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Chapter 1

Supervised learning

See also: Unsupervised learning

Supervised learning is the machine learning task of
inferring a function from labeled training data.!'! The
training data consist of a set of fraining examples. In su-
pervised learning, each example is a pair consisting of
an input object (typically a vector) and a desired output
value (also called the supervisory signal). A supervised
learning algorithm analyzes the training data and pro-
duces an inferred function, which can be used for map-
ping new examples. An optimal scenario will allow for
the algorithm to correctly determine the class labels for
unseen instances. This requires the learning algorithm to
generalize from the training data to unseen situations in a
“reasonable” way (see inductive bias).

The parallel task in human and animal psychology is often
referred to as concept learning.

1.1 Overview

In order to solve a given problem of supervised learning,
one has to perform the following steps:

1. Determine the type of training examples. Before
doing anything else, the user should decide what
kind of data is to be used as a training set. In the case
of handwriting analysis, for example, this might be a
single handwritten character, an entire handwritten
word, or an entire line of handwriting.

2. Gather a training set. The training set needs to be
representative of the real-world use of the function.
Thus, a set of input objects is gathered and corre-
sponding outputs are also gathered, either from hu-
man experts or from measurements.

3. Determine the input feature representation of the
learned function. The accuracy of the learned func-
tion depends strongly on how the input object is rep-
resented. Typically, the input object is transformed
into a feature vector, which contains a number of
features that are descriptive of the object. The num-
ber of features should not be too large, because

of the curse of dimensionality; but should contain
enough information to accurately predict the output.

4. Determine the structure of the learned function and
corresponding learning algorithm. For example, the
engineer may choose to use support vector machines
or decision trees.

5. Complete the design. Run the learning algorithm on
the gathered training set. Some supervised learn-
ing algorithms require the user to determine cer-
tain control parameters. These parameters may be
adjusted by optimizing performance on a subset
(called a validation set) of the training set, or via
cross-validation.

6. Evaluate the accuracy of the learned function. After
parameter adjustment and learning, the performance
of the resulting function should be measured on a
test set that is separate from the training set.

A wide range of supervised learning algorithms is avail-
able, each with its strengths and weaknesses. There is no
single learning algorithm that works best on all supervised
learning problems (see the No free lunch theorem).

There are four major issues to consider in supervised
learning:

1.1.1 Bias-variance tradeoff

Main article: Bias-variance dilemma

A first issue is the tradeoff between bias and variance.'”!
Imagine that we have available several different, but
equally good, training data sets. A learning algorithm is
biased for a particular input x if, when trained on each
of these data sets, it is systematically incorrect when pre-
dicting the correct output for z . A learning algorithm
has high variance for a particular input x if it predicts
different output values when trained on different training
sets. The prediction error of a learned classifier is related
to the sum of the bias and the variance of the learning
algorithm.®! Generally, there is a tradeoff between bias
and variance. A learning algorithm with low bias must
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be “flexible” so that it can fit the data well. But if the
learning algorithm is too flexible, it will fit each training
data set differently, and hence have high variance. A key
aspect of many supervised learning methods is that they
are able to adjust this tradeoff between bias and variance
(either automatically or by providing a bias/variance pa-
rameter that the user can adjust).

1.1.2 Function complexity and amount of
training data

The second issue is the amount of training data available
relative to the complexity of the “true” function (classi-
fier or regression function). If the true function is simple,
then an “inflexible” learning algorithm with high bias and
low variance will be able to learn it from a small amount
of data. But if the true function is highly complex (e.g.,
because it involves complex interactions among many dif-
ferent input features and behaves differently in different
parts of the input space), then the function will only be
learnable from a very large amount of training data and
using a “flexible” learning algorithm with low bias and
high variance. Good learning algorithms therefore auto-
matically adjust the bias/variance tradeoff based on the
amount of data available and the apparent complexity of
the function to be learned.

1.1.3 Dimensionality of the input space

A third issue is the dimensionality of the input space. If
the input feature vectors have very high dimension, the
learning problem can be difficult even if the true func-
tion only depends on a small number of those features.
This is because the many “extra” dimensions can con-
fuse the learning algorithm and cause it to have high vari-
ance. Hence, high input dimensionality typically requires
tuning the classifier to have low variance and high bias.
In practice, if the engineer can manually remove irrel-
evant features from the input data, this is likely to im-
prove the accuracy of the learned function. In addition,
there are many algorithms for feature selection that seek
to identify the relevant features and discard the irrelevant
ones. This is an instance of the more general strategy of
dimensionality reduction, which seeks to map the input
data into a lower-dimensional space prior to running the
supervised learning algorithm.

