k-
means clustering.

• Weka contains k-means and a few variants of it, in-
cluding k-means++ and x-means.

• OpenCV contains a k-means implementation under
BSD licence.

Commercial

• IDL Cluster, Clust_Wts

• MATLAB

• SAS

• Stata

• Grapheme

4.2.9 See also

• Canopy clustering algorithm

• Centroidal Voronoi tessellation

• k q-flats

• Linde–Buzo–Gray algorithm

• Nearest centroid classifier

• Self-organizing map

• Silhouette clustering

• Head/tail Breaks
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4.2.11 External links

• Clustergram: visualization and diagnostics for clus-
ter analysis (R code)

• Hyper-threaded Java, Use the Java concurrency API
to speed up time-consuming tasks.

• K-means and K-medoids applet,E.M. Mirkes, Uni-
versity of Leicester, 2011

• Clustering colors in an image

• K-means Clustering Demo

• Visualizing K-Means Clustering

• A Tutorial on Clustering Algorithms: K-means
Demo

• Yet Another K-means Visualization

• k-Means and Voronoi Tesselation Demo

4.3 k-medians clustering

In statistics and data mining, k-medians cluster-
ing*[1]*[2] is a cluster analysis algorithm. It is a vari-
ation of k-means clustering where instead of calculating
the mean for each cluster to determine its centroid, one
instead calculates the median. This has the effect of min-
imizing error over all clusters with respect to the 1-norm

distance metric, as opposed to the square of the 2-norm
distance metric (which k-means does.)
This relates directly to the k-median problem which is
the problem of finding k centers such that the clusters
formed by them are the most compact. Formally, given a
set of data points x, the k centers ci are to be chosen so as
to minimize the sum of the distances from each x to the
nearest ci.
The criterion function formulated in this way is some-
times a better criterion than that used in the k-means clus-
tering algorithm, in which the sum of the squared dis-
tances is used. The sum of distances is widely used in
applications such as facility location.
The proposed algorithm uses Lloyd-style iteration which
alternates between an expectation (E) and maximization
(M) step, making this an Expectation–maximization al-
gorithm. In the E step, all objects are assigned to their
nearest median. In the M step, the medians are recom-
puted by using the median in each single dimension.

4.3.1 Medians and medoids

The median is computed in each single dimension in the
Manhattan-distance formulation of the k-medians prob-
lem, so the individual attributes will come from the
dataset. This makes the algorithm more reliable for dis-
crete or even binary data sets. In contrast, the use of
means or Euclidean-distance medians will not necessarily
yield individual attributes from the dataset. Even with the
Manhattan-distance formulation, the individual attributes
may come from different instances in the dataset; thus,
the resulting median may not be a member of the input
dataset.
This algorithm is often confused with the k-medoids al-
gorithm. However, a medoid has to be an actual instance
from the dataset, while for the multivariate Manhattan-
distance median this only holds for single attribute values.
The actual median can thus be a combination of multi-
ple instances. For example, given the vectors (0,1), (1,0)
and (2,2), the Manhattan-distance median is (1,1), which
does not exist in the original data, and thus cannot be a
medoid.

4.3.2 Software
• ELKI includes various k-means variants, including

k-medians.
• GNU R includes k-medians in the“flexclust”pack-

age.
• Stata kmedians

4.3.3 See also
• cluster analysis
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• k-means

• medoid

• silhouette
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4.4 K-means++

In data mining, k-means++*[1]*[2] is an algorithm for
choosing the initial values (or“seeds”) for the k-means
clustering algorithm. It was proposed in 2007 by David
Arthur and Sergei Vassilvitskii, as an approximation algo-
rithm for the NP-hard k-means problem̶a way of avoid-
ing the sometimes poor clusterings found by the standard
k-means algorithm. It is similar to the first of three seed-
ing methods proposed, in independent work, in 2006*[3]
by Rafail Ostrovsky, Yuval Rabani, Leonard Schulman
and Chaitanya Swamy. (The distribution of the first seed
is different.)

4.4.1 Background

The k-means problem is to find cluster centers that mini-
mize the intra-class variance, i.e. the sum of squared dis-
tances from each data point being clustered to its cluster
center (the center that is closest to it). Although finding an
exact solution to the k-means problem for arbitrary input
is NP-hard,*[4] the standard approach to finding an ap-
proximate solution (often called Lloyd's algorithm or the
k-means algorithm) is used widely and frequently finds
reasonable solutions quickly.
However, the k-means algorithm has at least two major
theoretic shortcomings:

• First, it has been shown that the worst case running
time of the algorithm is super-polynomial in the in-
put size.*[5]

• Second, the approximation found can be arbitrarily
bad with respect to the objective function compared
to the optimal clustering.

The k-means++ algorithm addresses the second of these
obstacles by specifying a procedure to initialize the clus-
ter centers before proceeding with the standard k-means

optimization iterations. With the k-means++ initializa-
tion, the algorithm is guaranteed to find a solution that is
O(log k) competitive to the optimal k-means solution.

4.4.2 Initialization algorithm

The intuition behind this approach is that spreading out
the k initial cluster centers is a good thing: the first clus-
ter center is chosen uniformly at random from the data
points that are being clustered, after which each subse-
quent cluster center is chosen from the remaining data
points with probability proportional to its squared dis-
tance from the point's closest existing cluster center.
The exact algorithm is as follows:

1. Choose one center uniformly at random from among
the data points.

2. For each data point x, compute D(x), the distance
between x and the nearest center that has already
been chosen.

3. Choose one new data point at random as a new cen-
ter, using a weighted probability distribution where
a point x is chosen with probability proportional to
D(x)2.

4. Repeat Steps 2 and 3 until k centers have been cho-
sen.

5. Now that the initial centers have been chosen, pro-
ceed using standard k-means clustering.

This seeding method yields considerable improvement in
the final error of k-means. Although the initial selection
in the algorithm takes extra time, the k-means part itself
converges very quickly after this seeding and thus the al-
gorithm actually lowers the computation time. The au-
thors tested their method with real and synthetic datasets
and obtained typically 2-fold improvements in speed, and
for certain datasets, close to 1000-fold improvements in
error. In these simulations the new method almost al-
ways performed at least as well as vanilla k-means in both
speed and error.
Additionally, the authors calculate an approximation ratio
for their algorithm. The k-means++ algorithm guaran-
tees an approximation ratio O(log k) in expectation (over
the randomness of the algorithm), where k is the number
of clusters used. This is in contrast to vanilla k-means,
which can generate clusterings arbitrarily worse than the
optimum.*[6]

4.4.3 Example bad case

To illustrate the potential of the k-means algorithm to
perform arbitrarily poorly with respect to the objective
function of minimizing the sum of squared distances of
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cluster points to the centroid of their assigned clusters,
consider the example of four points in R2 that form
an axis-aligned rectangle whose width is greater than its
height.
If k = 2 and the two initial cluster centers lie at the mid-
points of the top and bottom line segments of the rect-
angle formed by the four data points, the k-means algo-
rithm converges immediately, without moving these clus-
ter centers. Consequently, the two bottom data points are
clustered together and the two data points forming the
top of the rectangle are clustered together̶a suboptimal
clustering because the width of the rectangle is greater
than its height.
Now, consider stretching the rectangle horizontally to an
arbitrary width. The standard k-means algorithm will
continue to cluster the points suboptimally, and by in-
creasing the horizontal distance between the two data
points in each cluster, we can make the algorithm per-
form arbitrarily poorly with respect to the k-means ob-
jective function.

4.4.4 Applications

The k-means++ approach has been applied since its ini-
tial proposal. In a review by Shindler,*[7] which includes
many types of clustering algorithms, the method is said
to successfully overcome some of the problems associ-
ated with other ways of defining initial cluster-centres for
k-means clustering. Lee et al.*[8] report an application of
k-means++ to create geographical cluster of photographs
based on the latitude and longitude information attached
to the photos. An application to financial diversification
is reported by Howard and Johansen.*[9] Other support
for the method and ongoing discussion is also available
online.*[10] Since the k-means++ initialization needs k
passes over the data, it does not scale very well to large
data sets. Bahman Bahmani et al. have proposed a scal-
able variant of k-means++ called k-means|| which pro-
vides the same theoretical guarantees and yet is highly
scalable.*[11]

4.4.5 Software

• Scikit-learn has a K-Means implementation that
uses k-means++ by default.

• ELKI data-mining framework contains multiple k-
means variations, including k-means++ for seeding.

• GNU R includes k-means, and the“flexclust”pack-
age can do k-means++

• OpenCV implementation

• Weka contains k-means (with optional k-means++)
and x-means clustering.

• David Arthur's implementation

• Apache Commons Math Java implementation

• CMU's GraphLab GraphLab Efficient, open source
clustering on multicore.
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4.5 k-medoids

The k-medoids algorithm is a clustering algorithm re-
lated to the k-means algorithm and the medoidshift al-
gorithm. Both the k-means and k-medoids algorithms
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are partitional (breaking the dataset up into groups) and
both attempt to minimize the distance between points la-
beled to be in a cluster and a point designated as the cen-
ter of that cluster. In contrast to the k-means algorithm,
k-medoids chooses datapoints as centers (medoids or ex-
emplars) and works with an arbitrary matrix of distances
between datapoints instead of l2 . This method was pro-
posed in 1987*[1] for the work with l1 norm and other
distances.
k-medoid is a classical partitioning technique of cluster-
ing that clusters the data set of n objects into k clusters
known a priori. A useful tool for determining k is the
silhouette.
It is more robust to noise and outliers as compared to k-
means because it minimizes a sum of pairwise dissimi-
larities instead of a sum of squared Euclidean distances.
A medoid can be defined as the object of a cluster whose
average dissimilarity to all the objects in the cluster is
minimal. i.e. it is a most centrally located point in the
cluster.
The most common realisation of k-medoid clustering is
the Partitioning Around Medoids (PAM) algorithm
and is as follows:*[2]

1. Initialize: randomly select (without replacement) k
of the n data points as the medoids

2. Associate each data point to the closest medoid. (
“closest”here is defined using any valid distance

metric, most commonly Euclidean distance,
Manhattan distance or Minkowski distance)

3. For each medoid m

(a) For each non-medoid data point o
i. Swap m and o and compute the total cost

of the configuration

4. Select the configuration with the lowest cost.

5. Repeat steps 2 to 4 until there is no change in the
medoid.

4.5.1 Demonstration of PAM

Cluster the following data set of ten objects into two clus-
ters i.e. k = 2.
Consider a data set of ten objects as follows:

Step 1

Initialize k centers.
Let us assume x2 and x8 are selected as medoids, so the
centers are c1 = (3,4) and c2 = (7,4)
Calculate distances to each center so as to associate each
data object to its nearest medoid. Cost is calculated using

Figure 1.1 – distribution of the data

Figure 1.2 – clusters after step 1

Manhattan distance (Minkowski distance metric with r =
1). Costs to the nearest medoid are shown bold in the
table.
Then the clusters become:
Cluster1 = {(3,4)(2,6)(3,8)(4,7)}
Cluster2 = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)}
Since the points (2,6) (3,8) and (4,7) are closer to c1
hence they form one cluster whilst remaining points form
another cluster.
So the total cost involved is 20.
Where cost between any two points is found using for-
mula
cost(x, c) =

∑d
i=1 |xi − ci|

where x is any data object, c is the medoid, and d is the
dimension of the object which in this case is 2.
Total cost is the summation of the cost of data object from
its medoid in its cluster so here:
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total cost = {cost((3, 4), (2, 6)) + cost((3, 4), (3, 8)) + cost((3, 4), (4, 7))}
+ {cost((7, 4), (6, 2)) + cost((7, 4), (6, 4)) + cost((7, 4), (7, 3))
+ cost((7, 4), (8, 5)) + cost((7, 4), (7, 6))}
= (3 + 4 + 4) + (3 + 1 + 1 + 2 + 2)

= 20

Step 2

Figure 1.3 – clusters after step 2

Select one of the nonmedoids O′
Let us assume O′ = (7,3), i.e. x7.
So now the medoids are c1(3,4) and O′(7,3)
If c1 and O′ are new medoids, calculate the total cost in-
volved
By using the formula in the step 1

Figure 2. K-medoids versus k-means. Figs 2.1a-2.1f present a
typical example of the k-means convergence to a local minimum.
This result of k-means clustering contradicts the obvious cluster
structure of data set. In this example, k-medoids algorithm (Figs
2.2a-2.2h) with the same initial position of medoids (Fig. 2.2a)
converges to the obvious cluster structure. The small circles are
data points, the four ray stars are centroids (means), the nine ray
stars are medoids.*[3]

total cost = 3 + 4 + 4 + 2 + 2 + 1 + 3 + 3

= 22

So cost of swapping medoid from c2 to O′ is
S = current total cost− past total cost
= 22− 20

= 2 > 0.

=== program:

So moving to O′ would be a bad idea, so the previous
choice was good. So we try other nonmedoids and found
that our first choice was the best. So the configuration
does not change and algorithm terminates here (i.e. there
is no change in the medoids).
It may happen some data points may shift from one clus-
ter to another cluster depending upon their closeness to
medoid.
In some standard situations, k-medoids demonstrate bet-
ter performance than k-means. An example is presented
in Fig. 2. The most time-consuming part of the k-
medoids algorithm is the calculation of the distances be-
tween objects. If a quadratic preprocessing and storage
is applicable, the distances matrix can be precomputed
to achieve consequent speed-up. See for example,*[4]
where the authors also introduce a heuristic to choose the
initial k medoids.

4.5.2 Software

• ELKI includes several k-means variants, including
an EM-based k-medoids and the original PAM al-
gorithm.

• Julia contains a k-medoid implementation in the Ju-
liaStats clustering package.*[5]

• R includes variants of k-means in the “flexclust”
package and PAM is implemented in the “cluster”
package.

• RapidMiner has an operator named KMedoids, but
it does not implement the KMedoids algorithm cor-
rectly. Instead, it is a k-means variant, that substi-
tutes the mean with the closes data point (which is
not the medoid).

• Java-ML. Includes a k-medoid implementation that
is incorrect in the same way as the RapidMiner ver-
sion.

4.5.3 External links

E.M. Mirkes, K-means and K-medoids (Applet),
University of Leicester, 2011.

4.5.4 References
[1] Kaufman, L. and Rousseeuw, P.J. (1987), Clustering by

means of Medoids, in Statistical Data Analysis Based on
the L1 –Norm and Related Methods, edited by Y. Dodge,
North-Holland, 405–416.

[2] Sergios Theodoridis & Konstantinos Koutroumbas
(2006). Pattern Recognition 3rd ed. p. 635.

[3] The illustration was prepared with the Java applet, E.M.
Mirkes, K-means and K-medoids: applet. University of
Leicester, 2011.
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[4] H.S. Park , C.H. Jun, A simple and fast algorithm for
K-medoids clustering, Expert Systems with Applications,
36, (2) (2009), 3336–3341.

[5] Clustering.jl

4.6 k q-flats clustering

In data mining and machine learning, k q -flats algorithm
*[1] *[2] is an iterative method which aims to partition m
observations into k clusters where each cluster is close to
a q -flat, where q is a given integer.
It is a generalization of the k -means algorithm. In k -
means algorithm, clusters are formed in the way that each
cluster is close to one point, which is a 0 -flat. k q -flats
algorithm gives better clustering result than k -means al-
gorithm for some data set.

4.6.1 Description

Problem formulation

Given a set A of m observations (a1, a2, . . . , am) where
each observation ai is an n-dimensional real vector, k q
-flats algorithm aims to partition m observation points by
generating k q -flats that minimize the sum of the squares
of distances of each observation to a nearest q-flat.
A q -flat is a subset of Rn that is congruent to Rq . For
example, a 0 -flat is a point; a 1 -flat is a plane; a n − 1
-flat is a hyperplane. q -flat can be characterized by the
solution set of a linear system of equations: F = {x|x ∈
Rn,W ′x = γ} , where W ∈ Rn×(n−q) , γ ∈ R1×(n−q)

.
Denote a partition of {1, 2, . . . , n} as S =
(S1, S2, . . . , Sk) . The problem can be formulated
as
(P1)minFl,l=1,...,kq-flats are minS

∑k
l=1

∑
aj∈Si

∥aj −
PFi(aj)∥2,
where PFi(aj) is the projection of aj onto Fi . Note that
∥aj − PFi(aj)∥ = dist(aj , Fl) is the distance from aj
to Fl .

Algorithm

The algorithm is similar to the k-means algorithm (i.e.
Lloyd's algorithm) in that it alternates between cluster
assignment and cluster update. In specific, the algo-
rithm starts with an initial set of q -flats F

(0)
l = {x ∈

Rn|(W (0)
l )′x = γ

(0)
l }, l = 1, . . . , k , and proceeds by

alternating between the following two steps:

Cluster Assignment (given q -flats, assign
each point to closest q -flat): the i'th cluster is

updated asS(t)
i = {aj |∥(W (t)

i )′aj−γ(t)
i ∥F =

minl=1,...,k ∥(W (t)
l )′aj − γ

(t)
l ∥F }.

Cluster Update (given cluster assignment,
update the q -flats): For l = 1, . . . , k , let
A(l) ∈ Rm(l)×n with rows corresponding to
all ai assigned to cluster l . Set W (t+1)

l to
be the matrix whose columns are the orthonor-
mal eigenvectors corresponding to the (n− q)

least eigenvalues of A(l)′(I − ee′

m )A(l) and
γ
(t+1)
l =

e′A(l)W
(t+1)
l

m .

Stop whenever the assignments no longer change.
The cluster assignment step uses the following fact:
given a q-flat Fl = {x|W ′x = γ} and a vector a
, where W ′W = I , the distance from a to the q-
flat Fl is dist(a, Fl) = minx:W ′x=γ∥x − a∥2F =
∥W (W ′W )−1(W ′x− γ)∥2F = ∥W ′x− γ∥2F .
The key part of this algorithm is how to update the cluster,
i.e. given m points, how to find a q -flat that minimizes
the sum of squares of distances of each point to the q -
flat. Mathematically, this problem is: given A ∈ Rm×n,
solve the quadratic optimization problem
(P2)minW∈Rn×(n−q),γ∈R1×(n−q) ∥AW−eγ∥2F , subject
to W ′W = I,

whereA ∈ Rm×n is given, and e = (1, . . . , 1)′ ∈ Rm×1

.
The problem can be solved using Lagrangian multiplier
method and the solution is as given in the cluster update
step.
It can be shown that the algorithm will terminate in a fi-
nite number of iterations (no more than the total number
of possible assignments, which is bounded by km ). In
addition, the algorithm will terminate at a point that the
overall objective cannot be decreased either by a differ-
ent assignment or by defining new cluster planes for these
clusters (such point is called“locally optimal”in the ref-
erences).
This convergence result is a consequence of the fact that
problem (P2) can be solved exactly. The same conver-
gence result holds for k -means algorithm because the
cluster update problem can be solved exactly.

4.6.2 Relation to other machine learning
methods

k -means algorithm

k q -flats algorithm is a generalization of k -means algo-
rithm. In fact, k -means algorithm is k 0-flats algorithm
since a point is a 0-flat. Despite their connection, they
should be used in different scenarios. k q -flats algorithm
for the case that data lie in a few low-dimensional spaces.
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k -means algorithm is desirable for the case the clusters
are of the ambient dimension, . For example, if all ob-
servations lie in two lines, k q -flats algorithm with q = 1
may be used; if the observations are two Gaussian clouds,
k -means algorithm may be used.

Sparse Dictionary Learning

Natural signals lie in a high-dimensional space. For ex-
ample, the dimension of a 1024 by 1024 image is about
10*6, which is far too high for most signal processing al-
gorithms. One way to get rid of the high dimensional-
ity is to find a set of basis functions, such that the high-
dimensional signal can be represented by only a few basis
functions. In other words, the coefficients of the signal
representation lies in a low-dimensional space, which is
easier to apply signal processing algorithms. In the litera-
ture, wavelet transform is usually used in image process-
ing, and fourier transform is usually used in audio pro-
cessing. The set of basis functions is usually called a dic-
tionary.
However, it is not clear what is the best dictionary to use
once given a signal data set. One popular approach is to
find a dictionary when given a data set using the idea of
Sparse Dictionary Learning. It aims to find a dictionary,
such that the signal can be sparsely represented by the
dictionary. The optimization problem can be written as
follows.
minB,R ∥X −BR∥2F subject to ∥Ri∥0 ≤ q

where

• X is a d by N matrix. Each columns of X represent
a signal, and there are total N signals.

• B is a d by l matrix. Each columns of B represent
a basis function, and there are total l basis functions
in the dictionary.

• R is a l by N matrix. Ri (i*th columns of R) repre-
sent the coefficients when we use the dictionary B
to represent the i*th columns of X.

• ∥v∥0 denotes the zero-norm of the vector v.

• ∥V ∥F denotes the Frobenious norm of matrix V.

The idea of k q− flats algorithm is similar to sparse dic-
tionary learning in nature. If we restrict the q-flat to q-
dimensional subspace, then the k q− flats algorithm is
simply finding the closed q-dimensional subspace to a
given signal. Sparse dictionary learning is also doing the
same thing, except for an additional constraints on the
sparsity of the representation. Mathematically, it is pos-
sible to show that k q− flats algorithm is of the form of
sparse dictionary learning with an additional block struc-
ture on R.
Let Bk be a d× q matrix, where columns of Bk are basis
of the kth flat. Then the projection of the signal x to the

kth flat is Bkrk , where rk is a q-dimensional coefficient.
Let B = [B1, · · · , BK ] denote concatenation of basis of
K flats, it is easy to show that the k -q-flat algorithm is the
same as the following.
minB,R ∥X − BR∥2F subject to ∥Ri∥0 ≤ q and R has a
block structure.
The block structure of R refers the fact that each signal is
labeled to only one flat. Comparing the two formulations,
k q-flat is the same as sparse dictionary modeling when
l = K × q and with an additional block structure on R.
Users may refer to Szlam's paper *[3] for more discussion
about the relationship between the two concept.

4.6.3 Applications and Variations

Classification

Classification is a procedure that classifies an input signal
into different classes. One example is to classify an email
into spam or non-spam classes. Classification algorithms
usually require a supervised learning stage. In the super-
vised learning stage, training data for each class is used
for the algorithm to learn the characteristics of the class.
In the classification stage, a new observation is classified
into a class by using the characteristics that were already
trained.
k q-flat algorithm can be used for classification. Suppose
there are total of m classes. For each class, k flats are
trained a priori via training data set. When a new data
comes, find the flat that is closest to the new data. Then
the new data is associate to class of the closest flat.
However, the classification performance can be further
improved if we impose some structure on the flats. One
possible choice is to require different flats from different
class be sufficiently far apart. Some researchers *[4] use
this idea and develop a discriminative k q-flat algorithm.

K-metrics *[3]

In k q -flats algorithm, ∥x−PF (x)∥2 is used to measure
the representation error. PF (x) denotes the projection
of x to the flat F. If data lies in a q-dimension flat, then a
single q-flat can represent the data very well. On the con-
trary, if data lies in a very high dimension space but near
a common center, then k-means algorithm is a better way
than k q-flat algorithm to represent the data. It is because
k -means algorithm use ∥x− xc∥2 to measure the error,
where xc denotes the center. K-metrics is a generaliza-
tion that use both the idea of flat and mean. In k-metrics,
error is measured by the following Mahalanobis metric.
∥x− y∥2A = (x− y)TA(x− y)

where A is a positive semi-definite matrix.
If A is the identity matrix, then the Mahalanobis metric
is exactly the same as the error measure used in k-means.

https://en.wikipedia.org/wiki/Gaussian_clouds
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If A is not the identity matrix, then ∥x − y∥2A will favor
certain directions as the k q-flat error measure.

4.6.4 References

[1] Bradley, P S, and O L Mangasarian. 2000. k-
Plane Clustering. Journal of Global Optimization 16,
no. 1: 23-32. http://www.springerlink.com/index/
H51L607707062TN7.pdf.

[2] Tseng, P. 2000. Nearest q-flat to m points. Journal of
Optimization Theory and Applications 105, no. 1: 249–
252.

[3] Szlam, A, and G Sapiro. 2009. “Discriminative k-
metrics.”Ed. Léon Bottou and Michael Littman. Pro-
cessing (1) 744615-744615-10

[4] Szlam, A, and G Sapiro. “Supervised Learning via Dis-
criminative k q-Flats”

4.7 Voronoi diagram

20 points and their Voronoi cells (larger version below).

In mathematics, aVoronoi diagram is a partitioning of a
plane into regions based on distance to points in a specific
subset of the plane. That set of points (called seeds, sites,
or generators) is specified beforehand, and for each seed
there is a corresponding region consisting of all points
closer to that seed than to any other. These regions are
called Voronoi cells. The Voronoi diagram of a set of
points is dual to its Delaunay triangulation. Put sim-
ply, it's a diagram created by taking pairs of points that
are close together and drawing a line that is equidistant
between them and perpendicular to the line connecting
them. That is, all points on the lines in the diagram are
equidistant to the nearest two (or more) source points.

It is named after Georgy Voronoy, and is also called
a Voronoi tessellation, a Voronoi decomposition, a
Voronoi partition, or a Dirichlet tessellation (after
Peter Gustav Lejeune Dirichlet). Voronoi diagrams have
practical and theoretical applications to a large number
of fields, mainly in science and technology but even in-
cluding visual art.*[1]*[2]

4.7.1 The simplest case

In the simplest and most familiar case (shown in the first
picture), we are given a finite set of points {p1, …, pn}
in the Euclidean plane. In this case each site pk is simply
a point, and its corresponding Voronoi cell (also called
Voronoi region or Dirichlet cell) Rk consists of every
point whose distance to pk is less than or equal to its dis-
tance to any other pk. Each such cell is obtained from the
intersection of half-spaces, and hence it is a convex poly-
gon. The segments of the Voronoi diagram are all the
points in the plane that are equidistant to the two nearest
sites. The Voronoi vertices (nodes) are the points equidis-
tant to three (or more) sites.

4.7.2 Formal definition

Let X be a space (a nonempty set) endowed with a dis-
tance function d . Let K be a set of indices and let (Pk)k∈K

be a tuple (ordered collection) of nonempty subsets (the
sites) in the space X . The Voronoi cell, or Voronoi re-
gion, Rk , associated with the site Pk is the set of all points
in X whose distance to Pk is not greater than their distance
to the other sites Pj , where j is any index different from k

. In other words, if d(x,A) = inf{d(x, a)|a∈A} denotes the
distance between the point x and the subset A , then

Rk = {x ∈ X | d(x, Pk) ≤ d(x, Pj) all for j ̸= k}

The Voronoi diagram is simply the tuple of cells (Rk)k∈K

. In principle some of the sites can intersect and even
coincide (an application is described below for sites rep-
resenting shops), but usually they are assumed to be dis-
joint. In addition, infinitely many sites are allowed in the
definition (this setting has applications in geometry of
numbers and crystallography), but again, in many cases
only finitely many sites are considered.
In the particular case where the space is a finite-
dimensional Euclidean space, each site is a point, there
are finitely many points and all of them are different, then
the Voronoi cells are convex polytopes and they can be
represented in a combinatorial way using their vertices,
sides, 2-dimensional faces, etc. Sometimes the induced
combinatorial structure is referred to as the Voronoi dia-
gram. However, in general the Voronoi cells may not be
convex or even connected.
In the usual Euclidean space, we can rewrite the formal
definition in usual terms. Each Voronoi polygon Rk is
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associated with a generator point Pk . Let X the set of
all points in the Euclidean space. Let P1 be a point that
generates its Voronoi region R1 , P2 that generates R2 ,
and P3 that generates R3 , and so on. Then, as expressed
by Tran et al*[3] “all locations in the Voronoi polygon
are closer to the generator point of that polygon than any
other generator point in the Voronoi diagram in Euclidian
plane”.

4.7.3 Illustration

As a simple illustration, consider a group of shops in a
flat city. Suppose we want to estimate the number of cus-
tomers of a given shop. With all else being equal (price,
products, quality of service, etc.), it is reasonable to as-
sume that customers choose their preferred shop simply
by distance considerations: they will go to the shop lo-
cated nearest to them. In this case the Voronoi cell Rk of
a given shop Pk can be used for giving a rough estimate
on the number of potential customers going to this shop
(which is modeled by a point in our flat city).
So far it was assumed that the distance between points in
the city is measured using the standard distance, the fa-
miliar Euclidean distance: ℓ2 = d [(a1, a2) , (b1, b2)] =√
(a1 − b1)

2
+ (a2 − b2)

2

However, if we consider the case where customers only
go to the shops by a vehicle and the traffic paths are par-
allel to the x and y axes, as in Manhattan, then a more
realistic distance function will be the ℓ1 distance, namely
d [(a1, a2) , (b1, b2)] = |a1 − b1|+ |a2 − b2| .
Voronoi diagrams of 20 points under two different
metrics

Euclidean distance

Manhattan distance

4.7.4 Properties

• The dual graph for a Voronoi diagram (in the case
of a Euclidean space with point sites) corresponds to
the Delaunay triangulation for the same set of points.

• The closest pair of points corresponds to two adja-
cent cells in the Voronoi diagram.

• Assume the setting is the Euclidean plane and a
group of different points are given. Then two points
are adjacent on the convex hull if and only if their
Voronoi cells share an infinitely long side.

• If the space is a normed space and the distance to
each site is attained (e.g., when a site is a compact set
or a closed ball), then each Voronoi cell can be rep-
resented as a union of line segments emanating from
the sites.*[4] As shown there, this property does not
necessarily hold when the distance is not attained.

• Under relatively general conditions (the space is
a possibly infinite-dimensional uniformly convex
space, there can be infinitely many sites of a gen-
eral form, etc.) Voronoi cells enjoy a certain sta-
bility property: a small change in the shapes of the
sites, e.g., a change caused by some translation or
distortion, yields a small change in the shape of the
Voronoi cells. This is the geometric stability of
Voronoi diagrams.*[5] As shown there, this prop-
erty does not hold in general, even if the space is
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two-dimensional (but non-uniformly convex, and, in
particular, non-Euclidean) and the sites are points.

4.7.5 History and research

Informal use of Voronoi diagrams can be traced back
to Descartes in 1644. Peter Gustav Lejeune Dirichlet
used 2-dimensional and 3-dimensional Voronoi diagrams
in his study of quadratic forms in 1850. British physician
John Snow used a Voronoi diagram in 1854 to illustrate
how the majority of people who died in the Soho cholera
epidemic lived closer to the infected Broad Street pump
than to any other water pump.
Voronoi diagrams are named after Ukrainian mathe-
matician Georgy Fedosievych Voronyi (or Voronoy) who
defined and studied the general n-dimensional case in
1908. Voronoi diagrams that are used in geophysics
and meteorology to analyse spatially distributed data
(such as rainfall measurements) are called Thiessen poly-
gons after American meteorologist Alfred H. Thiessen.
In condensed matter physics, such tessellations are also
known as Wigner–Seitz unit cells. Voronoi tessella-
tions of the reciprocal lattice of momenta are called
Brillouin zones. For general lattices in Lie groups, the
cells are simply called fundamental domains. In the
case of general metric spaces, the cells are often called
metric fundamental polygons. Other equivalent names
for this concept (or particular important cases of it):
Voronoi polyhedra, Voronoi polygons, domain(s) of in-
fluence, Voronoi decomposition, Voronoi tessellation(s),
Dirichlet tessellation(s).

4.7.6 Examples

Voronoi tessellations of regular lattices of points in two or
three dimensions give rise to many familiar tessellations.

• A 2D lattice gives an irregular honeycomb tessel-
lation, with equal hexagons with point symmetry; in
the case of a regular triangular lattice it is regular; in
the case of a rectangular lattice the hexagons reduce
to rectangles in rows and columns; a square lattice
gives the regular tessellation of squares; note that
the rectangles and the squares can also be generated
by other lattices (for example the lattice defined by
the vectors (1,0) and (1/2,1/2) gives squares). See
here for a dynamic visual example.

• A simple cubic lattice gives the cubic honeycomb.

• A hexagonal close-packed lattice gives a tessellation
of space with trapezo-rhombic dodecahedra.

• A face-centred cubic lattice gives a tessellation of
space with rhombic dodecahedra.

• A body-centred cubic lattice gives a tessellation of
space with truncated octahedra.

This is a slice of the Voronoi diagram of a random set of points in
a 3D box. In general a cross section of a 3D Voronoi tessellation
is not a 2D Voronoi tessellation itself. (The cells are all convex
polyhedra.)

• Parallel planes with regular triangular lattices
aligned with each other's centers give the hexagonal
prismatic honeycomb.

• Certain body centered tetragonal lattices give a tes-
sellation of space with rhombo-hexagonal dodeca-
hedra.

For the set of points (x, y) with x in a discrete set X and y
in a discrete set Y, we get rectangular tiles with the points
not necessarily at their centers.

4.7.7 Higher-order Voronoi diagrams

Although a normal Voronoi cell is defined as the set of
points closest to a single point in S, an nth-order Voronoi
cell is defined as the set of points having a particular set
of n points in S as its n nearest neighbors. Higher-order
Voronoi diagrams also subdivide space.
Higher-order Voronoi diagrams can be generated recur-
sively. To generate the n*th-order Voronoi diagram from
set S, start with the (n − 1)*th-order diagram and re-
place each cell generated by X = {x1, x2, ..., xn−1} with a
Voronoi diagram generated on the set S − X.

Farthest-point Voronoi diagram

For a set of n points the (n − 1)*th-order Voronoi diagram
is called a farthest-point Voronoi diagram.
For a given set of points S = {p1, p2, ..., pn} the farthest-
point Voronoi diagram divides the plane into cells in
which the same point of P is the farthest point. Note that
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a point of P has a cell in the farthest-point Voronoi dia-
gram if and only if it is a vertex of the convex hull of P.
Thus, let H = {h1, h2, ..., hk} be the convex hull of P we
define the farthest-point Voronoi diagram as the subdivi-
sion of the plane into k cells, one for each point in H, with
the property that a point q lies in the cell corresponding to
a site hi if and only if dist(q, hi) > dist(q, pj) for each pj ∈
S with hi ≠ pj . Where dist(p, q) is the Euclidean distance
between two points p and q.*[6]*[7]

4.7.8 Generalizations and variations

As implied by the definition, Voronoi cells can be defined
for metrics other than Euclidean (such as the Mahalanobis
or Manhattan) distances. However in these cases the
boundaries of the Voronoi cells may be more complicated
than in the Euclidean case, since the equidistant locus for
two points may fail to be subspace of codimension 1, even
in the 2-dimensional case.

Approximate Voronoi diagram of a set of points. Notice the
blended colors in the fuzzy boundary of the Voronoi cells.

A weighted Voronoi diagram is the one in which the
function of a pair of points to define a Voronoi cell is
a distance function modified by multiplicative or additive
weights assigned to generator points. In contrast to the
case of Voronoi cells defined using a distance which is
a metric, in this case some of the Voronoi cells may be
empty. A power diagram is a type of Voronoi diagram
defined from a set of circles using the power distance; it
can also be thought of as a weighted Voronoi diagram in
which a weight defined from the radius of each circle is
added to the squared distance from the circle's center.*[8]
The Voronoi diagram of n points in d-dimensional space
requires O

(
n⌈ 1

2
d⌉) storage space. Therefore, Voronoi

diagrams are often not feasible for d > 2. An alter-
native is to use approximate Voronoi diagrams, where

the Voronoi cells have a fuzzy boundary, which can be
approximated.*[9] Another alternative is when any site
is a fuzzy circle and as a result the cells become fuzzy
too.*[10]
Voronoi diagrams are also related to other geometric
structures such as the medial axis (which has found appli-
cations in image segmentation, optical character recog-
nition, and other computational applications), straight
skeleton, and zone diagrams. Besides points, such dia-
grams use lines and polygons as seeds. By augmenting the
diagram with line segments that connect to nearest points
on the seeds, a planar subdivision of the environment is
obtained.*[11] This structure can be used as a navigation
mesh for path-finding through large spaces. The navi-
gation mesh has been generalized to support 3D multi-
layered environments, such as an airport or a multi-storey
building.*[12]

4.7.9 Applications

• In astrophysics, Voronoi diagrams are used to gen-
erate adaptative smoothing zones on images, adding
signal fluxes on each one. The main objective for
these procedures is to maintain a relatively constant
signal-to-noise ratio on all the image.

John Snow's original diagram

• In epidemiology, Voronoi diagrams can be used to
correlate sources of infections in epidemics. One of
the early applications of Voronoi diagrams was im-
plemented by John Snow to study the 1854 Broad
Street cholera outbreak in Soho, England. He
showed the correlation between areas on the map
of London using a particular water pump, and the
areas with most deaths due to the outbreak.

• A point location data structure can be built on top
of the Voronoi diagram in order to answer nearest
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neighbor queries, where one wants to find the ob-
ject that is closest to a given query point. Nearest
neighbor queries have numerous applications. For
example, one might want to find the nearest hospi-
tal, or the most similar object in a database. A large
application is vector quantization, commonly used
in data compression.

• In geometry, Voronoi diagrams can be used to find
the largest empty circle amid a set of points, and in
an enclosing polygon; e.g. to build a new supermar-
ket as far as possible from all the existing ones, lying
in a certain city.

• Voronoi diagrams together with farthest-point
Voronoi diagrams are used for efficient algorithms
to compute the roundness of a set of points.*[6]

• The Voronoi approach is also put to good use in the
evaluation of circularity/roundness while assessing
the dataset from a coordinate-measuring machine.

• In aviation, Voronoi diagrams are superimposed on
oceanic plotting charts to identify the nearest air-
field for in-flight diversion, as an aircraft progresses
through its flight plan.

• In networking, Voronoi diagrams can be used in
derivations of the capacity of a wireless network.

• In hydrology, Voronoi diagrams are used to calcu-
late the rainfall of an area, based on a series of point
measurements. In this usage, they are generally re-
ferred to as Thiessen polygons.

• In ecology, Voronoi diagrams are used to study the
growth patterns of forests and forest canopies, and
may also be helpful in developing predictive models
for forest fires.

• In architecture, Voronoi patterns were the basis for
the winning entry for redevelopment of The Arts
Centre Gold Coast.*[13]

• In computational chemistry, Voronoi cells defined
by the positions of the nuclei in a molecule are used
to compute atomic charges. This is done using the
Voronoi deformation density method.

• In polymer physics, Voronoi diagrams can be used
to represent free volumes of polymers.

• In materials science, polycrystalline microstructures
in metallic alloys are commonly represented using
Voronoi tessellations. In solid state physics, the
Wigner-Seitz cell is the Voronoi tessellation of a
solid, and the Brillouin zone is the Voronoi tessel-
lation of reciprocal (wave number) space of crystals
which have the symmetry of a space group.

• In mining, Voronoi polygons are used to estimate
the reserves of valuable materials, minerals, or other
resources. Exploratory drillholes are used as the set
of points in the Voronoi polygons.

• In computer graphics, Voronoi diagrams are used
to calculate 3D shattering / fracturing geometry pat-
terns. It is also used to procedurally generate organic
or lava-looking textures.

• In autonomous robot navigation, Voronoi diagrams
are used to find clear routes. If the points are obsta-
cles, then the edges of the graph will be the routes
furthest from obstacles (and theoretically any colli-
sions).

• In machine learning, Voronoi diagrams are used to
do 1-NN classifications.*[14]

• In biology, Voronoi diagrams are used to model a
number of different biological structures, including
cells*[15] and bone microarchitecture.*[16]

• In user interface development, Voronoi patterns can
be used to compute the best hover state for a given
point.*[17]

• In computational fluid dynamics, the Voronoi tes-
sellation of a set of points can be used to define the
computational domains used in finite volume meth-
ods, e.g. as in the moving-mesh cosmology code
AREPO.*[18]

4.7.10 See also

Algorithms

Direct algorithms:

• Fortune's algorithm, an O(n log(n)) algorithm for
generating a Voronoi diagram from a set of points
in a plane.

• Lloyd's algorithm, aka k-means clustering, produces
a Voronoi tessellation in a space of arbitrary dimen-
sions

Starting with a Delaunay triangulation (obtain the dual):

• Bowyer–Watson algorithm, an O(n log(n)) to O(n2)
algorithm for generating a Delaunay triangulation in
any number of dimensions, from which the Voronoi
diagram can be obtained.

Related subjects

• Centroidal Voronoi tessellation

• Computational geometry

• Delaunay triangulation

• Mathematical diagram

• Natural neighbor interpolation
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• Nearest neighbor search

• Nearest-neighbor interpolation

• Voronoi pole

• Power diagram
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4.7.13 External links

• Real time interactive Voronoi / Delaunay diagrams
with draggable points, Java 1.0.2, 1996–1997

• Real time interactive Voronoi and Delaunay dia-
grams with source code

• Interactive Voronoi diagrams with Natural Neighbor
Interpolation visualization (in WebGL)

• Demo for various metrics

• Mathworld on Voronoi diagrams

• Qhull for computing the Voronoi diagram in 2-d, 3-
d, etc.

• Voronoi Diagrams: Applications from Archaeology
to Zoology

• Voronoi Diagrams in CGAL, the Computational
Geometry Algorithms Library

• Voronoi Web Site : using Voronoi diagrams for spa-
tial analysis

• More discussions and picture gallery on centroidal
Voronoi tessellations

• Voronoi Diagrams by Ed Pegg, Jr., Jeff Bryant, and
Theodore Gray, Wolfram Demonstrations Project.

• Nice explanation of voronoi diagram and visual im-
plementation of fortune's algorithm

• A Voronoi diagram on a sphere

• Plot a Voronoi diagram with Mathematica

• Voronoi software for shattering 3D geometry

• Hand-drawing Voronoi diagrams

• Overlaid Voronoi diagram of the United States
based on state capitals

• Overlaid Voronoi diagram of the world based on na-
tional capitals
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Chapter 5

Density Models

5.1 DBSCAN

Density-based spatial clustering of applications with
noise (DBSCAN) is a data clustering algorithm proposed
by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xi-
aowei Xu in 1996.*[1] It is a density-based clustering al-
gorithm: given a set of points in some space, it groups to-
gether points that are closely packed together (points with
many nearby neighbors), marking as outliers points that
lie alone in low-density regions (whose nearest neighbors
are too far away). DBSCAN is one of the most common
clustering algorithms and also most cited in scientific lit-
erature.*[2]
In 2014, the algorithm was awarded the test of time award
(an award given to algorithms which have received sub-
stantial attention in theory and practice) at the leading
data mining conference, KDD.*[3]

5.1.1 Preliminaries

Consider a set of points in some space to be clustered. For
the purpose of DBSCAN clustering, the points are classi-
fied as core points, (density-)reachable points and outliers,
as follows:

• A point is a core point if at least minPts points are
within distance ε of it, and those points are said to be
directly reachable from p. No points are reachable
from a non-core point.

• A point q is reachable from p if there is a path p1, ...,
pn with p1 = p and pn = q, where each pi+1 is directly
reachable from pᵢ (so all the points on the path must
be core points, with the possible exception of q).

• All points not reachable from any other point are
outliers.

Now if p is a core point, then it forms a cluster together
with all points (core or non-core) that are reachable from
it. Each cluster contains at least one core point; non-core
points can be part of a cluster, but they form its “edge”
, since they cannot be used to reach more points.

A C

B

N

In this diagram, minPts = 3. Point A and the other red points
are core points, because at least three points surround it in an ε
radius. Because they are all reachable from one another, they
form a single cluster. Points B and C are not core points, but are
reachable from A (via other core points) and thus belong to the
cluster as well. Point N is a noise point that is neither a core point
nor density-reachable.

Reachability is not a symmetric relation since, by defini-
tion, no point may be reachable from a non-core point,
regardless of distance (so a non-core point may be reach-
able, but nothing can be reached from it). Therefore a
further notion of connectedness is needed to formally de-
fine the extent of the clusters found by DBSCAN. Two
points p and q are density-connected if there is a point
o such that both p and q are density-reachable from o.
Density-connectedness is symmetric.
A cluster then satisfies two properties:

1. All points within the cluster are mutually density-
connected.

2. If a point is density-reachable from any point of the
cluster, it is part of the cluster as well.

5.1.2 Algorithm

DBSCAN requires two parameters: ε (eps) and the min-
imum number of points required to form a dense re-
gion*[lower-alpha 1] (minPts). It starts with an arbitrary
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starting point that has not been visited. This point's ε-
neighborhood is retrieved, and if it contains sufficiently
many points, a cluster is started. Otherwise, the point is
labeled as noise. Note that this point might later be found
in a sufficiently sized ε-environment of a different point
and hence be made part of a cluster.
If a point is found to be a dense part of a cluster, its ε-
neighborhood is also part of that cluster. Hence, all points
that are found within the ε-neighborhood are added, as
is their own ε-neighborhood when they are also dense.
This process continues until the density-connected clus-
ter is completely found. Then, a new unvisited point is
retrieved and processed, leading to the discovery of a fur-
ther cluster or noise.
In pseudocode, the algorithm can be expressed as follows:
DBSCAN(D, eps, MinPts) C = 0 for each unvisited point
P in dataset D mark P as visited NeighborPts = region-
Query(P, eps) if sizeof(NeighborPts) < MinPts mark P
as NOISE else C = next cluster expandCluster(P, Neigh-
borPts, C, eps, MinPts) expandCluster(P, NeighborPts,
C, eps, MinPts) add P to cluster C for each point P' in
NeighborPts if P' is not visited mark P' as visited Neigh-
borPts' = regionQuery(P', eps) if sizeof(NeighborPts') >=
MinPts NeighborPts = NeighborPts joined with Neigh-
borPts' if P' is not yet member of any cluster add P' to
cluster C regionQuery(P, eps) return all points within P's
eps-neighborhood (including P)

5.1.3 Complexity

DBSCAN visits each point of the database, possibly mul-
tiple times (e.g., as candidates to different clusters). For
practical considerations, however, the time complexity is
mostly governed by the number of regionQuery invoca-
tions. DBSCAN executes exactly one such query for each
point, and if an indexing structure is used that executes
such a neighborhood query in O(log n), an overall runtime
complexity of O(n log n) is obtained. Without the use of
an accelerating index structure, the run time complexity is
O(n²). Often the distance matrix of size (n²-n)/2 is mate-
rialized to avoid distance recomputations. This however
also needs O(n²) memory, whereas a non-matrix based
implementation only needs O(n) memory.