1.1.4 Noise in the output values

A fourth issue is the degree of noise in the desired output
values (the supervisory target variables). If the desired
output values are often incorrect (because of human er-
ror or sensor errors), then the learning algorithm should
not attempt to find a function that exactly matches the
training examples. Attempting to fit the data too carefully
leads to overfitting. You can overfit even when there are
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no measurement errors (stochastic noise) if the function
you are trying to learn is too complex for your learning
model. In such a situation that part of the target function
that cannot be modeled “corrupts” your training data - this
phenomenon has been called deterministic noise. When
either type of noise is present, it is better to go with a
higher bias, lower variance estimator.

In practice, there are several approaches to alleviate noise
in the output values such as early stopping to prevent
overfitting as well as detecting and removing the noisy
training examples prior to training the supervised learn-
ing algorithm. There are several algorithms that iden-
tify noisy training examples and removing the suspected
noisy training examples prior to training has decreased
generalization error with statistical significance.[*!15!

1.1.5 Other factors to consider

Other factors to consider when choosing and applying a
learning algorithm include the following:

1. Heterogeneity of the data. If the feature vectors in-
clude features of many different kinds (discrete, dis-
crete ordered, counts, continuous values), some al-
gorithms are easier to apply than others. Many algo-
rithms, including Support Vector Machines, linear
regression, logistic regression, neural networks, and
nearest neighbor methods, require that the input fea-
tures be numerical and scaled to similar ranges (e.g.,
to the [—1,1] interval). Methods that employ a dis-
tance function, such as nearest neighbor methods
and support vector machines with Gaussian kernels,
are particularly sensitive to this. An advantage of
decision trees is that they easily handle heteroge-
neous data.

2. Redundancy in the data. If the input features contain
redundant information (e.g., highly correlated fea-
tures), some learning algorithms (e.g., linear regres-
sion, logistic regression, and distance based meth-
ods) will perform poorly because of numerical in-
stabilities. These problems can often be solved by
imposing some form of regularization.

3. Presence of interactions and non-linearities. If each
of the features makes an independent contribution to
the output, then algorithms based on linear functions
(e.g., linear regression, logistic regression, Support
Vector Machines, naive Bayes) and distance func-
tions (e.g., nearest neighbor methods, support vector
machines with Gaussian kernels) generally perform
well. However, if there are complex interactions
among features, then algorithms such as decision
trees and neural networks work better, because they
are specifically designed to discover these interac-
tions. Linear methods can also be applied, but
the engineer must manually specify the interactions
when using them.
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1.2. HOW SUPERVISED LEARNING ALGORITHMS WORK 3

When considering a new application, the engineer can
compare multiple learning algorithms and experimentally
determine which one works best on the problem at hand
(see cross validation). Tuning the performance of a learn-
ing algorithm can be very time-consuming. Given fixed
resources, it is often better to spend more time collect-
ing additional training data and more informative features
than it is to spend extra time tuning the learning algo-
rithms.

The most widely used learning algorithms are Support
Vector Machines, linear regression, logistic regression,
naive Bayes, linear discriminant analysis, decision trees,
k-nearest neighbor algorithm, and Neural Networks
(Multilayer perceptron).

1.2 How supervised learning algo-
rithms work

Given a set of N training examples of the form
{(z1,y1), .-, (TN, yn)} such that x; is the feature vec-
tor of the i-th example and y; is its label (i.e., class), a
learning algorithm seeks a function g : X — Y, where
X is the input space and Y is the output space. The func-
tion g is an element of some space of possible functions
G , usually called the hypothesis space. It is sometimes
convenient to represent ¢ using a scoring function f :
X xY — Rsuchthat g is defined as returning the y value
that gives the highest score: g(z) = argmax, f(z,y) .
Let I denote the space of scoring functions.

Although G and F can be any space of functions, many
learning algorithms are probabilistic models where g
takes the form of a conditional probability model g(x) =
P(y|x) , or f takes the form of a joint probability model
flz,y) = P(z,y) . For example, naive Bayes and
linear discriminant analysis are joint probability mod-
els, whereas logistic regression is a conditional probability
model.

There are two basic approaches to choosing f or g :
empirical risk minimization and structural risk minimiza-
tion.!®! Empirical risk minimization seeks the function
that best fits the training data. Structural risk minimize
includes a penalty function that controls the bias/variance
tradeoft.