5.1.4 Advantages

1. DBSCAN does not require one to specify the num-
ber of clusters in the data a priori, as opposed to
k-means.

2. DBSCAN can find arbitrarily shaped clusters. It can
even find a cluster completely surrounded by (but not
connected to) a different cluster. Due to the MinPts
parameter, the so-called single-link effect (different
clusters being connected by a thin line of points) is
reduced.
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DBSCAN can find non-linearly separable clusters. This dataset
cannot be adequately clustered with k-means or Gaussian Mix-
ture EM clustering.

3. DBSCAN has a notion of noise, and is robust to
outliers.

4. DBSCAN requires just two parameters and is
mostly insensitive to the ordering of the points in
the database. (However, points sitting on the edge
of two different clusters might swap cluster mem-
bership if the ordering of the points is changed, and
the cluster assignment is unique only up to isomor-
phism.)

5. DBSCAN is designed for use with databases that can
accelerate region queries, e.g. using an R* tree.

5.1.5 Disadvantages

1. DBSCAN is not entirely deterministic: border
points that are reachable from more than one clus-
ter can be part of either cluster. Fortunately, this
situation does not arise often, and has little im-
pact on the clustering result: both on core points
and noise points, DBSCAN is deterministic. DB-
SCAN**[4] is a variation that treats border points
as noise, and this way achieves a fully deterministic
result as well as a more consistent statistical inter-
pretation of density-connected components.

2. The quality of DBSCAN depends on the distance
measure used in the function regionQuery(P,ε). The
most common distance metric used is Euclidean dis-
tance. Especially for high-dimensional data, this
metric can be rendered almost useless due to the so-
called "Curse of dimensionality", making it difficult
to find an appropriate value for ε. This effect, how-
ever, is also present in any other algorithm based on
Euclidean distance.
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3. DBSCAN cannot cluster data sets well with large
differences in densities, since the minPts-ε combi-
nation cannot then be chosen appropriately for all
clusters.

See the section below on extensions for algorithmic mod-
ifications to handle these issues.

5.1.6 Parameter estimation

Every data mining task has the problem of parame-
ters. Every parameter influences the algorithm in specific
ways. For DBSCAN, the parameters ε and minPts are
needed. The parameters must be specified by the user.
Ideally, the value of ε is given by the problem to solve
(e.g. a physical distance), and minPts is then the desired
minimum cluster size.*[lower-alpha 1]

• MinPts: As a rule of thumb, a minimum minPts
can be derived from the number of dimensions D
in the data set, as minPts≥D+1. The low value of
minPts=1 does not make sense, as then every point
on its own will already be a cluster. With minPts=2,
the result will be the same as of hierarchical cluster-
ing with the single link metric, with the dendrogram
cut at height ε. However, larger values are usually
better for data sets with noise and will yield more sig-
nificant clusters. The larger the data set, the larger
the value of minPts should be chosen.

• ε: The value for ε can then be chosen by using a k-
distance graph, plotting the distance to the k=minPts
nearest neighbor. Good values of ε are where this
plot shows a strong bend: if ε is chosen too small, a
large part of the data will not be clustered; whereas
for a too high value of ε, clusters will merge and the
majority of objects will be in the same cluster.

OPTICS can be seen as a generalization of DBSCAN
that replaces the ε parameter with a maximum value that
mostly affects performance. MinPts then essentially be-
comes the minimum cluster size to find. While the algo-
rithm is much easier to parameterize than DBSCAN, the
results are a bit more difficult to use, as it will usually pro-
duce a hierarchical clustering instead of the simple data
partitioning that DBSCAN produces.
Recently, one of the original authors of DBSCAN
has revisited DBSCAN and OPTICS, and published
a refined version of hierarchical DBSCAN (HDB-
SCAN*),*[4]*[5] which no longer has the notion of bor-
der points.

5.1.7 Extensions

Generalized DBSCAN (GDBSCAN)*[6]*[7] is a gener-
alization by the same authors to arbitrary“neighborhood”

and “dense”predicates. The ε and minpts parameters
are removed from the original algorithm and moved to
the predicates. For example on polygon data, the“neigh-
borhood”could be any intersecting polygon, whereas the
density predicate uses the polygon areas instead of just
the object count.
Various extensions to the DBSCAN algorithm have been
proposed, including methods for parallelization, param-
eter estimation and support for uncertain data. The ba-
sic idea has been extended to hierarchical clustering by
the OPTICS algorithm. DBSCAN is also used as part
of subspace clustering algorithms like PreDeCon and
SUBCLU. HDBSCAN*[4] is a hierarchical version of
DBSCAN which is also faster than OPTICS, from which
a flat partition consisting of most prominent clusters can
be extracted from the hierarchy.*[5]

5.1.8 Availability

• ELKI offers an implementation of DBSCAN as
well as GDBSCAN and other variants. This imple-
mentation can use various index structures for sub-
quadratic runtime and supports arbitrary distance
functions and arbitrary data types, but it may be out-
performed by low-level optimized (and specialized)
implementations on small data sets.

• scikit-learn includes a Python implementation of
DBSCAN for arbitrary Minkowski metrics, which
can be accelerated using kd-trees and ball trees but
which uses worst-case quadratic memory.

• GNU R contains DBSCAN in the “fpc”package
with support for arbitrary distance functions via dis-
tance matrices. However it does not have index sup-
port (and thus has quadratic runtime and memory
complexity) and is rather slow due to the R inter-
preter, whereas other clustering algorithms are opti-
mized C and Fortran implementations.

• SPMF offers a minimalistic GPL-V3 Java imple-
mentation of the DBSCAN algorithm for Euclidean
distance only with KD-Tree support.

• Weka contains (as an optional package in latest ver-
sions) a basic implementation of DBSCAN that run
in quadratic time and linear memory.

5.1.9 See also

• OPTICS algorithm: a generalization of DBSCAN to
multiple ranges, effectively replacing the ε parame-
ter with a maximum search radius.
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5.1.10 Notes
[1] While minPts intuitively is the minimum cluster size, in

some cases DBSCAN can produce smaller clusters. A
DBSCAN cluster consists of at least one core point. As
other points may be border points to more than one clus-
ter, there is no guarantee that at least minPts points are
included in every cluster.

5.1.11 References
[1] Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xi-

aowei (1996). Simoudis, Evangelos; Han, Jiawei; Fayyad,
Usama M., eds. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. Proceed-
ings of the Second International Conference on Knowl-
edge Discovery and Data Mining (KDD-96). AAAI
Press. pp. 226–231. ISBN 1-57735-004-9. CiteSeerX:
10 .1 .1 .71 .1980.

[2] Most cited data mining articles according to Microsoft
academic search; DBSCAN is on rank 24, when accessed
on: 4/18/2010

[3] “2014 SIGKDD Test of Time Award”. ACM SIGKDD.
2014-08-18. Retrieved 2014-08-22.

[4] Campello, R. J. G. B.; Moulavi, D.; Sander, J. (2013).
Density-Based Clustering Based on Hierarchical Density
Estimates. Proceedings of the 17th Pacific-Asia Con-
ference on Knowledge Discovery in Databases, PAKDD
2013. Lecture Notes in Computer Science 7819. p. 160.
doi:10.1007/978-3-642-37456-2_14. ISBN 978-3-642-
37455-5.

[5] Campello, R. J. G. B.; Moulavi, D.; Zimek, A.; Sander,
J. (2013). “A framework for semi-supervised and unsu-
pervised optimal extraction of clusters from hierarchies”
. Data Mining and Knowledge Discovery 27 (3): 344.
doi:10.1007/s10618-013-0311-4.

[6] Sander, Jörg; Ester, Martin; Kriegel, Hans-Peter; Xu,
Xiaowei (1998). “Density-Based Clustering in Spa-
tial Databases: The Algorithm GDBSCAN and Its
Applications”. Data Mining and Knowledge Dis-
covery (Berlin: Springer-Verlag) 2 (2): 169–194.
doi:10.1023/A:1009745219419.

[7] Sander, Jörg (1998). Generalized Density-Based Cluster-
ing for Spatial Data Mining. München: Herbert Utz Ver-
lag. ISBN 3-89675-469-6.

Further reading

• Arlia, Domenica; Coppola, Massimo. “Experi-
ments in Parallel Clustering with DBSCAN”. Euro-
Par 2001: Parallel Processing: 7th International
Euro-Par Conference Manchester, UK August 28–
31, 2001, Proceedings. Springer Berlin.

• Kriegel, Hans-Peter; Kröger, Peer; Sander, Jörg;
Zimek, Arthur (2011).“Density-based Clustering”
. WIREs Data Mining and Knowledge Discovery 1
(3): 231–240. doi:10.1002/widm.30.

5.2 OPTICS algorithm

Ordering points to identify the clustering structure
(OPTICS) is an algorithm for finding density-based
clusters in spatial data. It was presented by Mihael
Ankerst, Markus M. Breunig, Hans-Peter Kriegel and
Jörg Sander.*[1] Its basic idea is similar to DBSCAN,*[2]
but it addresses one of DBSCAN's major weaknesses: the
problem of detecting meaningful clusters in data of vary-
ing density. In order to do so, the points of the database
are (linearly) ordered such that points which are spatially
closest become neighbors in the ordering. Additionally,
a special distance is stored for each point that represents
the density that needs to be accepted for a cluster in or-
der to have both points belong to the same cluster. This
is represented as a dendrogram.

5.2.1 Basic idea

Like DBSCAN, OPTICS requires two parameters: ε ,
which describes the maximum distance (radius) to con-
sider, and MinPts , describing the number of points re-
quired to form a cluster. A point p is a core point if at
leastMinPts points are found within its ε -neighborhood
Nε(p) . Contrary to DBSCAN, OPTICS also considers
points that are part of a more densely packed cluster, so
each point is assigned a core distance that describes the
distance to the MinPts th closest point:

core-distε,MinPts(p) =

{
UNDEFINED if|Nε(p)| < MinPts

MinPts to distance smallest -thNε(p) otherwise

The reachability-distance of another point o from a point
p is the distance between o and p , or the core distance of
p :

reachability-distε,MinPts(o, p) =

{
UNDEFINED if|Nε(p)| < MinPts

max(core-distε,MinPts(p), dist(p, o)) otherwise

If p and o are nearest neighbors, this is the ε′ < ε we
need to assume in order to have p and o belong to the
same cluster.
Both the core-distance and the reachability-distance are
undefined if no sufficiently dense cluster (w.r.t. ε ) is
available. Given a sufficiently large ε , this will never
happen, but then every ε -neighborhood query will return
the entire database, resulting in O(n2) runtime. Hence,
the ε parameter is required to cut off the density of clus-
ters that is no longer considered to be interesting and to
speed up the algorithm this way.
The parameter ε is, strictly speaking, not necessary. It
can simply be set to the maximum possible value. When
a spatial index is available, however, it does play a prac-
tical role with regards to complexity. It is often claimed
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that OPTICS abstracts from DBSCAN by removing this
parameter, at least to the extent of only having to give the
maximum value.

5.2.2 Pseudocode

The basic approach of OPTICS is similar to DBSCAN,
but instead of maintaining a set of known, but so far un-
processed cluster members, a priority queue (e.g. using
an indexed heap) is used.
OPTICS(DB, eps, MinPts) for each point p of DB
p.reachability-distance = UNDEFINED for each unpro-
cessed point p of DB N = getNeighbors(p, eps) mark p as
processed output p to the ordered list if (core-distance(p,
eps, Minpts) != UNDEFINED) Seeds = empty priority
queue update(N, p, Seeds, eps, Minpts) for each next q in
Seeds N' = getNeighbors(q, eps) mark q as processed out-
put q to the ordered list if (core-distance(q, eps, Minpts)
!= UNDEFINED) update(N', q, Seeds, eps, Minpts)
In update(), the priority queue Seeds is updated with the
ε -neighborhood of p and q , respectively:
update(N, p, Seeds, eps, Minpts) coredist = core-
distance(p, eps, MinPts) for each o in N if (o is not
processed) new-reach-dist = max(coredist, dist(p,o))
if (o.reachability-distance == UNDEFINED) // o is
not in Seeds o.reachability-distance = new-reach-dist
Seeds.insert(o, new-reach-dist) else // o in Seeds, check
for improvement if (new-reach-dist < o.reachability-
distance) o.reachability-distance = new-reach-dist
Seeds.move-up(o, new-reach-dist)
OPTICS hence outputs the points in a particular ordering,
annotated with their smallest reachability distance (in the
original algorithm, the core distance is also exported, but
this is not required for further processing).

5.2.3 Extracting the clusters

Using a reachability-plot (a special kind of dendrogram),
the hierarchical structure of the clusters can be obtained
easily. It is a 2D plot, with the ordering of the points as
processed by OPTICS on the x-axis and the reachability
distance on the y-axis. Since points belonging to a cluster
have a low reachability distance to their nearest neighbor,
the clusters show up as valleys in the reachability plot.
The deeper the valley, the denser the cluster.
The image above illustrates this concept. In its upper left
area, a synthetic example data set is shown. The upper
right part visualizes the spanning tree produced by OP-
TICS, and the lower part shows the reachability plot as
computed by OPTICS. Colors in this plot are labels, and
not computed by the algorithm; but it is well visible how
the valleys in the plot correspond to the clusters in above
data set. The yellow points in this image are considered
noise, and no valley is found in their reachability plot.
They will usually not be assigned to clusters except the
omnipresent “all data”cluster in a hierarchical result.
Extracting clusters from this plot can be done manually
by selecting a range on the x-axis after visual inspection,
by selecting a threshold on the y-axis (the result will then
be similar to a DBSCAN clustering result with the same
ε and minPts parameters; here a value of 0.1 may yield
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good results), or by different algorithms that try to detect
the valleys by steepness, knee detection, or local maxima.
Clusterings obtained this way usually are hierarchical, and
cannot be achieved by a single DBSCAN run.

5.2.4 Complexity

Like DBSCAN, OPTICS processes each point once, and
performs one ε -neighborhood query during this pro-
cessing. Given a spatial index that grants a neighbor-
hood query in O(logn) runtime, an overall runtime of
O(n · logn) is obtained. The authors of the original OP-
TICS paper report an actual constant slowdown factor of
1.6 compared to DBSCAN. Note that the value of εmight
heavily influence the cost of the algorithm, since a value
too large might raise the cost of a neighborhood query to
linear complexity.
In particular, choosing ε > maxx,y d(x, y) (larger than
the maximum distance in the data set) is possible, but
will obviously lead to quadratic complexity, since every
neighborhood query will return the full data set. Even
when no spatial index is available, this comes at additional
cost in managing the heap. Therefore, ε should be chosen
appropriately for the data set.

5.2.5 Extensions

OPTICS-OF*[3] is an outlier detection algorithm based
on OPTICS. The main use is the extraction of outliers
from an existing run of OPTICS at low cost compared to
using a different outlier detection method.
DeLi-Clu,*[4] Density-Link-Clustering combines ideas
from single-linkage clustering and OPTICS, eliminating
the ε parameter and offering performance improvements
over OPTICS.
HiSC*[5] is a hierarchical subspace clustering (axis-
parallel) method based on OPTICS.
HiCO*[6] is a hierarchical correlation clustering algo-
rithm based on OPTICS.
DiSH*[7] is an improvement over HiSC that can find
more complex hierarchies.
FOPTICS*[8] is a faster implementation using random
projections.

5.2.6 Availability

Implementations of OPTICS, OPTICS-OF, DeLi-Clu,
HiSC, HiCO and DiSH are available in the ELKI data
mining framework (with index acceleration). An incom-
plete and slow implementation can be found in the Weka
extensions. The MRC National Institute for Medical Re-
search provides a C reimplementation of OPTICS with-
out index support.
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5.3 Mean shift

Mean shift is a non-parametric feature-space analysis
technique for locating the maxima of a density function,
a so-called mode-seeking algorithm.*[1] Application do-
mains include cluster analysis in computer vision and
image processing.*[2]
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5.3.1 History

The mean shift procedure was originally presented in
1975 by Fukunaga and Hostetler.*[3]

5.3.2 Overview

Mean shift is a procedure for locating the maxima of a
density function given discrete data sampled from that
function.*[1] It is useful for detecting the modes of this
density.*[1] This is an iterative method, and we start with
an initial estimate x . Let a kernel function K(xi −
x) be given. This function determines the weight of
nearby points for re-estimation of the mean. Typically
a Gaussian kernel on the distance to the current estimate
is used, K(xi − x) = e−c||xi−x||2 . The weighted mean
of the density in the window determined by K

m(x) =
∑

xi∈N(x) K(xi−x)xi∑
xi∈N(x) K(xi−x)

where N(x) is the neighborhood of x , a set of points for
which K(x) ̸= 0 .
The mean-shift algorithm now sets x ← m(x) , and re-
peats the estimation until m(x) converges.

5.3.3 Details

Let data be a finite set S embedded in the n-dimensional
Euclidean space, X. Let K be a flat kernel that is the char-
acteristic function of the λ -ball in X,

K(x) =

{
1 if ∥x∥ ≤ λ

0 if ∥x∥ > λ

The difference m(x)−x is called mean shift in Fukunaga
and Hostetler.*[3] The repeated movement of data points
to the sample means is called the mean shift algorithm. In
each iteration of the algorithm, s ← m(s) is performed
for all s ∈ S simultaneously. The first question, then, is
how to estimate the density function given a sparse set of
samples. One of the simplest approaches is to just smooth
the data, e.g., by convolving it with a fixed kernel of width
h ,

f(x) =
∑

i K(x− xi) =
∑

i k
(

∥x−xi∥2

h2

)
where xi are the input samples and k(r) is the kernel
function (or Parzen window). h is the only parameter in
the algorithm and is called the bandwidth. This approach
is known as kernel density estimation or the Parzen win-
dow technique. Once we have computed f(x) from equa-
tion above, we can find its local maxima using gradient as-
cent or some other optimization technique. The problem
with this“brute force”approach is that, for higher dimen-
sions, it becomes computationally prohibitive to evaluate
f(x) over the complete search space. Instead, mean shift
uses a variant of what is known in the optimization liter-
ature as multiple restart gradient descent. Starting at some

guess for a local maximum, yk , which can be a random
input data point x1 , mean shift computes the gradient of
the density estimate f(x) at yk and takes an uphill step
in that direction.

5.3.4 Types of kernels

Kernel definition: Let X be the n-dimensional Euclidean
space, Rn . Denote the ith component of x by xi . The
norm of x is a non-negative number. ∥x∥2 = xTx A
function K: X ← R is said to be a kernel if there exists
a profile, k : [0,∞]→ R , such that
K(x) = k(∥x∥2) and

• k is non-negative.

• k is nonincreasing: k(a) ≥ k(b) if a < b .

• k is piecewise continuous and
∫∞
0

k(r) dr <∞

The two frequently used kernels for mean shift are:

Flat kernel

F (x) =

{
1 if ∥x∥ ≤ λ

0 if ∥x∥ > λ

Gaussian kernel

G(x) = ck,dk(∥x∥2)
where ck,d , the normalization constant, makes G(x) inte-
grate to one and k(x) is called the profile of the kernel. It
simplifies calculation in the case of multivariate data. The
profile of the Gaussian kernel is: e−1/2∥x∥2 and therefore,
the multivariate Gaussian kernel with the standard devia-
tion σ , will be: G(x) = 1√

2πσd
e−1/2

∥x∥2

σ2 where d is the
number of dimensions. It's also worth mentioning that
the standard deviation for the Gaussian kernel works as
the bandwidth parameter, h

5.3.5 Applications

Clustering

Consider a set of points in two-dimensional space. As-
sume a circular window centered at C and having radius
r as the kernel. Mean shift is a hill climbing algorithm
which involves shifting this kernel iteratively to a higher
density region until convergence. Every shift is defined
by a mean shift vector. The mean shift vector always
points toward the direction of the maximum increase in
the density. At every iteration the kernel is shifted to the
centroid or the mean of the points within it. The method
of calculating this mean depends on the choice of the ker-
nel. In this case if a Gaussian kernel is chosen instead
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of a flat kernel, then every point will first be assigned
a weight which will decay exponentially as the distance
from the kernel's center increases. At convergence, there
will be no direction at which a shift can accommodate
more points inside the kernel.

Tracking

The mean shift algorithm can be used for visual tracking.
The simplest such algorithm would create a confidence
map in the new image based on the color histogram of the
object in the previous image, and use mean shift to find
the peak of a confidence map near the object's old posi-
tion. The confidence map is a probability density function
on the new image, assigning each pixel of the new image
a probability, which is the probability of the pixel color
occurring in the object in the previous image. A few al-
gorithms, such as ensemble tracking,*[4] CAMshift,*[5]
expand on this idea.

Smoothing

Let xi and zi, i = 1, ..., n, be the d-dimensional input
and filtered image pixels in the joint spatial-range domain.
For each pixel,

• Initialize j = 1 and yi,1 = xi

• Compute yi,j+1 according to m(·) until conver-
gence, y = yi,c .

• Assign zi = (xs
i , y

r
i,c) . The superscripts s and r

denote the spatial and range components of a vec-
tor, respectively. The assignment specifies that the
filtered data at the spatial location axis will have the
range component of the point of convergence yri,c .

5.3.6 Strengths

1. Mean shift is an application-independent tool suit-
able for real data analysis.

2. Does not assume any predefined shape on data clus-
ters.

3. It is capable of handling arbitrary feature spaces.

4. The procedure relies on choice of a single parame-
ter: bandwidth.

5. The bandwidth/window size 'h' has a physical mean-
ing, unlike k-means.

5.3.7 Weaknesses

1. The selection of a window size is not trivial.

2. Inappropriate window size can cause modes to be
merged, or generate additional “shallow”modes.

3. Often requires using adaptive window size.

5.3.8 Mean shift and k-means clustering

The mean shift clustering algorithm has two main draw-
backs. First, the algorithm is calculation intensive; it
requires in general O(kN2) operations, where N is the
number of data points and k is the number of average it-
eration steps for each data point. Second, the mean shift
algorithm relies on sufficient high data density with clear
gradient to locate the cluster centers. In particular, the
mean shift algorithm often fails to find appropriate clus-
ters for so called data outliers, or those data points located
between natural clusters.
The k-means algorithm does not have the above two prob-
lems. The k-means algorithm normally requires only
O(kN) operations, so that the k-means algorithm can be
applied to relatively large dataset. However, k-means has
two significant limitations. First, the k-means algorithm
requires that the number of clusters to be pre-determined.
In practise, it is often difficult to specify a priori an ap-
propriate cluster number, resulting in some natural clus-
ters being represented by multiple clusters found by the
k-means algorithm. Second, the k-means algorithm is,
in general, incapable of identifying non-convex clusters.
The second limitation makes the k-means algorithm inad-
equate for complex non-linear data. These problems can
be overcome, by simply combining the two algorithms
mean shift and k-means together.*[6]

5.3.9 See also

• Kernel density estimation (KDE)

• Kernel (statistics)
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5.3.11 External links

Code implementations

• Scikit-learn library Numpy/Python implementation
uses ball tree for efficient neighboring points lookup

• EDISON library. C++ implementation of mean-
shift-based image segmentation. There is also a
Matlab interface for EDISON.

• OpenCV contains mean-shift implementation via
cvMeanShift Method

• Aiphial. Java-based mean-shift implementation for
numeric data clustering and image segmentation

• Apache Mahout. An map-reduce based implemen-
tation of MeanShift clustering written on Apache
Hadoop.

• CAMSHIFT project. A MATLAB implementation
of CAMSHIFT algorithm.

• OTB MeanShift. A C++ implementation using the
Orfeo Toolbox.

• ImageJ Plug-in. Image filtering using the mean shift
filter.

• Mean-shift google code. A simple implementation
of mean-shift as image filtering tool.

Short lessons

• A lesson from Prof. M. Shah on this topic
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Chapter 6

Other

6.1 Biclustering

Biclustering, block clustering ,*[1] co-clustering, or
two-mode clustering *[2] *[3] is a data mining tech-
nique which allows simultaneous clustering of the rows
and columns of a matrix. The term was first introduced
by Mirkin,*[4] although the technique was originally in-
troduced much earlier*[4] (i.e., by J.A. Hartigan*[5]).
Given a set of m rows in n columns (i.e., an m× n ma-
trix), the biclustering algorithm generates biclusters - a
subset of rows which exhibit similar behavior across a
subset of columns, or vice versa.

6.1.1 Development

Biclustering was originally introduced by J.A.Hartigan
in 1972.*[6] The term biclustering was later used by
Mirkin. This algorithm was not generalized until 2000
when Y.Cheng and G.M.Church proposed a biclustering
algorithm based on variance and applied it to biological
gene expression data.*[7] Their paper is still the most im-
portant literature in the gene expression biclustering field.
In 2001 and 2003, I.S.Dhillon put forward two algorithms
applying biclustering to files and words. One version was
based on bipartite spectral graph partitioning.*[8] The
other was based on information theory. Dhillon assumed
the loss of mutual information during biclustering was
equal to the KL(Kullback-Leibler)-distance between P
and Q. P means the distribution of files and feature words
before biclustering. Q is the distribution after bicluster-
ing. KL-distance is for measuring the difference between
two random distributions. KL=0 when the two distribu-
tions are the same and KL increases as the difference in-
creases.*[9] Thus, the aim of the algorithm was to find
the minimum KL-distance between P and Q. In 2004,
A.Banerjee used a weighted-Bregman distance instead of
KL-distance to design a biclustering algorithm which was
suitable for any kind of matrix, unlike the KL-distance al-
goritm.*[10]
To cluster more than two types of objects, in 2005,
Bekkerman expanded the mutual information in Dhillonʼ
s theorem from a single pair into multiple pairs.

6.1.2 Complexity

The complexity of the biclustering problem depends on
the exact problem formulation, and particularly on the
merit function used to evaluate the quality of a given bi-
cluster. However most interesting variants of this prob-
lem are NP-complete. NP-complete have two conditions.
In the simple case that there is only element a_(i,j) ei-
ther 0 or 1 in the binary matrix A, a bicluster is equal
to a biclique in the corresponding bipartite graph. The
maximum size bicluster is equivalent to maximum edge
biclique in bipartite graph. In the complex case, the el-
ement in matrix A is used to compute the quality of a
given bicluster and solve the more restricted version of
the problem.*[11] It requires either large computational
effort or the use of lossy heuristics to short-circuit the cal-
culation.*[12]

6.1.3 Type of Bicluster

Different biclustering algorithms have different defini-
tions of bicluster.*[12]
They are:

1. Bicluster with constant values (a),

2. Bicluster with constant values on rows (b) or
columns (c),

3. Bicluster with coherent values (d, e).

1.Bicluster with constant values
When a biclustering algorithm tries to find a constant
bicluster, the normal way for it is to reorder the rows
and columns of the matrix so it can group together simi-
lar rows/columns and find biclusters with similar values.
This method is OK when the data is tidy. But as the data
can be noisy most of the times, so it canʼt satisfy us.
More sophisticated methods should be used. A perfect
constant bicluster is a matrix(I,J) where all values a(i,j)
are equal to μ. In real data, a(i,j) can be seen as n(i,j)
+μ where n(i,j) is the noise. According to Hartiganʼs
algorithm, by spliting the original data matrix into a set
of biclusters. Variance is used to compute constant bi-
clusters. So a perfect bicluster is a matrix with variance
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zero. Also, in order to prevent the partitioning of the data
matrix into biclusters with only one row and one column.
Hartigan assumes that there are K biclusters within the
data matrix. When the data matrix is partitioned into K
biclusters, the algorithm ends.
2.Biclusters with constant values on rows or columns
This kind of biclusters can t̓ be evaluated just by variance
of its values. To finish the identification, the columns and
the rows should be normalized at first. There are other
algorithms, without normalization step, can find biclusters
have rows and columns with different approaches.
3.Biclusters with coherent values
For biclusters with coherent values on rows and columns,
an overall improvement over the algorithms for biclus-
ters with constant values on rows or on columns should
be considered. That means a sophisticated algorithm is
needed. This algorithm may contain analysis of variance
between groups, using co-variance between both rows
and columns.In Cheng and Churchsʼtheorem, a biclus-
ter is defined as a subset of rows and columns with almost
the same score.the similarity score is used to measure the
coherence of rows and columns.
The relationship between these cluster models and other
types of clustering such as correlation clustering is dis-
cussed in.*[13]

6.1.4 Algorithms

There are many biclustering algorithms developed for
bioinformatics, including: block clustering, CTWC
(Coupled Two-Way Clustering), ITWC (Interrelated
Two-Way Clustering), δ-bicluster, δ-pCluster, δ-pattern,
FLOC, OPC, Plaid Model, OPSMs (Order-preserving
submatrixes), Gibbs, SAMBA (Statistical-Algorithmic
Method for Bicluster Analysis),*[14] Robust Biclustering
Algorithm (RoBA), Crossing Minimization,*[15] cMon-
key,*[16] PRMs, DCC, LEB (Localize and Extract Bi-
clusters), QUBIC (QUalitative BIClustering), BCCA
(Bi-Correlation Clustering Algorithm) BIMAX, ISA,
SAMBA and FABIA (Factor Analysis for Bicluster Ac-
quisition).*[17] Biclustering algorithms have also been
proposed and used in other application fields under the
names coclustering, bidimensional clustering, and sub-
space clustering.*[12]
Given the known importance of discovering local patterns
in time-series data, recent proposals have addressed the
biclustering problem in the specific case of time series
gene expression data. In this case, the interesting biclus-
ters can be restricted to those with contiguous columns.
This restriction leads to a tractable problem and enables
the development of efficient exhaustive enumeration al-
gorithms such as CCC-Biclustering *[18] and e-CCC-
Biclustering.*[19] The approximate patterns in CCC-
Biclustering algorithms allow a given number of errors,
per gene, relatively to an expression profile respresent-

ing the expression pattern in the bicluster. The e-CCC-
Biclustering algorithm uses approximate expressions to
find and report all maximal CCC-Biclusters by a dis-
cretized matrix A and efficient string processing tech-
niques.
These algorithms find and report all maximal bi-
clusters with coherent and contiguous columns with
perfect/approximate expression patterns, in time lin-
ear/polynomial which is obtained by manipulating a dis-
cretized version of original expression matrix in the size
of the time series gene expression matrix using efficient
string processing techniques based on suffix trees. These
algorithms are also applied to solve problems and sketch
the analysis of computational complexity.
Some recent algorithms have attempted to include addi-
tional support for biclustering rectangular matrices in the
form of other datatypes, including cMonkey.
There is an ongoing debate about how to judge the results
of these methods, as biclustering allows overlap between
clusters and some algorithms allow the exclusion of hard-
to-reconcile columns/conditions. Not all of the available
algorithms are deterministic and the analyst must pay at-
tention to the degree to which results represent stable
minima. Because this is an unsupervised classification
problem, the lack of a gold standard makes it difficult
to spot errors in the results. One approach is to utilize
multiple biclustering algorithms, with majority or super-
majority voting amongst them deciding the best result.
Another way is to analyse the quality of shifting and scal-
ing patterns in biclusters.*[20] Biclustering has been used
in the domain of text mining (or classification) where it
is popularly known as co-clustering .*[21] Text corpora
are represented in a vectorial form as a matrix D whose
rows denote the documents and whose columns denote
the words in the dictionary. Matrix elements Dij denote
occurrence of word j in document i. Co-clustering algo-
rithms are then applied to discover blocks in D that cor-
respond to a group of documents (rows) characterized by
a group of words(columns).
Test clustering can solve the high-dimensional sparse
problem, which means clustering text and words at the
same time. When clustering text, we need to think about
not only the words information, but also the information
of words clusters that was composed by words. Then ac-
cording to similarity of feature words in the text, will
eventually cluster the feature words. This is called co-
clustering. There are two advantages of co-clustering:
one is clustering the test based on words clusters can ex-
tremely decrease the dimension of clustering, it can also
appropriate to measure the distance between the tests.
Second is mining more useful information and can get
the corresponding information in test clusters and words
clusters. This corresponding information can be used to
describe the type of texts and words, at the same time, the
result of words clustering can be also used to text mining
and information retrival.
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Several approaches have been proposed based on the in-
formation contents of the resulting blocks: matrix-based
approaches such as SVD and BVD, and graph-based ap-
proaches. Information-theoretic algorithms iteratively as-
sign each row to a cluster of documents and each column
to a cluster of words such that the mutual information
is maximized. Matrix-based methods focus on the de-
composition of matrices into blocks such that the error
between the original matrix and the regenerated matri-
ces from the decomposition is minimized. Graph-based
methods tend to minimize the cuts between the clusters.
Given two groups of documents d1 and d2, the number of
cuts can be measured as the number of words that occur
in documents of groups d1 and d2.
More recently (Bisson and Hussain)*[21] have proposed
a new approach of using the similarity between words
and the similarity between documents to co-cluster the
matrix. Their method (known as χ-Sim, for cross simi-
larity) is based on finding document-document similarity
and word-word similarity, and then using classical clus-
tering methods such as hierarchical clustering. Instead of
explicitly clustering rows and columns alternately, they
consider higher-order occurrences of words, inherently
taking into account the documents in which they oc-
cur. Thus, the similarity between two words is calculated
based on the documents in which they occur and also the
documents in which “similar”words occur. The idea
here is that two documents about the same topic do not
necessarily use the same set of words to describe it but a
subset of the words and other similar words that are char-
acteristic of that topic. This approach of taking higher-
order similarities takes the latent semantic structure of
the whole corpus into consideration with the result of gen-
erating a better clustering of the documents and words.
In text databases, for a document collection defined by a
document by term D matrix (of size m by n, m: number
of documents, n: number of terms) the cover-coefficient
based clustering methodology*[22] yields the same num-
ber of clusters both for documents and terms (words) us-
ing a double-stage probability experiment. According to
the cover coefficient concept number of clusters can also
be roughly estimated by the following formula (m×n)/t
where t is the number of non-zero entries in D. Note that
in D each row and each column must contain at least one
non-zero element.
In contrast to other approaches, FABIA is a multiplicative
model that assumes realistic non-Gaussian signal distri-
butions with heavy tails. FABIA utilizes well understood
model selection techniques like variational approaches
and applies the Bayesian framework. The generative
framework allows FABIA to determine the information
content of each bicluster to separate spurious biclusters
from true biclusters.

6.1.5 See also

• Formal concept analysis

• Biclique

• Galois connection
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6.2 Clique (graph theory)

A graph with

• 23 × 1-vertex cliques (the vertices),

• 42 × 2-vertex cliques (the edges),

• 19 × 3-vertex cliques (the light and dark blue triangles),
and

• 2 × 4-vertex cliques (just the dark blue areas).

The 11 light blue triangles form maximal cliques. The two dark
blue 4-cliques are both maximum and maximal, and the clique
number of the graph is 4.

In the mathematical area of graph theory, a clique
(/ˈkliːk/ or /ˈklɪk/) is subset of vertices of an undirected
graph, such that its induced subgraph is complete; that
is, every two distinct vertices in the clique are adjacent.
Cliques are one of the basic concepts of graph theory and
are used in many other mathematical problems and con-
structions on graphs. Cliques have also been studied in
computer science: the task of finding whether there is a
clique of a given size in a graph (the clique problem) is
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NP-complete, but despite this hardness result, many al-
gorithms for finding cliques have been studied.
Although the study of complete subgraphs goes back at
least to the graph-theoretic reformulation of Ramsey the-
ory by Erdős & Szekeres (1935),*[1] the term clique
comes from Luce & Perry (1949), who used complete
subgraphs in social networks to model cliques of people;
that is, groups of people all of whom know each other.
Cliques have many other applications in the sciences and
particularly in bioinformatics.

6.2.1 Definitions

A clique, C, in an undirected graph G = (V, E) is a subset
of the vertices, C ⊆ V, such that every two distinct vertices
are adjacent. This is equivalent to the condition that the
subgraph of G induced by C is complete. In some cases,
the term clique may also refer to the subgraph directly.
Amaximal clique is a clique that cannot be extended by
including one more adjacent vertex, that is, a clique which
does not exist exclusively within the vertex set of a larger
clique.
A maximum clique of a graph, G, is a clique, such that
there is no clique with more vertices.
The clique number ω(G) of a graph G is the number of
vertices in a maximum clique in G.
The intersection number of G is the smallest number of
cliques that together cover all edges of G.
The opposite of a clique is an independent set, in the
sense that every clique corresponds to an independent set
in the complement graph. The clique cover problem con-
cerns finding as few cliques as possible that include every
vertex in the graph.
A related concept is a biclique, a complete bipartite sub-
graph. The bipartite dimension of a graph is the mini-
mum number of bicliques needed to cover all the edges
of the graph.

6.2.2 Mathematics

Mathematical results concerning cliques include the fol-
lowing.

• Turán's theorem (Turán 1941) gives a lower bound
on the size of a clique in dense graphs. If a graph
has sufficiently many edges, it must contain a large
clique. For instance, every graph with n vertices and
more than ⌊n

2 ⌋·⌈n
2 ⌉ edges must contain a three-vertex

clique.

• Ramsey's theorem (Graham, Rothschild & Spencer
1990) states that every graph or its complement
graph contains a clique with at least a logarithmic
number of vertices.

• According to a result of Moon & Moser (1965), a
graph with 3n vertices can have at most 3*n max-
imal cliques. The graphs meeting this bound are
the Moon–Moser graphs K3,3,..., a special case of the
Turán graphs arising as the extremal cases in Turán's
theorem.

• Hadwiger's conjecture, still unproven, relates the
size of the largest clique minor in a graph (its
Hadwiger number) to its chromatic number.

• The Erdős–Faber–Lovász conjecture is another un-
proven statement relating graph coloring to cliques.

Several important classes of graphs may be defined by
their cliques:

• A chordal graph is a graph whose vertices can be
ordered into a perfect elimination ordering, an or-
dering such that the neighbors of each vertex v that
come later than v in the ordering form a clique.

• A cograph is a graph all of whose induced subgraphs
have the property that any maximal clique intersects
any maximal independent set in a single vertex.

• An interval graph is a graph whose maximal cliques
can be ordered in such a way that, for each vertex
v, the cliques containing v are consecutive in the or-
dering.

• A line graph is a graph whose edges can be covered
by edge-disjoint cliques in such a way that each ver-
tex belongs to exactly two of the cliques in the cover.

• A perfect graph is a graph in which the clique num-
ber equals the chromatic number in every induced
subgraph.

• A split graph is a graph in which some clique con-
tains at least one endpoint of every edge.

• A triangle-free graph is a graph that has no cliques
other than its vertices and edges.

Additionally, many other mathematical constructions in-
volve cliques in graphs. Among them,

• The clique complex of a graph G is an abstract sim-
plicial complex X(G) with a simplex for every clique
in G

• A simplex graph is an undirected graph κ(G) with
a vertex for every clique in a graph G and an edge
connecting two cliques that differ by a single vertex.
It is an example of median graph, and is associated
with a median algebra on the cliques of a graph: the
median m(A,B,C) of three cliques A, B, and C is the
clique whose vertices belong to at least two of the
cliques A, B, and C.*[2]
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• The clique-sum is a method for combining two
graphs by merging them along a shared clique.

• Clique-width is a notion of the complexity of a graph
in terms of the minimum number of distinct ver-
tex labels needed to build up the graph from dis-
joint unions, relabeling operations, and operations
that connect all pairs of vertices with given labels.
The graphs with clique-width one are exactly the dis-
joint unions of cliques.

• The intersection number of a graph is the minimum
number of cliques needed to cover all the graph's
edges.

• The clique graph of a graph is the intersection graph
of its maximal cliques.

Closely related concepts to complete subgraphs are
subdivisions of complete graphs and complete graph mi-
nors. In particular, Kuratowski's theorem and Wagner's
theorem characterize planar graphs by forbidden com-
plete and complete bipartite subdivisions and minors, re-
spectively.

6.2.3 Computer science

Main article: Clique problem

In computer science, the clique problem is the compu-
tational problem of finding a maximum clique, or all
cliques, in a given graph. It is NP-complete, one of Karp's
21 NP-complete problems (Karp 1972). It is also fixed-
parameter intractable, and hard to approximate. Never-
theless, many algorithms for computing cliques have been
developed, either running in exponential time (such as the
Bron–Kerbosch algorithm) or specialized to graph fami-
lies such as planar graphs or perfect graphs for which the
problem can be solved in polynomial time.

6.2.4 Free software for searching maxi-
mum clique

6.2.5 Applications

The word “clique”, in its graph-theoretic usage, arose
from the work of Luce & Perry (1949), who used com-
plete subgraphs to model cliques (groups of people who
all know each other) in social networks. For continued
efforts to model social cliques graph-theoretically, see
e.g. Alba (1973), Peay (1974), and Doreian & Woodard
(1994).
Many different problems from bioinformatics have been
modeled using cliques. For instance, Ben-Dor, Shamir
& Yakhini (1999) model the problem of clustering gene
expression data as one of finding the minimum num-
ber of changes needed to transform a graph describing

the data into a graph formed as the disjoint union of
cliques; Tanay, Sharan & Shamir (2002) discuss a sim-
ilar biclustering problem for expression data in which
the clusters are required to be cliques. Sugihara (1984)
uses cliques to model ecological niches in food webs.
Day & Sankoff (1986) describe the problem of inferring
evolutionary trees as one of finding maximum cliques in a
graph that has as its vertices characteristics of the species,
where two vertices share an edge if there exists a perfect
phylogeny combining those two characters. Samudrala
& Moult (1998) model protein structure prediction as a
problem of finding cliques in a graph whose vertices rep-
resent positions of subunits of the protein. And by search-
ing for cliques in a protein-protein interaction network,
Spirin & Mirny (2003) found clusters of proteins that in-
teract closely with each other and have few interactions
with proteins outside the cluster. Power graph analysis is
a method for simplifying complex biological networks by
finding cliques and related structures in these networks.
In electrical engineering, Prihar (1956) uses cliques to
analyze communications networks, and Paull & Unger
(1959) use them to design efficient circuits for computing
partially specified Boolean functions. Cliques have also
been used in automatic test pattern generation: a large
clique in an incompatibility graph of possible faults pro-
vides a lower bound on the size of a test set.*[3] Cong &
Smith (1993) describe an application of cliques in find-
ing a hierarchical partition of an electronic circuit into
smaller subunits.
In chemistry, Rhodes et al. (2003) use cliques to describe
chemicals in a chemical database that have a high degree
of similarity with a target structure. Kuhl, Crippen &
Friesen (1983) use cliques to model the positions in which
two chemicals will bind to each other.

6.2.6 Notes
[1] The earlier work by Kuratowski (1930) characterizing

planar graphs by forbidden complete and complete bipar-
tite subgraphs was originally phrased in topological rather
than graph-theoretic terms.

[2] Barthélemy, Leclerc & Monjardet (1986), page 200.

[3] Hamzaoglu & Patel (1998).
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6.3 Affinity propagation

In statistics and data mining, affinity propagation (AP)
is a clustering algorithm based on the concept of “mes-
sage passing”between data points.*[1] Unlike clustering
algorithms such as k-means or k-medoids, AP does not
require the number of clusters to be determined or es-
timated before running the algorithm. Like k-medoids,
AP finds “exemplars”, members of the input set that
are representative of clusters.*[1]

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1089%252F106652799318274
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/10582567
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F157485.165119
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.2307%252F2413432
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/2413432
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252F0378-8733%252894%252990013-2
https://en.wikipedia.org/wiki/Paul_Erd%C5%91s
https://en.wikipedia.org/wiki/George_Szekeres
http://www.renyi.hu/~p_erdos/1935-01.pdf
http://www.renyi.hu/~p_erdos/1935-01.pdf
https://en.wikipedia.org/wiki/Ronald_Graham
https://en.wikipedia.org/wiki/Joel_Spencer
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-471-50046-1
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F288548.288615
https://en.wikipedia.org/wiki/Richard_M._Karp
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1002%252Fjcc.540050105
https://en.wikipedia.org/wiki/Kazimierz_Kuratowski
http://matwbn.icm.edu.pl/ksiazki/fm/fm15/fm15126.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm15/fm15126.pdf
https://en.wikipedia.org/wiki/R._Duncan_Luce
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%252FBF02289146
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/18152948
https://en.wikipedia.org/wiki/Leo_Moser
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%252FBF02760024
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=0182577
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252FTEC.1959.5222697
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.2307%252F2786466
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/2786466
https://en.wikipedia.org/wiki/Proceedings_of_the_IRE
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252FJRPROC.1956.275149
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1021%252Fci025605o
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/12653507
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1006%252Fjmbi.1998.1689
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/9636717
https://en.wikipedia.org/wiki/Proceedings_of_the_National_Academy_of_Sciences
https://en.wikipedia.org/wiki/Proceedings_of_the_National_Academy_of_Sciences
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1073%252Fpnas.2032324100
https://en.wikipedia.org/wiki/PubMed_Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC218723
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/14517352
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1093%252Fbioinformatics%252F18.suppl_1.S136
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/12169541
https://en.wikipedia.org/wiki/P%C3%A1l_Tur%C3%A1n
https://en.wikipedia.org/wiki/Eric_W._Weisstein
http://mathworld.wolfram.com/Clique.html
https://en.wikipedia.org/wiki/MathWorld
https://en.wikipedia.org/wiki/Eric_W._Weisstein
http://mathworld.wolfram.com/CliqueNumber.html
https://en.wikipedia.org/wiki/MathWorld
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-medoids


6.4. BASIC SEQUENTIAL ALGORITHMIC SCHEME 89

6.3.1 Algorithm

Let x1 through xn be a set of data points, with no assump-
tions made about their internal structure, and let s be a
function that quantifies the similarity between any two
points, such that s(xi, xj) > s(xi, xk) iff xᵢ is more simi-
lar to xⱼ than to xk.
The algorithm proceeds by alternating two message pass-
ing steps, to update two matrices:*[1]

• The“responsibility”matrixR has values r(i, k) that
quantify how well-suited xk is to serve as the exem-
plar for xᵢ, relative to other candidate exemplars for
xᵢ.

• The“availability”matrix A contains values a(i, k)
represents how “appropriate”it would be for xᵢ to
pick xk as its exemplar, taking into account other
points' preference for xk as an exemplar.

Both matrices are initialized to all zeroes, and can be
viewed as log-probability tables. The algorithm then per-
forms the following updates iteratively:

• First, responsibility updates are sent around:
r(i, k)← s(i, k)−maxk′ ̸=k {a(i, k′) + s(i, k′)}

• Then, availability is updated per

a(i, k) ←
min

(
0, r(k, k) +

∑
i′ ̸∈{i,k} max(0, r(i′, k))

)
for i ̸= k and
a(k, k) ←

∑
i′ ̸=k max(0, r(i′, k))

.