In both cases, it is assumed that the training set consists of
a sample of independent and identically distributed pairs,
(i, yi) . In order to measure how well a function fits
the training data, a loss function L : ¥ x Y — R=20
is defined. For training example (x;, y;) , the loss of
predicting the value § is L(y;,7) .

The risk R(g) of function g is defined as the expected loss
of g . This can be estimated from the training data as

Remp(Q) = % ZLQJ“g(ml))

1.2.1 Empirical risk minimization

Main article: Empirical risk minimization

In empirical risk minimization, the supervised learn-
ing algorithm seeks the function ¢ that minimizes R(g)

Hence, a supervised learning algorithm can be con-
structed by applying an optimization algorithm to find g

When g is a conditional probability distribution P(y|z)
and the loss function is the negative log likelihood:
L(y,9) = —log P(y|z) , then empirical risk minimiza-
tion is equivalent to maximum likelihood estimation.

When G contains many candidate functions or the train-
ing set is not sufficiently large, empirical risk minimiza-
tion leads to high variance and poor generalization. The
learning algorithm is able to memorize the training exam-
ples without generalizing well. This is called overfitting.

1.2.2 Structural risk minimization

Structural risk minimization seeks to prevent overfitting
by incorporating a regularization penalty into the opti-
mization. The regularization penalty can be viewed as
implementing a form of Occam’s razor that prefers sim-
pler functions over more complex ones.

A wide variety of penalties have been employed that cor-
respond to different definitions of complexity. For ex-
ample, consider the case where the function ¢ is a linear
function of the form

d
g(x) =Y Bz
j=1

A popular regularization penalty is > j ﬁ? , which is the
squared Euclidean norm of the weights, also known as the
Ly norm. Other norms include the Ly norm, . [8;] ,
and the Lo norm, which is the number of non-zero j3; s.
The penalty will be denoted by C'(g) .

The supervised learning optimization problem is to find
the function g that minimizes

J(9) = Remp(9) + AC(g).

The parameter A controls the bias-variance tradeoff.
When A\ = 0, this gives empirical risk minimization with
low bias and high variance. When A is large, the learning
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algorithm will have high bias and low variance. The value
of A can be chosen empirically via cross validation.

The complexity penalty has a Bayesian interpretation as
the negative log prior probability of g , —log P(g) , in
which case J(g) is the posterior probabability of g .

1.3 Generative training

The training methods described above are discriminative
training methods, because they seek to find a function
g that discriminates well between the different output
values (see discriminative model). For the special case
where f(z,y) = P(z,y) is a joint probability distribu-
tion and the loss function is the negative log likelihood
— >, log P(z;,y;), arisk minimization algorithm is said
to perform generative training, because f can be regarded
as a generative model that explains how the data were gen-
erated. Generative training algorithms are often simpler
and more computationally efficient than discriminative
training algorithms. In some cases, the solution can be
computed in closed form as in naive Bayes and linear dis-
criminant analysis.

1.4 Generalizations of supervised
learning

There are several ways in which the standard supervised
learning problem can be generalized:

1. Semi-supervised learning: In this setting, the de-
sired output values are provided only for a subset of
the training data. The remaining data is unlabeled.

2. Active learning: Instead of assuming that all of the
training examples are given at the start, active learn-
ing algorithms interactively collect new examples,
typically by making queries to a human user. Of-
ten, the queries are based on unlabeled data, which
is a scenario that combines semi-supervised learning
with active learning.

3. Structured prediction: When the desired output
value is a complex object, such as a parse tree or
a labeled graph, then standard methods must be ex-
tended.

4. Learning to rank: When the input is a set of objects
and the desired output is a ranking of those objects,
then again the standard methods must be extended.

1.5 Approaches and algorithms

e Analytical learning

CHAPTER 1. SUPERVISED LEARNING

Artificial neural network
Backpropagation

Boosting (meta-algorithm)
Bayesian statistics
Case-based reasoning
Decision tree learning
Inductive logic programming
Gaussian process regression
Group method of data handling
Kernel estimators

Learning Automata

Minimum message length (decision trees, decision
graphs, etc.)