6.3.2 Applications

The inventors of affinity propagation showed it is bet-
ter for certain computer vision and computational biol-
ogy tasks, e.g. clustering of pictures of human faces and
identifying regulated transcripts, than k-means,*[1] even
when k-means was allowed many random restarts and
initialized using PCA.*[2] A study comparing AP and
Markov clustering on protein interaction graph partition-
ing found Markov clustering to work better for that prob-
lem.*[3] A semi-supervised variant has been proposed for
text mining applications.*[4]

6.3.3 Software

• A Java implementation is included in the ELKI data
mining framework.

• Java Apro library implements parallelized Affinity
Propagation and Hierarchical AP.

• A Julia implementation of affinity propagation is
contained in Julia Statistics's Clustering.jl pack-
age.*[5]

• A Python version is part of the scikit-learn li-
brary.*[6]

• An R implemenation is available in the“apcluster”
package.*[7]
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[5] Clustering.jl www.github.com

[6] “Clustering ̶scikit-learn 0.14.1 documentation”. Re-
trieved 15 July 2014.

[7] apcluster cran.r-project.org>

6.4 Basic sequential algorithmic
scheme

The basic sequential algorithmic scheme (BSAS) is a
very basic clustering algorithm that is easy to understand.
In the basic form vectors are presented only once and the
number of clusters is not known a priori. What is needed
is the dissimilarity measured as the distance d (x, C) be-
tween a vector point x and a clusterC, threshold of dissim-
ilarity Θ and the number of maximum clusters allowed q.
The idea is to assign every newly presented vector to an
existing cluster or create a new cluster for this sample,
depending on the distance to the already defined clusters.
As pseudocode, the algorithm looks like the following:
1. m = 1; Cm = {x1}; // Init first cluster = first sample
2. for every sample x from 2 to N a. find cluster Ck such
that min d(x, Ck) b. if d(x, Ck) > Θ AND (m < q) i. m
= m + 1; Cm = {x} // Create a new cluster c. else
i. Ck = Ck + {x} // Add sample to the nearest cluster ii.
Update representative if needed 3. end algorithm
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As can be seen the algorithm is simple but still quite ef-
ficient. Different choices for the distance function lead
to different results and unfortunately the order in which
the samples are presented can also have a great effect to
the final result. Whatʼs also very important is a correct
value for Θ. This value has a direct effect on the number
of formed clusters. If Θ is too small unnecessary clusters
are created and if too large a value is chosen less than
required number of clusters are formed.
One detail is that if q is not defined the algorithm̒ decidesʼ
the number of clusters on its own. This might be wanted
under some circumstances but when dealing with limited
resources a limited q is usually chosen. Also, BSAS can
be used with a similarity function simply by replacing the
min function with max.
There exists a modification to BSAS called modified
BSAS (MBSAS), which runs twice through the samples.
It overcomes the drawback that a final cluster for a single
sample is decided before all the clusters have been cre-
ated. The first phase of the algorithm creates the clusters
(just like 2b in BSAS) and assigns only a single sample
to each cluster. Then the second phase runs through the
remaining samples and classifies them to the created clus-
ters (step 2c in BSAS).

6.4.1 External links

• Clustering Algorithms: Basics and Visualization
Jukka Kainulainen

• Pattern Recognition Lecture Sequential Clustering

6.5 Binarization of consensus par-
tition matrices

Mainly in the context of gene clustering, the binarization
of consensus partition matrices (Bi-CoPaM) was pro-
posed by Abu-Jamous et al.*[1] as a method for consensus
clustering. In contrast to other conventional clustering
and ensemble clustering methods, Bi-CoPaM has the
ability to combine the results of clustering the same set
of genes from various microarray datasets and by using
many clustering methods to produce one consensus re-
sult. Moreover, Bi-CoPaM relaxes conventional cluster-
ing constraints by allowing each gene to have any of the
three possible eventualities – to be exclusively assigned
to one and only one cluster (as any conventional cluster-
ing method does), to be simultaneously assigned to mul-
tiple clusters, or to be unassigned from all of the clus-
ters. At the clusters level, clusters can be complementary
(as in the case of conventional clustering), can be wide
and overlapping, and can be tight and distinct while leav-
ing many genes unassigned from all of them. The Bi-
CoPaM method has not been designed to only allow for
these three forms of clusters; it has also been provided

with tuning parameters which can be used to tune the
level of tightness and wideness of the clusters based on
research requirements.
Complete description of the method is given in the pub-
lication in which it was proposed (Abu-Jamous et al
2013).*[1]

6.5.1 Applications

As the Bi-CoPaM specially meets many requirements of
gene discovery studies, its current main applications are
within this field of bioinformatics;*[2] though, it was de-
fined in a completely independent manner such that it is
applicable for any other clustering problem. For exam-
ple, a recent experiment in which the Bi-CoPaM was ap-
plied over multiple yeast cell-cycle datasets revealed im-
portant information about a poorly characterised gene,
CMR1/YDL156W, and about its relation with many
other genes.*[3]

6.5.2 References

[1] Abu-Jamous, Basel; Fa, Rui; Roberts, David J.;
Nandi, Asoke K.; Peddada, Shyamal D. (11 Febru-
ary 2013). “Paradigm of Tunable Clustering Us-
ing Binarization of Consensus Partition Matrices (Bi-
CoPaM) for Gene Discovery”. PLoS ONE 8 (2):
e56432. doi:10.1371/journal.pone.0056432. PMC
3569426. PMID 23409186.

[2] Garcia-Lapresta, Jose Luis; Perez-Roman, D. (June
2013). “Consensus-based hierarchical agglomerative
clustering in the context of weak orders”. 2013
Joint IFSA World Congress and NAFIPS Annual Meet-
ing (IFSA/NAFIPS): 1010–1015. doi:10.1109/IFSA-
NAFIPS.2013.6608538.

[3] Abu-Jamous, B.; Fa, R.; Roberts, D. J.; Nandi, A. K.
(24 January 2013). “Yeast gene CMR1/YDL156W
is consistently co-expressed with genes participating
in DNA-metabolic processes in a variety of strin-
gent clustering experiments”. Journal of The Royal
Society Interface 10 (81): 20120990–20120990.
doi:10.1098/rsif.2012.0990. PMC 3627109. PMID
23349438.

6.6 Cluster-weighted modeling

In data mining, cluster-weighted modeling (CWM) is
an algorithm-based approach to non-linear prediction of
outputs (dependent variables) from inputs (independent
variables) based on density estimation using a set of mod-
els (clusters) that are each notionally appropriate in a sub-
region of the input space. The overall approach works in
jointly input-output space and an initial version was pro-
posed by Neil Gershenfeld.*[1]*[2]
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6.6.1 Basic form of model

The procedure for cluster-weighted modeling of an input-
output problem can be outlined as follows.*[2] In order to
construct predicted values for an output variable y from
an input variable x, the modeling and calibration proce-
dure arrives at a joint probability density function, p(y,x).
Here the “variables”might be uni-variate, multivariate
or time-series. For convenience, any model parameters
are not indicated in the notation here and several different
treatments of these are possible, including setting them to
fixed values as a step in the calibration or treating them us-
ing a Bayesian analysis. The required predicted values are
obtained by constructing the conditional probability den-
sity p(y|x) from which the prediction using the conditional
expected value can be obtained, with the conditional vari-
ance providing an indication of uncertainty.
The important step of the modeling is that p(y|x) is as-
sumed to take the following form, as a mixture model:

p(y, x) =
n∑
1

wjpj(y, x),

where n is the number of clusters and {wj} are weights
that sum to one. The functions pj(y,x) are joint probabil-
ity density functions that relate to each of the n clusters.
These functions are modeled using a decomposition into
a conditional and a marginal density:

pj(y, x) = pj(y|x)pj(x),

where:

• pj(y|x) is a model for predicting y given
x, and given that the input-output pair
should be associated with cluster j on
the basis of the value of x. This model
might be a regression model in the sim-
plest cases.

• pj(x) is formally a density for values of
x, given that the input-output pair should
be associated with cluster j. The rela-
tive sizes of these functions between the
clusters determines whether a particular
value of x is associated with any given
cluster-center. This density might be a
Gaussian function centered at a param-
eter representing the cluster-center.

In the same way as for regression analysis, it will be im-
portant to consider preliminary data transformations as
part of the overall modeling strategy if the core compo-
nents of the model are to be simple regression models for
the cluster-wise condition densities, and normal distribu-
tions for the cluster-weighting densities pj(x).

6.6.2 General versions

The basic CWM algorithm gives a single output cluster
for each input cluster. However, CWM can be extended
to multiple clusters which are still associated with the
same input cluster.*[3] Each cluster in CWM is localized
to a Gaussian input region, and this contains its own train-
able local model.*[4] It is recognized as a versatile in-
ference algorithm which provides simplicity, generality,
and flexibility; even when a feedforward layered network
might be preferred, it is sometimes used as a “second
opinion”on the nature of the training problem.*[5]
The original form proposed by Gershenfeld describes two
innovations:

• Enabling CWM to work with continuous streams of
data

• Addressing the problem of local minima encoun-
tered by the CWM parameter adjustment pro-
cess*[5]

CWM can be used to classify media in printer applica-
tions, using at least two parameters to generate an output
that has a joint dependency on the input parameters.*[6]

6.6.3 References
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Cluster-Weighted Modeling”. Annals of the New York
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6632.1997.tb51651.x.
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weighted modelling for time-series analysis”(PDF). Na-
ture 397 (6717): 329–332. doi:10.1038/16873.

[3] Feldkamp, L.A.; Prokhorov, D.V.; Feldkamp, T.M.
(2001).“Cluster-weighted modeling with multiclusters”
(PDF). International Joint Conference on Neural Networks
3 (1): 1710–1714.

[4] Boyden, Edward S.“Tree-based Cluster Weighted Mod-
eling: Towards A Massively Parallel Real-Time Digital
Stradivarius” (PDF). Cambridge, MA: MIT Media Lab.

[5] Prokhorov, A New Approach to Cluster-Weighted Mod-
eling Danil V.; Lee A. Feldkamp; Timothy M. Feld-
kamp. “A New Approach to Cluster-Weighted Model-
ing” (PDF). Dearborn, MI: Ford Research Laboratory.
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WEIGHTED MODELING FOR MEDIA CLASSIFI-
CATION”. Palo Alto, CA: World Intellectual Property
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6.7 Cobweb (clustering)

COBWEB is an incremental system for hierarchical
conceptual clustering. COBWEB was invented by Pro-
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fessor Douglas H. Fisher, currently at Vanderbilt Univer-
sity.*[1]*[2]
COBWEB incrementally organizes observations into a
classification tree. Each node in a classification tree rep-
resents a class (concept) and is labeled by a probabilistic
concept that summarizes the attribute-value distributions
of objects classified under the node. This classification
tree can be used to predict missing attributes or the class
of a new object.*[3]
There are four basic operations COBWEB employs in
building the classification tree. Which operation is se-
lected depends on the category utility of the classification
achieved by applying it. The operations are:

• Merging Two Nodes
Merging two nodes means replacing them by a node
whose children is the union of the original nodes'
sets of children and which summarizes the attribute-
value distributions of all objects classified under
them.

• Splitting a node
A node is split by replacing it with its children.

• Inserting a new node
A node is created corresponding to the object being
inserted into the tree.

• Passing an object down the hierarchy
Effectively calling the COBWEB algorithm on the
object and the subtree rooted in the node.

6.7.1 The COBWEB Algorithm

COBWEB(root, record): Input: A COBWEB node root,
an instance to insert record if root has no children
then children := {copy(root)} newcategory(record) \\ adds
child with recordʼs feature values. insert(record, root)
\\ update rootʼs statistics else insert(record, root) for
child in rootʼs children do calculate Category Utility
for insert(record, child), set best1, best2 children w. best
CU. end for if newcategory(record) yields best CU then
newcategory(record) else if merge(best1, best2) yields
best CU then merge(best1, best2) COBWEB(root, record)
else if split(best1) yields best CU then split(best1) COB-
WEB(root, record) else COBWEB(best1, record) end if
end

6.7.2 External links

• Working python implementation of COBWEB

6.7.3 References
[1] Fisher, Douglas (1987). “Knowledge acquisition via in-

cremental conceptual clustering”(PDF). Machine Learn-
ing 2 (2): 139–172. doi:10.1007/BF00114265.

[2] Fisher, Douglas H. (July 1987). “Improving inference
through conceptual clustering”. Proceedings of the 1987
AAAI Conferences. AAAI Conference. Seattle Washing-
ton. pp. 461–465.

[3] William Iba and Pat Langley. “Cobweb models of cat-
egorization and probabilistic concept formation”. In
Emmanuel M. Pothos and Andy J. Wills,. Formal ap-
proaches in categorization. Cambridge: Cambridge Uni-
versity Press. pp. 253–273. ISBN 9780521190480.

6.8 CURE data clustering algo-
rithm

CURE (Clustering Using REpresentatives) is an effi-
cient data clustering algorithm for large databases that is
more robust to outliers and identifies clusters having non-
spherical shapes and wide variances in size.

6.8.1 Drawbacks of traditional algorithms

With the partitional clustering algorithms, which for ex-
ample use the sum of squared errors criterion

E =

k∑
i=1

∑
p∈Ci

(p−mi)
2,

when there are large differences in sizes or geometries of
different clusters, the square error method could split the
large clusters to minimize the square error which is not al-
ways correct. Also, with hierarchic clustering algorithms
these problems exist as none of the distance measures be-
tween clusters ( dmin, dmean ) tend to work with different
shapes of clusters. Also the running time is high when n
is very large. The problem with the BIRCH algorithm is
that once the clusters are generated after step 3, it uses
centroids of the clusters and assign each data point to the
cluster with closest centroid. Using only the centroid to
redistribute the data has problems when clusters do not
have uniform sizes and shapes.

6.8.2 CURE clustering algorithm

To avoid the problems with non-uniform sized or shaped
clusters, CURE employs a novel hierarchical clustering
algorithm that adopts a middle ground between the cen-
troid based and all point extremes. In CURE, a constant
number c of well scattered points of a cluster are chosen
and they are shrunk towards the centroid of the cluster
by a fraction α. The scattered points after shrinking are
used as representatives of the cluster. The clusters with
the closest pair of representatives are the clusters that are
merged at each step of CURE's hierarchical clustering
algorithm. This enables CURE to correctly identify the
clusters and makes it less sensitive to outliers.
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The algorithm is given below.
The running time of the algorithm is O(n2 log n) and
space complexity is O(n).
The algorithm cannot be directly applied to large
databases. So for this purpose we do the following en-
hancements

• Random sampling : To handle large data sets, we do
random sampling and draw a sample data set. Gen-
erally the random sample fits in main memory. Also
because of the random sampling there is a trade off
between accuracy and efficiency.

• Partitioning for speed up : The basic idea is to par-
tition the sample space into p partitions. Each par-
tition contains n/p elements. Then in the first pass
partially cluster each partition until the final number
of clusters reduces to n/pq for some constant q ≥
1. Then run a second clustering pass on n/q partial
clusters for all the partitions. For the second pass we
only store the representative points since the merge
procedure only requires representative points of pre-
vious clusters before computing the new representa-
tive points for the merged cluster. The advantage of
partitioning the input is that we can reduce the exe-
cution times.

• Labeling data on disk : Since we only have represen-
tative points for k clusters, the remaining data points
should also be assigned to the clusters. For this a
fraction of randomly selected representative points
for each of the k clusters is chosen and data point is
assigned to the cluster containing the representative
point closest to it.

6.8.3 Pseudocode

CURE(no. of points,k)
Input : A set of points S
Output : k clusters

1. For every cluster u (each input point), in u.mean and
u.rep store the mean of the points in the cluster and a
set of c representative points of the cluster (initially
c = 1 since each cluster has one data point). Also
u.closest stores the cluster closest to u.

2. All the input points are inserted into a k-d tree T

3. Treat each input point as separate cluster, compute
u.closest for each u and then insert each cluster into
the heap Q. (clusters are arranged in increasing order
of distances between u and u.closest).

4. While size(Q) > k

5. Remove the top element of Q(say u) and merge it
with its closest cluster u.closest(say v) and compute
the new representative points for the merged cluster
w.

6. Also remove u and v from T and Q.

7. Also for all the clusters x in Q, update x.closest and
relocate x

8. insert w into Q

9. repeat

6.8.4 References
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6.9 FLAME clustering

Fuzzy clustering by Local Approximation of MEm-
berships (FLAME) is a data clustering algorithm that
defines clusters in the dense parts of a dataset and per-
forms cluster assignment solely based on the neighbor-
hood relationships among objects. The key feature of this
algorithm is that the neighborhood relationships among
neighboring objects in the feature space are used to con-
strain the memberships of neighboring objects in the
fuzzy membership space.

6.9.1 Description of the FLAME algo-
rithm

The FLAME algorithm is mainly divided into three steps:

1. Extraction of the structure information from the
dataset:

(a) Construct a neighborhood graph to con-
nect each object to its K-Nearest Neighbors
(KNN);

(b) Estimate a density for each object based on its
proximities to its KNN;

(c) Objects are classified into 3 types:
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i. Cluster Supporting Object (CSO): object
with density higher than all its neighbors;

ii. Cluster Outliers: object with density
lower than all its neighbors, and lower
than a predefined threshold;

iii. the rest.

2. Local/Neighborhood approximation of fuzzy mem-
berships:

(a) Initialization of fuzzy membership:
i. Each CSO is assigned with fixed and full

membership to itself to represent one
cluster;

ii. All outliers are assigned with fixed and
full membership to the outlier group;

iii. The rest are assigned with equal member-
ships to all clusters and the outlier group;

(b) Then the fuzzy memberships of all type 3
objects are updated by a converging iterative
procedure called Local/Neighborhood Approx-
imation of Fuzzy Memberships, in which the
fuzzy membership of each object is updated
by a linear combination of the fuzzy member-
ships of its nearest neighbors.

3. Cluster construction from fuzzy memberships in two
possible ways:

(a) One-to-one object-cluster assignment, to as-
sign each object to the cluster in which it has
the highest membership;

(b) One-to-multiple object-clusters assignment, to
assign each object to the cluster in which it has
a membership higher than a threshold.

6.9.2 The optimization problem in
FLAME

The Local/Neighborhood Approximation of Fuzzy
Memberships is a procedure to minimize the Lo-
cal/Neighborhood Approximation Error (LAE/NAE)
defined as the following:

E({p}) =
∑
x∈X

∥∥∥∥p(x)− ∑
y∈N (x)

wxyp(y)

∥∥∥∥2

where X is the set of all type 3 objects, p(x) is the fuzzy
membership vector of objectx ,N (x) is the set of nearest
neighbors of x , and wxy with

∑
y∈N (x) wxy = 1 are

the coefficients reflecting the relative proximities of the
nearest neighbors.
The NAE can be minimized by solving the following lin-
ear equations with unique solution which is the unique
global minimum of NAE with value zero:

pk(x)−
∑

y∈N (x)

wxypk(y) = 0, ∀x ∈X, k = 1, ...,M

where M is the number of CSOs plus one (for the outlier
group). The following iterative procedure can be used to
solve these linear equations:

pt+1(x) =
∑

y∈N (x)

wxyp
t(y)

6.9.3 A simple illustration on a 2-
Dimension testing dataset

6.9.4 See also

• Data clustering

• Fuzzy clustering

https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Fuzzy_clustering
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6.9.5 External links

• BMC Bioinformatics (2007): FLAME, a novel
fuzzy clustering method for the analysis of DNA mi-
croarray data

• FLAME source codes in C released under
FreeBSD-like license on GoogleCode

6.10 Information bottleneck
method

The information bottleneck method is a technique in-
troduced by Naftali Tishby et al. [1] for finding the best
tradeoff between accuracy and complexity (compression)
when summarizing (e.g. clustering) a random variable
X, given a joint probability distribution between X and
an observed relevant variable Y. Other applications in-
clude distributional clustering, and dimension reduction.
In a well defined sense it generalized the classical notion
of minimal sufficient statistics from parametric statistics
to arbitrary distributions, not necessarily of exponential
form. It does so by relaxing the sufficiency condition to
capture some fraction of the mutual information with the
relevant variable Y.
The compressed variable is T and the algorithm min-
imises the following quantity

min
p(t|x)

I(X;T )− βI(T ;Y )

where I(X;T ) I(T ;Y ) are the mutual information be-
tween X;T and T ;Y respectively, and β is a Lagrange
multiplier.

6.10.1 Gaussian information bottleneck

A relatively simple application of the information bottle-
neck is to Gaussian variates and this has some semblance
to a least squares reduced rank or canonical correlation
[2]. Assume X,Y are jointly multivariate zero mean
normal vectors with covariances ΣXX , ΣY Y and T is
a compressed version of X which must maintain a given
value of mutual information with Y . It can be shown
that the optimum T is a normal vector consisting of lin-
ear combinations of the elements of X, T = AX where
matrix A has orthogonal rows.
The projection matrix A in fact contains M rows se-
lected from the weighted left eigenvectors of the singular
value decomposition of the following matrix (generally
asymmetric)

Ω = ΣX|Y Σ
−1
XX = I − ΣXY Σ

−1
Y Y Σ

T
XY Σ

−1
XX .

Define the singular value decomposition

Ω = UΛV T with Λ = Diag
(
λ1 ≤ λ2 · · ·λN

)
and the critical values

βC
i =

λi<1
(1− λi)

−1.

then the number M of active eigenvectors in the projec-
tion, or order of approximation, is given by

βC
M−1 < β ≤ βC

M

And we finally get

A = [w1U1, . . . , wMUM ]T

In which the weights are given by

wi =
√
(β(1− λi)/λiri

where ri = UT
i ΣXXUi.

Applying the Gaussian information bottleneck on time se-
ries, one gets optimal predictive coding. This procedure
is formally equivalent to linear Slow Feature Analysis [3].
Optimal temporal structures in linear dynamic systems
can be revealed in the so-called past-future information
bottleneck [4].

Data clustering using the information bottleneck

This application of the bottleneck method to non-
Gaussian sampled data is described in [4] by Tishby et.
el. The concept, as treated there, is not without compli-
cation as there are two independent phases in the exer-
cise: firstly estimation of the unknown parent probability
densities from which the data samples are drawn and sec-
ondly the use of these densities within the information
theoretic framework of the bottleneck.

Density estimation

Main article: Density estimation

Since the bottleneck method is framed in probabilistic
rather than statistical terms, we first need to estimate
the underlying probability density at the sample points
X = xi . This is a well known problem with a number
of solutions described by Silverman in [5]. In the present
method, joint probabilities of the samples are found by
use of a Markov transition matrix method and this has
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some mathematical synergy with the bottleneck method
itself.
Define an arbitrarily increasing distance metric f be-
tween all sample pairs and distance matrix di,j =

f
(∣∣∣xi−xj

∣∣∣) . Then compute transition probabilities be-
tween sample pairs Pi,j = exp(−λdi,j) for some λ > 0
. Treating samples as states, and a normalised version
of P as a Markov state transition probability matrix, the
vector of probabilities of theʻstates a̓fter t steps, con-
ditioned on the initial state p(0) , is p(t) = P tp(0) .
We are here interested only in the equilibrium probabil-
ity vector p(∞) given, in the usual way, by the dominant
eigenvector of matrix P which is independent of the ini-
tialising vector p(0) . This Markov transition method
establishes a probability at the sample points which is
claimed to be proportional to the probabilities densities
there.
Other interpretations of the use of the eigenvalues of dis-
tance matrix d are discussed in [6].