Multilinear subspace learning
Naive bayes classifier
Nearest Neighbor Algorithm

Probably approximately correct learning (PAC)
learning

Ripple down rules, a knowledge acquisition method-
ology

Symbolic machine learning algorithms
Subsymbolic machine learning algorithms
Support vector machines

Random Forests

Ensembles of Classifiers

Ordinal classification

e Data Pre-processing

Handling imbalanced datasets
Statistical relational learning

Proaftn, a multicriteria classification algorithm
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1.9.

EXTERNAL LINKS

1.6 Applications

Bioinformatics
Cheminformatics
e Quantitative structure—activity relationship
Database marketing
Handwriting recognition
Information retrieval
e [earning to rank
Object recognition in computer vision
Optical character recognition
Spam detection
Pattern recognition

Speech recognition

1.7 General issues

Computational learning theory

Inductive bias

Overfitting (machine learning)

(Uncalibrated) Class membership probabilities

Version spaces
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1.9 External links

e mloss.org: a directory of open source machine
learning software.
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Chapter 2

Statistical classification

For the unsupervised learning approach, see Cluster
analysis.

In machine learning and statistics, classification is the
problem of identifying to which of a set of categories
(sub-populations) a new observation belongs, on the ba-
sis of a training set of data containing observations (or
instances) whose category membership is known. An ex-
ample would be assigning a given email into “spam” or
“non-spam” classes or assigning a diagnosis to a given pa-
tient as described by observed characteristics of the pa-
tient (gender, blood pressure, presence or absence of cer-
tain symptoms, etc.).

In the terminology of machine learning,!!! classification is
considered an instance of supervised learning, i.e. learn-
ing where a training set of correctly identified observa-
tions is available. The corresponding unsupervised pro-
cedure is known as clustering, and involves grouping data
into categories based on some measure of inherent simi-
larity or distance.

Often, the individual observations are analyzed into a set
of quantifiable properties, known variously explanatory
variables, features, etc. These properties may vari-
ously be categorical (e.g. “A”, “B”, “AB” or “O”, for
blood type), ordinal (e.g. “large”, “medium” or “small”),
integer-valued (e.g. the number of occurrences of a part
word in an email) or real-valued (e.g. a measurement
of blood pressure). Other classifiers work by compar-
ing observations to previous observations by means of a

similarity or distance function.

An algorithm that implements classification, especially in
a concrete implementation, is known as a classifier. The
term “classifier” sometimes also refers to the mathemat-
ical function, implemented by a classification algorithm,
that maps input data to a category.

Terminology across fields is quite varied. In statistics,
where classification is often done with logistic regres-
sion or a similar procedure, the properties of observa-
tions are termed explanatory variables (or independent
variables, regressors, etc.), and the categories to be pre-
dicted are known as outcomes, which are considered to
be possible values of the dependent variable. In ma-
chine learning, the observations are often known as in-

stances, the explanatory variables are termed features
(grouped into a feature vector), and the possible cate-
gories to be predicted are classes. There is also some ar-
gument over whether classification methods that do not
involve a statistical model can be considered “statisti-
cal”. Other fields may use different terminology: e.g.
in community ecology, the term “classification” normally
refers to cluster analysis, i.e. a type of unsupervised
learning, rather than the supervised learning described in
this article.

2.1 Relation to other problems

Classification and clustering are examples of the more
general problem of pattern recognition, which is the as-
signment of some sort of output value to a given in-
put value. Other examples are regression, which assigns
a real-valued output to each input; sequence labeling,
which assigns a class to each member of a sequence of
values (for example, part of speech tagging, which as-
signs a part of speech to each word in an input sentence);
parsing, which assigns a parse tree to an input sentence,
describing the syntactic structure of the sentence; etc.

A common subclass of classification is probabilistic clas-
sification. Algorithms of this nature use statistical in-
ference to find the best class for a given instance. Un-
like other algorithms, which simply output a “best” class,
probabilistic algorithms output a probability of the in-
stance being a member of each of the possible classes.
The best class is normally then selected as the one with
the highest probability. However, such an algorithm has
numerous advantages over non-probabilistic classifiers:

e It can output a confidence value associated with its
choice (in general, a classifier that can do this is
known as a confidence-weighted classifier).

e Correspondingly, it can abstain when its confidence
of choosing any particular output is too low.

e Because of the probabilities which are generated,
probabilistic classifiers can be more effectively in-
corporated into larger machine-learning tasks, in a
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2.5. FEATURE VECTORS

way that partially or completely avoids the problem
of error propagation.