Clusters

In the following soft clustering example, the reference
vector Y contains sample categories and the joint prob-
ability p(X,Y ) is assumed known. A soft cluster ck is
defined by its probability distribution over the data sam-
ples xi : p(ck|xi) . In [1] Tishby et al. present the
following iterative set of equations to determine the clus-
ters which are ultimately a generalization of the Blahut-
Arimoto algorithm, developed in rate distortion theory.
The application of this type of algorithm in neural net-
works appears to originate in entropy arguments arising
in application of Gibbs Distributions in deterministic an-
nealing [7].


p(c|x) = Kp(c) exp

(
− β DKL

[
p(y|x) || p(y|c)

])
p(y|c) =

∑
x p(y|x)p(c|x)p(x)

/
p(c)

p(c) =
∑

x p(c|x)p(x)

The function of each line of the iteration is expanded as
follows.
Line 1: This is a matrix valued set of conditional proba-
bilities

Ai,j = p(ci|xj) = Kp(ci) exp
(
−β DKL

[
p(y|xj) || p(y|ci)

])
The Kullback–Leibler distance DKL between the Y
vectors generated by the sample data x and those gen-
erated by its reduced information proxy c is applied to
assess the fidelity of the compressed vector with respect
to the reference (or categorical) data Y in accordance
with the fundamental bottleneck equation. DKL(a||b) is
the Kullback Leibler distance between distributions a, b

DKL(a||b) =
∑
i

p(ai) log
(p(ai)
p(bi)

)
and K is a scalar normalization. The weighting by the
negative exponent of the distance means that prior cluster
probabilities are downweighted in line 1 when the Kull-
back Liebler distance is large, thus successful clusters
grow in probability while unsuccessful ones decay.
Line 2: This is a second matrix-valued set of conditional
probabilities. The steps in deriving it are as follows. We
have, by definition

p(yi|ck) =
∑
j

p(yi|xj)p(xj |ck)

=
∑
j

p(yi|xj)p(xj , ck)
/
p(ck)

=
∑
j

p(yi|xj)p(ck|xj)p(xj)
/
p(ck)

where the Bayes identities p(a, b) = p(a|b)p(b) =
p(b|a)p(a) are used.
Line 3: this line finds the marginal distribution of the
clusters c

p(ci) =
∑
j

p(ci, xj) =
∑
j

p(ci|xj)p(xj)

This is also a standard result.
Further inputs to the algorithm are the marginal sample
distribution p(x) which has already been determined by
the dominant eigenvector of P and the matrix valued
Kullback Leibler distance function

DKL
i,j = DKL

[
p(y|xj) || p(y|ci)

])
derived from the sample spacings and transition probabil-
ities.
The matrix p(yi|cj) can be initialised randomly or as a
reasonable guess, while matrix p(ci|xj) needs no prior
values. Although the algorithm is converging, multiple
minima may exist which need some action to resolve.
Further details, including hard clustering methods, are
found in [5].

6.10.2 Defining decision contours

To categorize a new sample x′ external to the training set
X , apply the previous distance metric to find the tran-
sition probabilities between x′ and all samples in X : ,
p̃(xi) = p(xi|x′) = K exp

(
− λf

(∣∣∣xi − x′
∣∣∣)) with K

https://en.wikipedia.org/wiki/Distance_matrix
https://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory
https://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_distance
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a normalisation. Secondly apply the last two lines of the
3-line algorithm to get cluster, and conditional category
probabilities.

p̃(ci) = p(ci|x′) =
∑
j

p(ci|xj)p(xj |x′) =
∑
j

p(ci|xj)p̃(xj)

p(yi|cj) =
∑
k

p(yi|xk)p(cj |xk)p(xk|x′)/p(cj |x′) =
∑
k

p(yi|xk)p(cj |xk)p̃(xk)/p̃(cj)

Finally we have

p(yi|x′) =
∑
j

p(yi|cj)p(cj |x′)) =
∑
j

p(yi|cj)p̃(cj)

Parameter β must be kept under close supervision since,
as it is increased from zero, increasing numbers of fea-
tures, in the category probability space, snap into focus at
certain critical thresholds.

An example

The following case examines clustering in a four quadrant
multiplier with random inputs u, v and two categories of
output, ±1 , generated by y = sign(uv) . This func-
tion has the property that there are two spatially separated
clusters for each category and so it demonstrates that the
method can handle such distributions.
20 samples are taken, uniformly distributed on the square
[−1, 1]2 . The number of clusters used beyond the num-
ber of categories, two in this case, has little effect on per-
formance and the results are shown for two clusters using
parameters λ = 3, β = 2.5 .

The distance function is di,j =
∣∣∣xi − xj

∣∣∣2 where xi =

(ui, vi)
T while the conditional distribution p(y|x) is a 2

× 20 matrix

Pr(yi = 1) = 1 if sign(uivi) = 1

Pr(yi = −1) = 1 if sign(uivi) = −1

and zero elsewhere.
The summation in line 2 is only incorporates two values
representing the training values of +1 or −1 but never-
theless seems to work quite well. Five iterations of the
equations were used. The figure shows the locations of
the twenty samples with '0' representing Y = 1 and 'x'
representing Y = −1. The contour at the unity likelihood
ratio level is shown,

L =
Pr(1)

Pr(−1) = 1

as a new sample x′ is scanned over the square. Theoreti-
cally the contour should align with the u = 0 and v = 0

coordinates but for such small sample numbers they have
instead followed the spurious clusterings of the sample
points.

Decision contours

Neural network/fuzzy logic analogies

There is some analogy between this algorithm and a neu-
ral network with a single hidden layer. The internal nodes
are represented by the clusters cj and the first and sec-
ond layers of network weights are the conditional prob-
abilities p(cj |xi) and p(yk|cj) respectively. However,
unlike a standard neural network, the present algorithm
relies entirely on probabilities as inputs rather than the
sample values themselves while internal and output val-
ues are all conditional probability density distributions.
Nonlinear functions are encapsulated in distance metric
f(.) (or influence functions/radial basis functions) and
transition probabilities instead of sigmoid functions. The
Blahut-Arimoto three-line algorithm is seen to converge
rapidly, often in tens of iterations, and by varying β , λ
and f and the cardinality of the clusters, various levels
of focus on data features can be achieved.
The statistical soft clustering definition p(ci|xj) has
some overlap with the verbal fuzzy membership concept
of fuzzy logic.
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6.10.4 See also

• Information theory

6.10.5 External links

• Paper by N. Tishby, et al.

6.11 K-SVD

In applied mathematics, K-SVD is a dictionary learn-
ing algorithm for creating a dictionary for sparse repre-
sentations, via a singular value decomposition approach.
K-SVD is a generalization of the k-means clustering
method, and it works by iteratively alternating between
sparse coding the input data based on the current dictio-
nary, and updating the atoms in the dictionary to better
fit the data.*[1]*[2] K-SVD can be found widely in use in
applications such as image processing, audio processing,
biology, and document analysis.

6.11.1 Problem description

Main article: Sparse approximation

The goal of dictionary learning is to learn an overcom-
plete dictionary matrix D ∈ Rn×K that contains K
signal-atoms (in this notation, columns of D ). A signal
vector y ∈ Rn can be represented, sparsely, as a linear
combination of these atoms; to represent y , the represen-
tation vector x should satisfy the exact condition y = Dx
, or the approximate condition y ≈ Dx , made precise
by requiring that ∥y − Dx∥p ≤ ϵ for some small value
ε and some Lp norm. The vector x ∈ RK contains the
representation coefficients of the signal y . Typically, the
norm p is selected as L1, L2, or L∞.
If n < K and D is a full-rank matrix, an infinite number
of solutions are available for the representation problem,
Hence, constraints should be set on the solution. Also,
to ensure sparsity, the solution with the fewest number
of nonzero coefficients is preferred. Thus, the sparsity
representation is the solution of either

(P0) min
x
∥x∥0 to subjecty = Dx

or

(P0,ϵ) min
x
∥x∥0 to subject∥y −Dx∥2 ≤ ϵ

where the ∥x∥0 counts the nonzero entries in the vector
x . (See the zero “norm”.)

6.11.2 K-SVD algorithm

K-SVD is a kind of generalization of K-means, as fol-
lows. The k-means clustering can be also regarded as a
method of sparse representation. That is, finding the best
possible codebook to represent the data samples {yi}Mi=1

by nearest neighbor, by solving

min
D,X
{∥Y−DX∥2F } to subject∀i, xi = ek some for k.

which is quite similar to

min
D,X
{∥Y −DX∥2F } to subject ∀i, ∥xi∥0 = 1.

The sparse representation term xi = ek enforces K-
means algorithm to use only one atom (column) in dictio-
nary D. To relax this constraint, the target of the K-SVD
algorithm is to represent signal as a linear combination of
atoms in D.
The K-SVD algorithm follows the construction flow of K-
means algorithm. However, In contrary to K-means, in
order to achieve linear combination of atoms in D, spar-
sity term of the constrain is relaxed so that nonzero en-
tries of each column xi can be more than 1, but less than
a number T0 .
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So, the objective function becomes

min
D,X
{∥Y−DX∥2F } to subject ∀i , ∥xi∥0 ≤ T0.

or in another objective form

min
D,X

∑
i

∥xi∥0 to subject ∀i , ∥Y−DX∥2F ≤ ϵ.

In the K-SVD algorithm, the D is first to be fixed and the
best coefficient matrix X . As finding the truly optimal X
is impossible, we use an approximation pursuit method.
Any such algorithm as OMP, the orthogonal matching
pursuit in can be used for the calculation of the coeffi-
cients, as long as it can supply a solution with a fixed and
predetermined number of nonzero entries T0 .
After the sparse coding task, the next is to search for a
better dictionary D . However, finding the whole dictio-
nary all at a time is impossible, so the process then update
only one column of the dictionary D each time while fix
X . The update of k− th is done by rewriting the penalty
term as

∥Y−DX∥2F =

∣∣∣∣∣∣Y −
K∑
j=1

djx
j
T

∣∣∣∣∣∣
2

F

=

∣∣∣∣∣∣
Y −

∑
j ̸=k

djx
j
T

− dkx
k
T

∣∣∣∣∣∣
2

F

= ∥Ek−dkxk
T ∥2F

where xk
T denotes the k-th row of X.

By decomposing the multiplication DX into sum of K
rank 1 matrices, we can assume the other K − 1 terms
are assumed fixed, and the k− th remains unknown. Af-
ter this step, we can solve the minimization problem by
approximate the Ek term with a rank − 1 matrix us-
ing singular value decomposition, then update dk with it.
However, the new solution of vector xk

T is very likely to
be filled, because the sparsity constrain is not enforced.
To cure this problem, Define ωk as

ωk = {i | 1 ≤ i ≤ N, xk
T (i) ̸= 0}.

Which points to examples {yi} that use atom dk (also the
entries of xi that is nonzero). Then, define Ωk as a matrix
of size N × |ωk| , with ones on the (i-th, ωk(i)) entries
and zeros otherwise. When multiplying xk

R = xk
TΩk ,

this shrinks the row vector xk
T by discarding the nonzero

entries. Similarly, the multiplication Y R
k = Y Ωk is the

subset of the examples that are current using the dk atom.
The same effect can be seen on ER

k = EkΩk .
So the minimization problem as mentioned before be-
comes

∥EkΩk − dkx
k
TΩk∥2F = ∥ER

k − dkx
k
R∥2F

and can be done by directly using SVD. SVD decomposes
ER

k into U∆V T . The solution for dk is the first column
of U, the coefficient vector xk

R as the first column of V ×
∆(1, 1) . After updated the whole dictionary, the process
then turns to iteratively solve X, then iteratively solve D.

6.11.3 Limitations

Choosing an appropriate “dictionary”for a dataset is a
non-convex problem, and K-SVD operates by an iterative
update which does not guarantee to find the global opti-
mum.*[2] However, this is common to other algorithms
for this purpose, and K-SVD works fairly well in prac-
tice.*[2]

6.11.4 See also

• Sparse approximation

• Singular value decomposition

• Matrix norm

• K-means clustering
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6.12 Linde–Buzo–Gray algorithm

The Linde–Buzo–Gray algorithm (introduced by
Yoseph Linde, Andrés Buzo and Robert M. Gray in
1980) is a vector quantization algorithm to derive a good
codebook.
It is similar to the k-means method in data clustering.

6.12.1 The algorithm

At each iteration, each vector is split into two new vectors.

• A initial state: centroid of the training sequence;

• B initial estimation #1: code book of size 2;

• C final estimation after LGA: Optimal code book
with 2 vectors;
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• D initial estimation #2: code book of size 4;

• E final estimation after LGA: Optimal code book
with 4 vectors;

6.12.2 References

• The original paper describing the algorithm, as an
extension to Lloyd's algorithm:

• Linde, Y.; Buzo, A.; Gray, R. (1980).
“An Algorithm for Vector Quantizer Design”.
IEEE Transactions on Communications 28: 84.
doi:10.1109/TCOM.1980.1094577.

6.12.3 External links

• http://www.data-compression.com/vq.html#lbg

6.13 Neighbor joining

This genetic distance map made in 2002 is an estimate of 18
world human groups by a neighbour-joining method based on
23 kinds of genetic information. It was made by Saitou Naruya
(஑२ซݞ) professor at the (Japanese) National Institute for
Genetics.*[1]

In bioinformatics, neighbor joining is a bottom-
up (agglomerative) clustering method for the creation
of phylogenetic trees, created by Naruya Saitou and
Masatoshi Nei in 1987.*[2] Usually used for trees based
on DNA or protein sequence data, the algorithm requires
knowledge of the distance between each pair of taxa (e.g.,
species or sequences) to form the tree.*[3]

6.13.1 The algorithm

Neighbor joining takes as input a distance matrix specify-
ing the distance between each pair of taxa. The algorithm
starts with a completely unresolved tree, whose topology
corresponds to that of a star network, and iterates over the
following steps until the tree is completely resolved and
all branch lengths are known:

Starting with a star tree (A), the Qmatrix is calculated and used to
choose a pair of nodes for joining, in this case f and g. These are
joined to a newly created node, u, as shown in (B). The part of
the tree shown as solid lines is now fixed and will not be changed
in subsequent joining steps. The distances from node u to the
nodes a-e are computed from equation (3). This process is then
repeated, using a matrix of just the distances between the nodes,
a,b,c,d,e, and u, and a Q matrix derived from it. In this case u
and e are joined to the newly created v, as shown in (C). Two
more iterations lead first to (D), and then to (E), at which point
the algorithm is done, as the tree is fully resolved.

1. Based on the current distance matrix calculate the
matrix Q (defined below).

2. Find the pair of distinct taxa i and j (i.e. with i ̸= j )
for whichQ(i, j) has its lowest value. These taxa are
joined to a newly created node, which is connected
to the central node. In the figure at right, f and g are
joined to the new node u.

3. Calculate the distance from each of the taxa in the
pair to this new node.

4. Calculate the distance from each of the taxa outside
of this pair to the new node.

5. Start the algorithm again, replacing the pair of
joined neighbors with the new node and using the
distances calculated in the previous step.

The Q-matrix

Based on a distance matrix relating the n taxa, calculate
Q as follows:
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where d(i, j) is the distance between taxa i and j .

Distance from the pair members to the new node

For each of the taxa in the pair being joined, use the fol-
lowing formula to calculate the distance to the new node:

and:

δ(g, u) = d(f, g)− δ(f, u)

Taxa f and g are the paired taxa and u is the newly cre-
ated node. The branches joining f and u and g and u ,
and their lengths, δ(f, u) and δ(g, u) are part of the tree
which is gradually being created; they neither affect not
are affected by later neighbor-joining steps.

Distance of the other taxa from the new node

For each taxon not considered in the previous step, we
calculate the distance to the new node as follows:

where u is the new node, k is the node which we want to
calculate the distance to and f and g are the members of
the pair just joined.

Complexity

Neighbor joining on a set of n taxa requires n − 3 it-
erations. At each step one has to build and search a Q
matrix. Initially the Q matrix is size n×n , then the next
step it is (n − 1) × (n − 1) , etc. Implementing this in
a straightforward way leads to an algorithm with a time
complexity of O(n3) ; implementations exist which use
heuristics to do much better than this on average.

6.13.2 Example

Let us assume that we have five taxa (a, b, c, d, e) and the
following distance matrix:
We obtain the following values for theQmatrix (the diag-
onal elements of the matrix are not used and are omitted
here):
In the example above, Q(a, b) = −50 . This is the small-
est value of Q , so we join nodes a and b . Let u denote
the new node; the branches joining a and b to u then have

Neighbor joining with 5 taxa. In this case 2 neighbor joining
steps give a tree with fully resolved topology. The branches of
the resulting tree are labeled with their lengths.

lengths δ(a, u) = 2 and δ(b, u) = 3 , by equation (2),
above.
We then proceed to update the distance matrix; using
equation (3) above, we compute the distance from u to
each of the other nodes besides a and b . In this case, we
obtain d(u, c) = 7 , d(u, d) = 7 , and d(u, e) = 6 . The
resulting distance matrix is:
The corresponding Q matrix is:
We may choose either to join u and c , or to join d and e
; both pairs have the minimal Q value of−28 , and either
choice leads to the same result. For concreteness, let us
join u and c and call the new node v ; this gives branch
lengths δ(u, v) = 3 and δ(c, v) = 4 as shown in the
figure, and the distance matrix for the remaining 3 nodes,
v , d , and e , is:
The tree topology is fully resolved at this point, so we
don't need to calculateQ or do any more joining of neigh-
bors. However, we can use these distances to get the re-
maining 3 branch-lengths, as shown in the figure.
This example represents an idealized case: note that if we
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move from any taxon to any other along the branches of
the tree, and sum the lengths of the branches traversed,
the result is equal to the distance between those taxa in
the input distance matrix. For example, going from d to
b we have 2+2+3+3 = 10 . A distance matrix whose
distances agree in this way with some tree is said to be
'additive', a property which is rare in practice. Nonethe-
less it is important to note that, given an additive distance
matrix as input, neighbor joining is guaranteed to find the
tree whose distances between taxa agree with it.

6.13.3 Neighbor joining as minimum evo-
lution

Neighbor joining may be viewed as a greedy algorithm
for optimizing a tree according to the 'balanced minimum
evolution'*[4] (BME) criterion. For each topology, BME
defines the tree length (sum of branch lengths) to be a
particular weighted sum of the distances in the distance
matrix, with the weights depending on the topology. The
BME optimal topology is the one which minimizes this
tree length. Neighbor joining at each step greedily joins
that pair of taxa which will give the greatest decrease in
the estimated tree length. This procedure is not guaran-
teed to find the topology which is optimal by the BME
criterion, although it often does and is usually quite close.

6.13.4 Advantages and disadvantages

The main virtue of NJ is that it is fast, due in part to its
being a polynomial-time algorithm. This makes it prac-
tical for analyzing large data sets (hundreds or thousands
of taxa) and for bootstrapping, for which purposes other
means of analysis (e.g. maximum parsimony, maximum
likelihood) may be computationally prohibitive.
Neighbor joining has the property that if the input dis-
tance matrix is correct, then the output tree will be cor-
rect. Furthermore the correctness of the output tree
topology is guaranteed as long as the distance matrix is
'nearly additive', specifically if each entry in the distance
matrix differs from the true distance by less than half of
the shortest branch length in the tree.*[5] In practice the
distance matrix rarely satisfies this condition, but neigh-
bor joining often constructs the correct tree topology any-
way.*[6] The correctness of neighbor joining for nearly
additive distance matrices implies that it is statistically
consistent under many models of evolution; given data
of sufficient length, neighbor joining will reconstruct the
true tree with high probability. Compared with UPGMA,
neighbor joining has the advantage that it does not assume
all lineages evolve at the same rate (molecular clock hy-
pothesis).
Nevertheless, neighbor joining has been largely super-
seded by phylogenetic methods that do not rely on dis-
tance measures and offer superior accuracy under most
conditions. Neighbor joining has the undesirable fea-

ture that it often assigns negative lengths to some of the
branches.

6.13.5 Implementations and variants

There are many programs available implementing neigh-
bor joining. RapidNJ and NINJA are fast implementa-
tions with typical run times proportional to approximately
the square of the number of taxa. BIONJ and Weighbor
are variants of neighbor joining which improve on its ac-
curacy by making use of the fact that the shorter distances
in the distance matrix are generally better known than
the longer distances. FastME is an implementation of the
closely related balanced minimum evolution method.

6.13.6 See also
• Human genetic clustering

• Nearest neighbor search

• UPGMA
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6.13.8 External links

• The Neighbor-Joining Method ̶a tutorial

6.14 Pitman–Yor process

In probability theory, a Pitman–Yor pro-
cess*[1]*[2]*[3]*[4] denoted PY(d, θ, G0), is a
stochastic process whose sample path is a probability
distribution. A random sample from this process is an
infinite discrete probability distribution, consisting of an
infinite set of atoms drawn from G0, with weights drawn
from a two-parameter Poisson–Dirichlet distribution.
The process is named after Jim Pitman and Marc Yor.
The parameters governing the Pitman–Yor process are:
0 ≤ d < 1 a discount parameter, a strength parameter θ
> −d and a base distribution G0 over a probability space
X. When d = 0, it becomes the Dirichlet process. The
discount parameter gives the Pitman–Yor process more
flexibility over tail behavior than the Dirichlet process,
which has exponential tails. This makes Pitman–Yor pro-
cess useful for modeling data with power-law tails (e.g.,
word frequencies in natural language).
The exchangeable random partition induced by the
Pitman–Yor process is an example of a Poisson–
Kingman partition, and of a Gibbs type random partition.

6.14.1 Naming conventions

The name“Pitman–Yor process”was coined by Ishwaran
and James*[5] after Pitman and Yor's review on the sub-
ject.*[2] However the process was originally studied in
Perman et al*[6]*[7] so technically it perhaps may have
been better named the Perman–Pitman–Yor process.
It is also sometimes referred to as the two-parameter
Poisson–Dirichlet process, after the two-parameter gen-
eralization of the Poisson–Dirichlet distribution which
describes the joint distribution of the sizes of the atoms in
the random measure, sorted by strictly decreasing order.
However as a name the two-parameter Poisson–Dirichlet
process is too long and not very popular. It also empha-
sizes the strictly decreasing order which is not important
in many modeling applications.

6.14.2 See also

• Chinese restaurant process

• Dirichlet distribution

• Latent Dirichlet allocation

6.14.3 References
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[5] Ishwaran, H.; James, L. (2001).“Gibbs Sampling Meth-
ods for Stick-Breaking Priors”. Journal of the American
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[6] Perman, M.; Pitman, J.; Yor, M. (1992). “Size-biased
sampling of Poisson point processes and excursions”.
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6.15 Self-organizing map

A self-organizing map (SOM) or self-organizing fea-
ture map (SOFM) is a type of artificial neural network
(ANN) that is trained using unsupervised learning to pro-
duce a low-dimensional (typically two-dimensional), dis-
cretized representation of the input space of the training
samples, called a map. Self-organizing maps are dif-
ferent from other artificial neural networks in the sense
that they use a neighborhood function to preserve the
topological properties of the input space.
This makes SOMs useful for visualizing low-dimensional
views of high-dimensional data, akin to multidimensional
scaling. The artificial neural network introduced by the
Finnish professor Teuvo Kohonen in the 1980s is some-
times called a Kohonen map or network.*[1]*[2] The
Kohonen net is a computationally convenient abstrac-
tion building on work on biologically neural models from
the 1970s*[3] and morphogenesis models dating back to
Alan Turing in the 1950s*[4]
Like most artificial neural networks, SOMs operate in two
modes: training and mapping.“Training”builds the map
using input examples (a competitive process, also called
vector quantization), while“mapping”automatically clas-
sifies a new input vector.
A self-organizing map consists of components called
nodes or neurons. Associated with each node are a weight

http://www.icp.be/~opperd/private/neighbor.html
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Poisson%E2%80%93Dirichlet_distribution
https://en.wikipedia.org/wiki/Jim_Pitman
https://en.wikipedia.org/wiki/Marc_Yor
https://en.wikipedia.org/wiki/Dirichlet_process
https://en.wikipedia.org/wiki/Power-law
https://en.wikipedia.org/wiki/Poisson%E2%80%93Kingman_partition
https://en.wikipedia.org/wiki/Poisson%E2%80%93Kingman_partition
https://en.wikipedia.org/wiki/Gibbs_type_random_partition
https://en.wikipedia.org/wiki/Chinese_restaurant_process
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1214%252Faop%252F1024404422
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=1434129
https://en.wikipedia.org/wiki/Zentralblatt_MATH
https://zbmath.org/?format=complete&q=an:0880.60076
http://works.bepress.com/jim_pitman/1/
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Scientific_visualization
https://en.wikipedia.org/wiki/Multidimensional_scaling
https://en.wikipedia.org/wiki/Multidimensional_scaling
https://en.wikipedia.org/wiki/Finland
https://en.wikipedia.org/wiki/Teuvo_Kohonen
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Competitive_learning
https://en.wikipedia.org/wiki/Vector_quantization


104 CHAPTER 6. OTHER

A self-organizing map showing U.S. Congress voting patterns vi-
sualized in Synapse. The first two boxes show clustering and dis-
tances while the remaining ones show the component planes. Red
means a yes vote while blue means a no vote in the component
planes (except the party component where red is Republican and
blue is Democratic).

vector of the same dimension as the input data vectors,
and a position in the map space. The usual arrange-
ment of nodes is a two-dimensional regular spacing in a
hexagonal or rectangular grid. The self-organizing map
describes a mapping from a higher-dimensional input
space to a lower-dimensional map space. The procedure
for placing a vector from data space onto the map is to
find the node with the closest (smallest distance metric)
weight vector to the data space vector.
While it is typical to consider this type of network struc-
ture as related to feedforward networks where the nodes
are visualized as being attached, this type of architec-
ture is fundamentally different in arrangement and mo-
tivation.
Useful extensions include using toroidal grids where op-
posite edges are connected and using large numbers of
nodes.
It has been shown that while self-organizing maps with a
small number of nodes behave in a way that is similar to
K-means, larger self-organizing maps rearrange data in a
way that is fundamentally topological in character.*[5]
It is also common to use the U-Matrix.*[6] The U-Matrix
value of a particular node is the average distance between
the node's weight vector and that of its closest neigh-
bors.*[7] In a square grid, for instance, we might consider
the closest 4 or 8 nodes (the Von Neumann and Moore
neighborhoods, respectively), or six nodes in a hexagonal
grid.
Large SOMs display emergent properties. In maps con-
sisting of thousands of nodes, it is possible to perform
cluster operations on the map itself.*[8]

6.15.1 Learning algorithm

The goal of learning in the self-organizing map is to cause
different parts of the network to respond similarly to cer-
tain input patterns. This is partly motivated by how vi-
sual, auditory or other sensory information is handled
in separate parts of the cerebral cortex in the human
brain.*[9]

An illustration of the training of a self-organizing map. The blue
blob is the distribution of the training data, and the small white
disc is the current training datum drawn from that distribution.
At first (left) the SOM nodes are arbitrarily positioned in the data
space. The node (highlighted in yellow) which is nearest to the
training datum is selected. It is moved towards the training da-
tum, as (to a lesser extent) are its neighbors on the grid. After
many iterations the grid tends to approximate the data distribu-
tion (right).

The weights of the neurons are initialized either to
small random values or sampled evenly from the sub-
space spanned by the two largest principal component
eigenvectors. With the latter alternative, learning is much
faster because the initial weights already give a good ap-
proximation of SOM weights.*[10]
The network must be fed a large number of example vec-
tors that represent, as close as possible, the kinds of vec-
tors expected during mapping. The examples are usually
administered several times as iterations.
The training utilizes competitive learning. When a train-
ing example is fed to the network, its Euclidean distance
to all weight vectors is computed. The neuron whose
weight vector is most similar to the input is called the best
matching unit (BMU). The weights of the BMU and neu-
rons close to it in the SOM lattice are adjusted towards
the input vector. The magnitude of the change decreases
with time and with distance (within the lattice) from the
BMU. The update formula for a neuron v with weight vec-
tor Wᵥ(s) is

Wᵥ(s + 1) = Wᵥ(s) + Θ(u, v, s) α(s)(D(t) -
Wᵥ(s)),

where s is the step index, t an index into the training
sample, u is the index of the BMU for D(t), α(s) is a
monotonically decreasing learning coefficient and D(t) is
the input vector; Θ(u, v, s) is the neighborhood function
which gives the distance between the neuron u and the
neuron v in step s.*[11] Depending on the implementa-
tions, t can scan the training data set systematically (t is
0, 1, 2...T-1, then repeat, T being the training sample's
size), be randomly drawn from the data set (bootstrap
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sampling), or implement some other sampling method
(such as jackknifing).
The neighborhood function Θ(u, v, s) depends on the
lattice distance between the BMU (neuron u) and neu-
ron v. In the simplest form it is 1 for all neurons close
enough to BMU and 0 for others, but a Gaussian function
is a common choice, too. Regardless of the functional
form, the neighborhood function shrinks with time.*[9]
At the beginning when the neighborhood is broad, the
self-organizing takes place on the global scale. When the
neighborhood has shrunk to just a couple of neurons, the
weights are converging to local estimates. In some im-
plementations the learning coefficient α and the neigh-
borhood function Θ decrease steadily with increasing s,
in others (in particular those where t scans the training
data set) they decrease in step-wise fashion, once every T
steps.
This process is repeated for each input vector for a (usu-
ally large) number of cycles λ. The network winds up
associating output nodes with groups or patterns in the
input data set. If these patterns can be named, the names
can be attached to the associated nodes in the trained net.
During mapping, there will be one single winning neuron:
the neuron whose weight vector lies closest to the input
vector. This can be simply determined by calculating the
Euclidean distance between input vector and weight vec-
tor.
While representing input data as vectors has been empha-
sized in this article, it should be noted that any kind of
object which can be represented digitally, which has an
appropriate distance measure associated with it, and in
which the necessary operations for training are possible
can be used to construct a self-organizing map. This in-
cludes matrices, continuous functions or even other self-
organizing maps.

Preliminary definitions

Self organizing maps (SOM) of three and eight colors with U-
Matrix.

Consider an n×m array of nodes, each of which contains
a weight vector and is aware of its location in the array.

Each weight vector is of the same dimension as the node's
input vector. The weights may initially be set to random
values.
Now we need input to feed the map̶The generated map
and the given input exist in separate subspaces. We will
create three vectors to represent colors. Colors can be
represented by their red, green, and blue components.
Consequently our input vectors will have three compo-
nents, each corresponding to a color space. The input
vectors will be:

R = <255, 0, 0>
G = <0, 255, 0>
B = <0, 0, 255>

The color training vector data sets used in SOM:

threeColors = [255, 0, 0], [0, 255, 0], [0, 0,
255]
eightColors = [0, 0, 0], [255, 0, 0], [0, 255, 0],
[0, 0, 255], [255, 255, 0], [0, 255, 255], [255,
0, 255], [255, 255, 255]

The data vectors should preferably be normalized (vector
length is equal to one) before training the SOM.

Self organizing map of Fisher's Iris flower data.

Neurons (40×40 square grid) are trained for 250 itera-
tions with a learning rate of 0.1 using the normalized Iris
flower data set which has four-dimensional data vectors.
Shown are: a color image formed by the first three di-
mensions of the four-dimensional SOM weight vectors
(top left), a pseudo-color image of the magnitude of the
SOM weight vectors (top right), a U-Matrix (Euclidean
distance between weight vectors of neighboring cells) of
the SOM (bottom left), and an overlay of data points (red:
I. setosa, green: I. versicolor and blue: I. virginica) on
the U-Matrix based on the minimum Euclidean distance
between data vectors and SOM weight vectors (bottom
right).

https://en.wikipedia.org/wiki/Bootstrap_sampling
https://en.wikipedia.org/wiki/Resampling_(statistics)#Jackknife
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set
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Variables

These are the variables needed, with vectors in bold,

• s is the current iteration

• λ is the iteration limit

• t is the index of the target input data vector in the
input data set D

• D(t) is a target input data vector

• v is the index of the node in the map

• Wv is the current weight vector of node v

• u is the index of the best matching unit (BMU) in
the map

• Θ(u, v, s) is a restraint due to distance from BMU,
usually called the neighborhood function, and

• α(s) is a learning restraint due to iteration progress.

Algorithm

1. Randomize the map's nodes' weight vectors

2. Grab an input vector D(t)

3. Traverse each node in the map

(a) Use the Euclidean distance formula to find the
similarity between the input vector and the
map's node's weight vector

(b) Track the node that produces the smallest dis-
tance (this node is the best matching unit,
BMU)

4. Update the nodes in the neighborhood of the BMU
(including the BMU itself) by pulling them closer to
the input vector

(a) Wᵥ(s + 1) = Wᵥ(s) + Θ(u, v, s) α(s)(D(t) -
Wᵥ(s))

5. Increase s and repeat from step 2 while s < λ

A variant algorithm:

1. Randomize the map's nodes' weight vectors

2. Traverse each input vector in the input data set

(a) Traverse each node in the map
i. Use the Euclidean distance formula to

find the similarity between the input vec-
tor and the map's node's weight vector

ii. Track the node that produces the smallest
distance (this node is the best matching
unit, BMU)

(b) Update the nodes in the neighborhood of the
BMU (including the BMU itself) by pulling
them closer to the input vector

i. Wᵥ(s + 1) = Wᵥ(s) + Θ(u, v, s) α(s)(D(t)
- Wᵥ(s))

3. Increase s and repeat from step 2 while s < λ

6.15.2 Interpretation

Cartographical representation of a self-organizing map (U-
Matrix) based on Wikipedia featured article data (word fre-
quency). Distance is inversely proportional to similarity. The
“mountains”are edges between clusters. The red lines are links
between articles.

One-dimensional SOM versus principal component analysis
(PCA) for data approximation. SOM is a red broken line with
squares, 20 nodes. The first principal component is presented by
a blue line. Data points are the small grey circles. For PCA, the
fraction of variance unexplained in this example is 23.23%, for
SOM it is 6.86%.*[12]

There are two ways to interpret a SOM. Because in the
training phase weights of the whole neighborhood are
moved in the same direction, similar items tend to ex-
cite adjacent neurons. Therefore, SOM forms a seman-
tic map where similar samples are mapped close together
and dissimilar ones apart. This may be visualized by a
U-Matrix (Euclidean distance between weight vectors of
neighboring cells) of the SOM.*[6]*[7]*[13]
The other way is to think of neuronal weights as pointers
to the input space. They form a discrete approximation of

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/U-Matrix
https://en.wikipedia.org/wiki/U-Matrix
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https://en.wikipedia.org/wiki/Fraction_of_variance_unexplained
https://en.wikipedia.org/wiki/U-Matrix
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the distribution of training samples. More neurons point
to regions with high training sample concentration and
fewer where the samples are scarce.
SOM may be considered a nonlinear generalization of
Principal components analysis (PCA).*[14] It has been
shown, using both artificial and real geophysical data, that
SOM has many advantages*[15]*[16] over the conven-
tional feature extraction methods such as Empirical Or-
thogonal Functions (EOF) or PCA.
Originally, SOM was not formulated as a solution to an
optimisation problem. Nevertheless, there have been sev-
eral attempts to modify the definition of SOM and to
formulate an optimisation problem which gives similar
results.*[17] For example, Elastic maps use the mechani-
cal metaphor of elasticity to approximate principal mani-
folds:*[18] the analogy is an elastic membrane and plate.

6.15.3 Alternatives

• The generative topographic map (GTM) is a po-
tential alternative to SOMs. In the sense that a
GTM explicitly requires a smooth and continuous
mapping from the input space to the map space,
it is topology preserving. However, in a practical
sense, this measure of topological preservation is
lacking.*[19]

• The time adaptive self-organizingmap (TASOM)
network is an extension of the basic SOM. The
TASOM employs adaptive learning rates and neigh-
borhood functions. It also includes a scaling pa-
rameter to make the network invariant to scaling,
translation and rotation of the input space. The
TASOM and its variants have been used in sev-
eral applications including adaptive clustering, mul-
tilevel thresholding, input space approximation, and
active contour modeling.*[20] Moreover, a Binary
Tree TASOM or BTASOM, resembling a binary
natural tree having nodes composed of TASOM net-
works has been proposed where the number of its
levels and the number of its nodes are adaptive with
its environment.*[21]

• The growing self-organizing map (GSOM) is a
growing variant of the self-organizing map. The
GSOM was developed to address the issue of identi-
fying a suitable map size in the SOM. It starts with a
minimal number of nodes (usually four) and grows
new nodes on the boundary based on a heuristic.
By using a value called the spread factor, the data
analyst has the ability to control the growth of the
GSOM.

• The elastic maps approach*[22] borrows from the
spline interpolation the idea of minimization of the
elastic energy. In learning, it minimizes the sum
of quadratic bending and stretching energy with the
least squares approximation error.

• The conformal approach *[23]*[24] that uses con-
formal mapping to interpolate each training sample
between grid nodes in a continuous surface. An one-
to-one smooth mapping is possible in this approach.

6.15.4 Applications

• Meteorology and oceanography*[25]

• Project prioritization and selection *[26]

6.15.5 See also

• Neural gas

• Liquid state machine

• Large Memory Storage and Retrieval (LAMSTAR)
neural networks (See: Graupe D, Kordylewski H,
(1996), “A Large-Memory Storage and Retrieval
Neural Network for Browsing and Medical Diagno-
sis”, Proc. 6th ANNIE Conf., St. Louis, Missouri,
ASME Press, 711-716; Graupe D, (2013), “Prin-
ciples of Artificial Neural Networks”, 3rd Edition,
World Scientific Publishing)

• Hybrid Kohonen SOM

• Sparse coding

• Sparse distributed memory

• Deep learning

• Neocognitron

• Topological data analysis
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6.15.7 External links

• Self-organizing maps for WEKA: Implementation
of a self-organizing maps in Java, for the WEKA
Machine Learning Workbench.

• Self-organizing maps for Ruby: Implementation of
self-organizing maps in Ruby, for the AI4R project.

• Self-organizing map for JavaScript: An open-
source implementation of a self-organizing map in
JavaScript for node.js from Lucid Technics, LLC.

• Self-organizing map for Python: An open-source
implementation of a self-organizing map in python.
The SOM structure and training procedure is similar
to som toolbox for Matlab

• Self-organizing map for Haskell: An open-source
implementation of a self-organising map in Haskell.

• A Self-organizing Map implementation for PHP
An open-source implementation of a self-organizing
map in PHP.
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• Spice-SOM: A free GUI application of self-
organizing map

• IFCSoft: An open-source Java platform for gener-
ating self-organizing maps

• DemoGNG: Java applet implementing self-
organizing maps and other network models (neural
gas, growing neural gas, growing grid etc.)

• kohonen An open source Supervised and unsuper-
vised self-organising maps package for R.

• supraHex A supra-hexagonal map for analysing
high-dimensional omics data.

6.16 SUBCLU

SUBCLU is an algorithm for clustering high-dimensional
data by Karin Kailing, Hans-Peter Kriegel and Peer
Kröger.*[1] It is a subspace clustering algorithm
that builds on the density-based clustering algorithm
DBSCAN. SUBCLU can find clusters in axis-parallel
subspaces, and uses a bottom-up, greedy strategy to
remain efficient.

6.16.1 Approach

SUBCLU uses a monotonicity criteria: if a cluster is
found in a subspace S , then each subspace T ⊆ S also
contains a cluster. However, a cluster C ⊆ DB in sub-
space S is not necessarily a cluster in T ⊆ S , since clus-
ters are required to be maximal, and more objects might
be contained in the cluster in T that contains C . How-
ever, a density-connected set in a subspace S is also a
density-connected set in T ⊆ S .
This downward-closure property is utilized by SUBCLU
in a way similar to the Apriori algorithm: first, all 1-
dimensional subspaces are clustered. All clusters in a
higher-dimensional subspace will be subsets of the clus-
ters detected in this first clustering. SUBCLU hence re-
cursively produces k + 1 -dimensional candidate sub-
spaces by combining k -dimensional subspaces with clus-
ters sharing k − 1 attributes. After pruning irrelevant
candidates, DBSCAN is applied to the candidate sub-
space to find out if it still contains clusters. If it does,
the candidate subspace is used for the next combina-
tion of subspaces. In order to improve the runtime of
DBSCAN, only the points known to belong to clusters in
one k -dimensional subspace (which is chosen to contain
as little clusters as possible) are considered. Due to the
downward-closure property, other point cannot be part of
a k + 1 -dimensional cluster anyway.

6.16.2 Pseudocode

SUBCLU takes two parameters, ϵ and MinPts , which
serve the same role as in DBSCAN. In a first step,
DBSCAN is used to find 1D-clusters in each subspace
spanned by a single attribute:
SUBCLU(DB, eps,MinPts)

S1 := ∅
C1 := ∅
for each a ∈ Attributes

C{a} =
DBSCAN(DB, {a}, eps,MinPts)

if(C{a} ̸= ∅)

S1 := S1 ∪ {a}

C1 := C1 ∪ C{a}

end if

end for

In a second step, k+1 -dimensional clusters are built from
k -dimensional ones:

k := 1

while(Ck ̸= ∅)

CandSk+1 :=
GenerateCandidateSubspaces(Sk)

for each cand ∈ CandSk+1

bestSubspace :=
mins∈Sk∧s⊂cand

∑
Ci∈Cs |Ci|

Ccand := ∅
for each cluster cl ∈
CbestSubspace

Ccand :=
Ccand ∪
DBSCAN(cl, cand, eps,MinPts)
if (Ccand ̸= ∅)

Sk+1 := Sk+1 ∪ cand

Ck+1 := Ck+1 ∪ Ccand

end if

end for

end for

k := k + 1

endwhile

end

The set Sk contains all the k -dimensional subspaces
that are known to contain clusters. The set Ck con-
tains the sets of clusters found in the subspaces. The
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bestSubspace is chosen to minimize the runs of DB-
SCAN (and the number of points that need to be consid-
ered in each run) for finding the clusters in the candidate
subspaces.
Candidate subspaces are generated much alike the
Apriori algorithm generates the frequent itemset candi-
dates: Pairs of the k -dimensional subspaces are com-
pared, and if they differ in one attribute only, they form a
k + 1 -dimensional candidate. However, a number of
irrelevant candidates are found as well; they contain a
k -dimensional subspace that does not contain a cluster.
Hence, these candidates are removed in a second step:
GenerateCandidateSubspaces(Sk)

CandSk+1 := ∅
for each s1 ∈ Sk

for each s2 ∈ Sk

if (s1 and s2 differ in exactely one attribute)

CandSk+1 := CandSk+1 ∪ {s1 ∪ s2}

end if

end for

end for

// Pruning of irrelevant candidate subspaces

for each cand ∈ CandSk+1

for each k − element s ⊂ cand

if (s ̸∈ Sk)

CandSk+1 = CandSk+1 \ {cand}

end if

end for

end for

end

6.16.3 Availability

An example implementation of SUBCLU is available in
the ELKI framework.

6.16.4 References

[1] Karin Kailing, Hans-Peter Kriegel and Peer Kröger.
Density-Connected Subspace Clustering for High-
Dimensional Data. In: Proc. SIAM Int. Conf. on Data
Mining (SDM'04), pp. 246-257, 2004.

6.17 Ward's method

In statistics, Ward's method is a criterion applied in
hierarchical cluster analysis. Ward's minimum vari-
ance method *inaccurate, see talk is a special case of the
objective function approach originally presented by Joe
H. Ward, Jr.*[1] Ward suggested a general agglomerative
hierarchical clustering procedure, where the criterion for
choosing the pair of clusters to merge at each step is based
on the optimal value of an objective function. This ob-
jective function could be “any function that reflects the
investigator's purpose.”Many of the standard clustering
procedures are contained in this very general class. To il-
lustrate the procedure, Ward used the example where the
objective function is the error sum of squares, and this
example is known as Ward's method or more precisely
Ward's minimum variance method.

6.17.1 The minimum variance criterion

Ward's minimum variance criterion minimizes the total
within-cluster variance. At each step the pair of clusters
with minimum between-cluster distance are merged. To
implement this method, at each step find the pair of clus-
ters that leads to minimum increase in total within-cluster
variance after merging. This increase is a weighted
squared distance between cluster centers. At the initial
step, all clusters are singletons (clusters containing a sin-
gle point). To apply a recursive algorithm under this
objective function, the initial distance between individ-
ual objects must be (proportional to) squared Euclidean
distance.
The initial cluster distances in Ward's minimum variance
method are therefore defined to be the squared Euclidean
distance between points:

dij = d({Xi}, {Xj}) = ∥Xi −Xj∥2.

Note: In software that implements Ward's method, it
is important to check whether the function arguments
should specify Euclidean distances or squared Euclidean
distances.

6.17.2 Lance–Williams algorithms

Ward's minimum variance method can be defined and
implemented recursively by a Lance–Williams algo-
rithm.[2] The Lance–Williams algorithms are an infi-
nite family of agglomerative hierarchical clustering algo-
rithms which are represented by a recursive formula for
updating cluster distances at each step (each time a pair
of clusters is merged). At each step, it is necessary to
optimize the objective function (find the optimal pair of
clusters to merge). The recursive formula simplifies find-
ing the optimal pair.
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Suppose that clusters Ci and Cj were next to be merged.
At this point all of the current pairwise cluster distances
are known. The recursive formula gives the updated clus-
ter distances following the pending merge of clusters Ci

and Cj . Let

• dij , dik , and djk be the pairwise distances between
clusters Ci , Cj , and Ck , respectively,

• d(ij)k be the distance between the new cluster Ci ∪
Cj and Ck .

An algorithm belongs to the Lance-Williams family if the
updated cluster distance d(ij)k can be computed recur-
sively by

d(ij)k = αidik + αjdjk + βdij + γ|dik − djk|,

where αi, αj , β, and γ are parameters, which may de-
pend on cluster sizes, that together with the cluster dis-
tance function dij determine the clustering algorithm.
Several standard clustering algorithms such as single link-
age, complete linkage, and group average method have
a recursive formula of the above type. A table of pa-
rameters for standard methods is given by several au-
thors.*[2]*[3]*[4]
Ward's minimum variance method can be implemented
by the Lance–Williams formula. For disjoint clusters
Ci, Cj , and Ck with sizes ni, nj , and nk respectively:

d(Ci∪Cj , Ck) =
ni + nk

ni + nj + nk
d(Ci, Ck)+

nj + nk

ni + nj + nk
d(Cj , Ck)−

nk

ni + nj + nk
d(Ci, Cj).

Hence Ward's method can be implemented as a Lance–
Williams algorithm with

αl =
ni + nk

ni + nj + nk
, β =

−nk

ni + nj + nk
, γ = 0.

6.17.3 References

[1] Ward, J. H., Jr. (1963), “Hierarchical Grouping to Op-
timize an Objective Function”, Journal of the American
Statistical Association, 58, 236–244.

[2] Cormack, R. M. (1971),“A Review of Classification”,
Journal of the Royal Statistical Society, Series A, 134(3),
321-367.

[3] Gordon, A. D. (1999), Classification, 2nd Edition, Chap-
man and Hall, Boca Raton.

[4] Milligan, G. W. (1979),“Ultrametric Hierarchical Clus-
tering Algorithms”, Psychometrika, 44(3), 343–346.

6.17.4 Further reading

• Everitt, B. S., Landau, S. and Leese, M. (2001),
Cluster Analysis, 4th Edition, Oxford University
Press, Inc., New York; Arnold, London. ISBN
0340761199

• Hartigan, J. A. (1975), Clustering Algorithms, New
York: Wiley.

• Jain, A. K. and Dubes, R. C. (1988), Algorithms for
Clustering Data, New Jersey: Prentice–Hall.

• Kaufman, L. and Rousseeuw, P. J. (1990), Finding
Groups in Data: An Introduction to Cluster Analysis,
New York: Wiley.

https://en.wikipedia.org/wiki/Single-linkage_clustering
https://en.wikipedia.org/wiki/Single-linkage_clustering
https://en.wikipedia.org/wiki/Complete-linkage_clustering
https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
https://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society
https://en.wikipedia.org/wiki/Special:BookSources/0340761199
https://en.wikipedia.org/wiki/Special:BookSources/0340761199
https://en.wikipedia.org/wiki/Anil_K._Jain_(computer_scientist,_born_1948)


Chapter 7

Text and image sources, contributors, and
licenses

7.1 Text
• Cluster analysis Source: http://en.wikipedia.org/wiki/Cluster%20analysis?oldid=662268192 Contributors: The Anome, Fnielsen,

Nealmcb, Michael Hardy, Shyamal, Kku, Tomi, GTBacchus, Den fjättrade ankan~enwiki, Cherkash, BAxelrod, Hike395, Dbabbitt,
Phil Boswell, Robbot, Gandalf61, Babbage, Aetheling, Giftlite, Lcgarcia, Cfp, BenFrantzDale, Soundray~enwiki, Ketil, Khalid has-
sani, Angelo.romano, Dfrankow, Gadfium, Pgan002, Gene s, EBB, Sam Hocevar, Pwaring, Jutta, Abdull, Bryan Barnard, Rich Farm-
brough, Mathiasl26, NeuronExMachina, Yersinia~enwiki, Bender235, Alex Kosorukoff, Aaronbrick, John Vandenberg, Greenleaf~enwiki,
Ahc, NickSchweitzer, 3mta3, Jonsafari, Jumbuck, Jérôme, Terrycojones, Denoir, Jnothman, Stefan.karpinski, Hazard, Oleg Alexan-
drov, Soultaco, Woohookitty, Linas, Uncle G, Borb, Ruud Koot, Tabletop, Male1979, Joerg Kurt Wegner, DESiegel, Ruziklan, Sideris,
BD2412, Qwertyus, Rjwilmsi, Koavf, Salix alba, Michal.burda, Denis Diderot, Klonimus, FlaBot, Mathbot, BananaLanguage, Kcarnold,
Payo, Jrtayloriv, Windharp, BMF81, Roboto de Ajvol, The Rambling Man, YurikBot, Wavelength, Argav, SpuriousQ, Pseudomonas,
NawlinWiki, Gareth Jones, Bayle Shanks, TCrossland, JFD, Hirak 99, Zzuuzz, Rudrasharman, Zigzaglee, Closedmouth, Dontaskme,
Kevin, Killerandy, Airconswitch, SmackBot, Drakyoko, Jtneill, Pkirlin, Object01, Mcld, Ohnoitsjamie, KaragouniS, Bryan Barnard1,
MalafayaBot, Drewnoakes, Tenawy, DHN-bot~enwiki, Iwaterpolo, Zacronos, MatthewKarlsen, Krexer, Bohunk, MOO, Lambiam, Friend
of facts, Benash, ThomasHofmann, Dfass, Beetstra, Ryulong, Nabeth, Hu12, Iridescent, Ralf Klinkenberg, Madla~enwiki, Alanbino,
Origin415, Bairam, Ioannes Pragensis, Joaoluis, Megannnn, Nczempin, Harej bot, Slack---line, Playtime, Endpoint, Dgtized, Skittleys,
DumbBOT, Talgalili, Thijs!bot, Barticus88, Vinoduec, Mailseth, Danhoppe, Phoolimin, Onasraou, Denaxas, AndreasWittenstein, Day-
tona2, MikeLynch, JAnDbot, Inverse.chi, .anacondabot, Magioladitis, Andrimirzal, Fallschirmjäger, JBIdF, David Eppstein, User A1,
Eeera, Varun raptor, LedgendGamer, Jiuguang Wang, Sommersprosse, Koko90, Smite-Meister, McSly, Dvdpwiki, DavidCBryant, AS-
trathman, Camrn86, TXiKiBoT, Rnc000, Tamás Kádár, Mundhenk, Maxim, Winterschlaefer, Lamro, Wheatin, Arrenbas, Sesilbumfluff,
Tomfy, Kerveros 99, Seemu, WRK, Drdan14, Harveydrone, Graham853, Wcdriscoll, Zwerglein~enwiki, Osian.h, FghIJklm, Melcombe,
Kotsiantis, Freeman77, Victor Chmara, Kl4m, Mugvin, Manuel freire, Boing! said Zebedee, Tim32, PixelBot, Lartoven, Chaosdruid,
Aprock, Practical321, Qwfp, FORTRANslinger, Sunsetsky, Ocean931, Phantom xxiii, XLinkBot, Pichpich, Gnowor, Sujaykoduri, Wik-
Head, Addbot, Allenchue, DOI bot, Bruce rennes, Fgnievinski, Gangcai, MrOllie, FerrousTigrus, Delaszk, Tide rolls, Lightbot, PAvdK,
Fjrohlf, Tobi, Luckas-bot, Yobot, Gulfera, Hungpuiki, AnomieBOT, Flamableconcrete, Materialscientist, Citation bot, Xqbot, Erud, Syl-
wia Ufnalska, Simeon87, Omnipaedista, Kamitsaha, Playthebass, FrescoBot, Sacomoto, D'ohBot, Dan Golding, JohnMeier, Slowmo0815,
Atlantia, Citation bot 1, Boxplot, Edfox0714, MondalorBot, Lotje, E.V.Krishnamurthy, Capez1, Koozedine, Tbalius, RjwilmsiBot, Ripchip
Bot, Jchemmanoor, GodfriedToussaint, Aaronzat, Helwr, EmausBot, John of Reading, Stheodor, Elixirrixile, BOUMEDJOUT, ZéroBot,
Sgoder, Chire, Darthhappyface, Jucypsycho, RockMagnetist, Wakebrdkid, Fazlican, Anita5192, ClueBot NG, Marion.cuny, Ericfouh,
Simeos, Poirel, Robiminer, Michael-stanton, Girish280, Helpful Pixie Bot, Novusuna, BG19bot, Cpkex0102, Wiki13, TimSwast, Crice-
tus, Douglas H Fisher, Mu.ting, ColanR, Cornelius3, Illia Connell, Compsim, Mogism, Frosty, Abewley, Mark viking, Metcalm, Ninjarua,
Trouveur de faits, TCMemoire, Monkbot, Leegrc, Imsubhashjha, Екатерина Конь, Olosko, Angelababy00 and Anonymous: 325

• Hierarchical clustering Source: http://en.wikipedia.org/wiki/Hierarchical%20clustering?oldid=660236194 Contributors: Jose Icaza,
Nealmcb, GTBacchus, Hike395, Dmb000006, 3mta3, Mandarax, Qwertyus, Rjwilmsi, Piet Delport, Hakkinen, DoriSmith, Smack-
Bot, Mitar, Mwtoews, Krauss, Skittleys, Talgalili, Headbomb, Magioladitis, David Eppstein, Cypherzero0, Salih, FedeLebron, Kr-
ishna.91, Grscjo3, Qwfp, Eric5000, SleightTrickery, MystBot, Addbot, Netzwerkerin, Yobot, Legendre17, AnomieBOT, GrouchoBot,
FrescoBot, Iamtravis, Citation bot 1, DixonDBot, Ismailari, Saitenschlager, Robtoth1, NedLevine, RjwilmsiBot, WikitanvirBot, Jackiey99,
Jy19870110, ZéroBot, Chire, Ars12345, Sgj67, Mathstat, Widr, KLBot2, Kamperh, SciCompTeacher, IluvatarBot, SarahLZ, Astros4477,
Jmajf, Joeinwiki, StuartWilsonMaui, Meatybrainstuff, Екатерина Конь and Anonymous: 50

• Conceptual clustering Source: http://en.wikipedia.org/wiki/Conceptual%20clustering?oldid=620247813 Contributors: Aaronbrick,
Psg5p, Rjwilmsi, WillC, Nlu, Elonka, Object01, Dfass, Cydebot, Mattisse, Sprhodes, Gromgull, David Eppstein, Sfan00 IMG, Pichpich,
DOI bot, AndrewHZ, Yobot, Materialscientist, Citation bot 1, RjwilmsiBot, Chire, Cmaclell, Kikichugirl, Frietjes, Douglas H Fisher and
Anonymous: 5

• Consensus clustering Source: http://en.wikipedia.org/wiki/Consensus%20clustering?oldid=655184860 Contributors: Michael Hardy,
Behnam, Rrenaud, Uncle G, Rjwilmsi, Malcolma, SmackBot, David Eppstein, Cobi, WWGB, Parasaranr, Melcombe, Blanchardb,
Basel1988, Yobot, AnomieBOT, Dave Smith, Chire, BG19bot, BattyBot, ChrisGualtieri, Monkbot, Shenbaba, Delibzr, Meteozay and
Anonymous: 4

• Sequence clustering Source: http://en.wikipedia.org/wiki/Sequence%20clustering?oldid=654401316 Contributors: The Anome, Michael

112

http://en.wikipedia.org/wiki/Cluster%2520analysis?oldid=662268192
http://en.wikipedia.org/wiki/Hierarchical%2520clustering?oldid=660236194
http://en.wikipedia.org/wiki/Conceptual%2520clustering?oldid=620247813
http://en.wikipedia.org/wiki/Consensus%2520clustering?oldid=655184860
http://en.wikipedia.org/wiki/Sequence%2520clustering?oldid=654401316


7.1. TEXT 113

Hardy, Lexor, Kku, Delirium, Dmb000006, Ketil, Pearle, TheParanoidOne, Oleg Alexandrov, Graham87, Rjwilmsi, Bluebot, AnAj, Alex-
bateman, WatsonCN, Jonesey95, Robertcedgar, Math-ghamhainn, Zvrkast, BG19bot, Liwz, ChrisGualtieri, InsightSeeker, Phleg1 and
Anonymous: 29

• Data stream clustering Source: http://en.wikipedia.org/wiki/Data%20stream%20clustering?oldid=655963874 Contributors: Phil
Boswell, Bearcat, Rjwilmsi, Malcolma, SmackBot, Rettetast, Melcombe, Yobot, Bfoteini, SporkBot, Fazlican, Frietjes, Nachklang and
Anonymous: 4

• Constrained clustering Source: http://en.wikipedia.org/wiki/Constrained%20clustering?oldid=582374369 Contributors: Danski14,
Gary, Ruud Koot, SmackBot, CmdrObot, Jmacglashan, Lamro, Melcombe, AnomieBOT, Ergosys, SporkBot and Anonymous: 6

• Fuzzy clustering Source: http://en.wikipedia.org/wiki/Fuzzy%20clustering?oldid=660200389 Contributors: Behnam, Andreas Kauf-
mann, Flammifer, Alai, DESiegel, Light current, Koblentz, Moxon, Mcld, Bluebot, Bairam, Abhineetnazi, Shmlchr, Phoolimin, McSly,
Coffee, ClueBot, 1ForTheMoney, XLinkBot, P.r.newman, Addbot, Themfromspace, AnomieBOT, Lynxoid84, Dan Golding, WadiEgg,
Chire, Rafnuss, Helpful Pixie Bot, BG19bot, BattyBot, ChrisGualtieri and Anonymous: 29

• Spectral clustering Source: http://en.wikipedia.org/wiki/Spectral%20clustering?oldid=654148039 Contributors: Michael Hardy, Qwer-
tyus, Rjwilmsi, Naught101, Took, Melcombe, Sameer0s, Yobot, AnomieBOT, Trappist the monk, RjwilmsiBot, John of Reading, Chire,
Tdietterich, Habil zare, Bluesky234, Tokekar, Zoratao, Andy Allinger, Mark viking, PapercoreEdit, Motrom, Monkbot and Anonymous:
13

• Determining the number of clusters in a data set Source: http://en.wikipedia.org/wiki/Determining%20the%20number%20of%
20clusters%20in%20a%20data%20set?oldid=661006527 Contributors: Fnielsen, Janka~enwiki, Cfp, Zaslav, Comtebenoit, Qwertyus,
Rjwilmsi, Stephenb, Cyocum, Talgalili, BossOfTheGame, David Eppstein, StevenBell, PerryTachett, JL-Bot, SpikeToronto, Yobot, Ci-
tation bot, Rainbowgoblin, Erik9bot, JohnMeier, DrilBot, Trappist the monk, N.maisonneuve, Chire, Fazlican, Srueter, BattyBot, Pratyya
Ghosh, Monkbot and Anonymous: 18

• Expectation–maximization algorithm Source: http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization%20algorithm?
oldid=662388702 Contributors: Rodrigob, Michael Hardy, Karada, Jrauser, BAxelrod, Hike395, Phil Boswell, Owenman, Robbyjo~enwiki,
Benwing, Wile E. Heresiarch, Giftlite, Paisa, Vadmium, Onco p53, MarkSweep, Piotrus, Cataphract, Rama, MisterSheik, Alex Kosorukoff,
O18, John Vandenberg, Jjmerelo~enwiki, 3mta3, Terrycojones, B k, Eric Kvaalen, Cburnett, Finfobia, Jheald, Forderud, Sergey Dmitriev,
Igny, Bkkbrad, Bluemoose, Btyner, Qwertyus, Rjwilmsi, KYPark, Salix alba, Hild, Mathbot, Glopk, Kri, BradBeattie, YurikBot, Nils
Grimsmo, Schmock, Régis B., Klutzy, Hakeem.gadi, Maechler, Ladypine, M.A.Dabbah, SmackBot, Mcld, Nbarth, Tekhnofiend, Iwater-
polo, Bilgrau, Joeyo, Raptur, Derek farn, Jrouquie, Dicklyon, Alex Selby, Saviourmachine, Lavaka, Requestion, Cydebot, A876, Kallerdis,
Libro0, Blaisorblade, Skittleys, Andyrew609, Talgalili, Tiedyeina, Rusmike, Headbomb, RobHar, LachlanA, AnAj, Zzpmarco, Deki-
masu, JamesBWatson, Richard Bartholomew, Livingthingdan, Nkwatra, User A1, Edratzer, Osquar F, Numbo3, Salih, GongYi, Douglas-
Lanman, Bigredbrain, Market Efficiency, Lamro, Daviddoria, Pine900, Tambal, Mosaliganti1.1, Melcombe, Sitush, Pratx, Alexbot, Hbeigi,
Jakarr, Jwmarck, XLinkBot, Jamshidian, Addbot, Sunjuren, Fgnievinski, LaaknorBot, Aanthony1243, Peni, Luckas-bot, Yobot, Leonar-
doWeiss, AnomieBOT, Citation bot, TechBot, Chuanren, FrescoBot, Nageh, Erhanbas, Nocheenlatierra, Qiemem, Kiefer.Wolfowitz,
Jmc200, Stpasha, Jszymon, GeypycGn, Trappist the monk, Thái Nhi, Ismailari, Dropsciencenotbombs, RjwilmsiBot, Slon02, Emaus-
Bot, Mikealandewar, John of Reading, Ɯ, Chire, Statna, ClueBot NG, Rezabot, Meea, Qwerty9967, Helpful Pixie Bot, Rxnt, Bibcode Bot,
BG19bot, Chafe66, Whym, Lvilnis, BattyBot, Yasuo2, Illia Connell, JYBot, Blegat, Yogtad, Tentinator, Marko0991, Ginsuloft, Wccsnow,
Ronniemaor, Monkbot, Nboley, Faror91, DilumA, Rider ranger47, Velvel2, Crimsonslide, Megadata tensor, Surbut and Anonymous: 149

• Clustering high-dimensional data Source: http://en.wikipedia.org/wiki/Clustering%20high-dimensional%20data?oldid=657315593
Contributors: Alexrexpvt, Qwertyus, Rjwilmsi, Bgwhite, Wavelength, Melcombe, Iohannes Animosus, Yobot, Slowmo0815, RjwilmsiBot,
Chire and Anonymous: 12

• Canopy clustering algorithm Source: http://en.wikipedia.org/wiki/Canopy%20clustering%20algorithm?oldid=624511369 Contributors:
Michael Hardy, Giftlite, Rich Farmbrough, Pol098, Wavelength, SmackBot, Sadads, Endpoint, BenJWoodcroft, TheNewPhobia, Eve
Teschlemacher, Miniapolis, Melcombe, XLinkBot, Yobot, RobinK, Chire, Helpful Pixie Bot and Anonymous: 11

• Single-linkage clustering Source: http://en.wikipedia.org/wiki/Single-linkage%20clustering?oldid=613585768 Contributors: Michael
Hardy, Zeno Gantner, 3mta3, Gary, Rjwilmsi, XLerate, Alaibot, BetacommandBot, Headbomb, Fabrictramp, David Eppstein, Cindamuse,
Melcombe, Manuel freire, Wosamy, Pot, Ankit Rakha, AnomieBOT, Lynxoid84, Dan Golding, RjwilmsiBot, Chire, Wcherowi, Cricetus,
BattyBot, Roblehall1234 and Anonymous: 7

• Complete-linkage clustering Source: http://en.wikipedia.org/wiki/Complete-linkage%20clustering?oldid=625941679 Contributors:
Bearcat, Rjwilmsi, Iae, Cindamuse, Melcombe, Iceblock, Aquila78, AnomieBOT, Vromascanu, RjwilmsiBot, Fæ, AvicAWB, Chire, Mar-
cusogden, Mathstat, Cricetus, Roblehall1234 and Anonymous: 5

• Nearest-neighbor chain algorithm Source: http://en.wikipedia.org/wiki/Nearest-neighbor%20chain%20algorithm?oldid=595759604
Contributors: Edward, Mandarax, Seaphoto, David Eppstein, Ojdo, RjwilmsiBot, Helpful Pixie Bot, Tycho Bray, Matus Telgarsky, Il-
lia Connell and Anonymous: 1

• UPGMA Source: http://en.wikipedia.org/wiki/UPGMA?oldid=615035513 Contributors: AdamRetchless, Edward, Lexor, Cyan, Samsara,
Alan filipski, Thorwald, Rajah, Jonsafari, TheParanoidOne, Minority Report, Aranae, YurikBot, Dysmorodrepanis~enwiki, SmackBot,
Wzhao553, Paalexan, BroodKiller, TXiKiBoT, Tomfy, Springbok26, Dave noise~enwiki, Fixtgear, Johnuniq, Addbot, Archy33, Lynx-
oid84, Citation bot, DSisyphBot, RjwilmsiBot, EmausBot, Chire, Djamesb, Rezabot, Cricetus, Upperala, Roblehall1234 and Anonymous:
18

• BIRCH Source: http://en.wikipedia.org/wiki/BIRCH?oldid=636772083 Contributors: Rich Farmbrough, Dmol, Qwertyus, Lockley,
Nikkimaria, SmackBot, Odd bloke, SMasters, KimChee, Fabrictramp, JaGa, Katharineamy, Melcombe, AnomieBOT, LilHelpa, Var-
manitw, Chire, Captnbunny, Nlskrg, BG19bot, DoctorKubla and Anonymous: 13

• K-nearest neighbors algorithm Source: http://en.wikipedia.org/wiki/K-nearest%20neighbors%20algorithm?oldid=661965137 Contrib-
utors: The Anome, B4hand, Michael Hardy, Ronz, Charles Matthews, Topbanana, AnonMoos, Pakaran, Robbot, Altenmann, DHN, Adam
McMaster, Pgan002, Dan aka jack, Thorwald, Rama, Slambo, Barro~enwiki, BlueNovember, Caesura, GiovanniS, RHaworth, SQF-
reak, Btyner, Marudubshinki, BD2412, Qwertyus, Rjwilmsi, Stoph, Debivort, Wavelength, Janto, Garion96, SmackBot, CommodiCast,
Mdd4696, Stimpy, Mcld, DHN-bot~enwiki, Hongooi, MisterHand, Joerite, Memming, Gnack, Hu12, Atreys, Ogerard, Kozuch, AnAj,
MER-C, Olaf, Jbom1, Peteymills, Dustinsmith, User A1, Mach7, McSly, AntiSpamBot, RJASE1, Joeoettinger, TXiKiBoT, ITurtle, Mpx,
SieBot, Prakash Nadkarni, Flyer22, Narasimhanator, AlanUS, Melcombe, Eamon Nerbonne, Svante1, Cibi3d, ClueBot, JP.Martin-Flatin,

http://en.wikipedia.org/wiki/Data%2520stream%2520clustering?oldid=655963874
http://en.wikipedia.org/wiki/Constrained%2520clustering?oldid=582374369
http://en.wikipedia.org/wiki/Fuzzy%2520clustering?oldid=660200389
http://en.wikipedia.org/wiki/Spectral%2520clustering?oldid=654148039
http://en.wikipedia.org/wiki/Determining%2520the%2520number%2520of%2520clusters%2520in%2520a%2520data%2520set?oldid=661006527
http://en.wikipedia.org/wiki/Determining%2520the%2520number%2520of%2520clusters%2520in%2520a%2520data%2520set?oldid=661006527
http://en.wikipedia.org/wiki/Expectation%25E2%2580%2593maximization%2520algorithm?oldid=662388702
http://en.wikipedia.org/wiki/Expectation%25E2%2580%2593maximization%2520algorithm?oldid=662388702
http://en.wikipedia.org/wiki/Clustering%2520high-dimensional%2520data?oldid=657315593
http://en.wikipedia.org/wiki/Canopy%2520clustering%2520algorithm?oldid=624511369
http://en.wikipedia.org/wiki/Single-linkage%2520clustering?oldid=613585768
http://en.wikipedia.org/wiki/Complete-linkage%2520clustering?oldid=625941679
http://en.wikipedia.org/wiki/Nearest-neighbor%2520chain%2520algorithm?oldid=595759604
http://en.wikipedia.org/wiki/UPGMA?oldid=615035513
http://en.wikipedia.org/wiki/BIRCH?oldid=636772083
http://en.wikipedia.org/wiki/K-nearest%2520neighbors%2520algorithm?oldid=661965137


114 CHAPTER 7. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES
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