2.2 Frequentist procedures

Early work on statistical classification was undertaken by
Fisher,!?!3] in the context of two-group problems, leading
to Fisher’s linear discriminant function as the rule for as-
signing a group to a new observation.[*! This early work
assumed that data-values within each of the two groups
had a multivariate normal distribution. The extension
of this same context to more than two-groups has also
been considered with a restriction imposed that the clas-
sification rule should be linear.*>! Later work for the
multivariate normal distribution allowed the classifier to
be nonlinear:!®! several classification rules can be derived
based on slight different adjustments of the Mahalanobis
distance, with a new observation being assigned to the
group whose centre has the lowest adjusted distance from
the observation.

2.3 Bayesian procedures

Unlike frequentist procedures, Bayesian classification
procedures provide a natural way of taking into ac-
count any available information about the relative sizes of
the sub-populations associated with the different groups
within the overall population.”! Bayesian procedures tend
to be computationally expensive and, in the days before
Markov chain Monte Carlo computations were devel-
oped, approximations for Bayesian clustering rules were
devised.®!

Some Bayesian procedures involve the calculation of
group membership probabilities: these can be viewed as
providing a more informative outcome of a data analysis
than a simple attribution of a single group-label to each
new observation.

2.4 Binary and multiclass classifi-
cation

Classification can be thought of as two separate problems
— binary classification and multiclass classification. In
binary classification, a better understood task, only two
classes are involved, whereas multiclass classification in-
volves assigning an object to one of several classes.!
Since many classification methods have been developed
specifically for binary classification, multiclass classifica-
tion often requires the combined use of multiple binary
classifiers.

2.5 Feature vectors

Most algorithms describe an individual instance whose
category is to be predicted using a feature vector of indi-
vidual, measurable properties of the instance. Each prop-
erty is termed a feature, also known in statistics as an
explanatory variable (or independent variable, although in
general different features may or may not be statistically
independent). Features may variously be binary (“male”
or “female”); categorical (e.g. “A”, “B”, “AB” or “O”, for
blood type); ordinal (e.g. “large”, “medium” or “small”);
integer-valued (e.g. the number of occurrences of a par-
ticular word in an email); or real-valued (e.g. a measure-
ment of blood pressure). If the instance is an image, the
feature values might correspond to the pixels of an image;
if the instance is a piece of text, the feature values might
be occurrence frequencies of different words. Some al-
gorithms work only in terms of discrete data and require
that real-valued or integer-valued data be discretized into
groups (e.g. less than 5, between 5 and 10, or greater than
10).

The vector space associated with these vectors is often
called the feature space. In order to reduce the dimen-
sionality of the feature space, a number of dimensionality
reduction techniques can be employed.

2.6 Linear classifiers

A large number of algorithms for classification can be
phrased in terms of a linear function that assigns a score
to each possible category k by combining the feature vec-
tor of an instance with a vector of weights, using a dot
product. The predicted category is the one with the high-
est score. This type of score function is known as a linear
predictor function and has the following general form:

score(X;, k) = B, - X,

where Xi is the feature vector for instance #, 3k is the vec-
tor of weights corresponding to category &, and score(Xi,
k) is the score associated with assigning instance i to cat-
egory k. In discrete choice theory, where instances rep-
resent people and categories represent choices, the score
is considered the utility associated with person i choosing
category k.

Algorithms with this basic setup are known as linear clas-
sifiers. What distinguishes them is the procedure for de-
termining (training) the optimal weights/coefficients and
the way that the score is interpreted.

Examples of such algorithms are

e Logistic regression and Multinomial logistic regres-
sion

e Probit regression
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e The perceptron algorithm
e Support vector machines

e Linear discriminant analysis.

2.7 Algorithms

Examples of classification algorithms include:

e Linear classifiers

e Fisher’s linear discriminant
e Logistic regression
e Naive Bayes classifier

e Perceptron

Support vector machines

e [ east squares support vector machines

Quadratic classifiers

Kernel estimation

e k-nearest neighbor

Boosting (meta-algorithm)
e Decision trees
e Random forests

e Neural networks

Learning vector quantization

2.8 Evaluation

Classifier performance depends greatly on the character-
istics of the data to be classified. There is no single classi-
fier that works best on all given problems (a phenomenon
that may be explained by the no-free-lunch theorem).
Various empirical tests have been performed to compare
classifier performance and to find the characteristics of
data that determine classifier performance. Determining
a suitable classifier for a given problem is however still
more an art than a science.

The measures precision and recall are popular metrics
used to evaluate the quality of a classification system.
More recently, receiver operating characteristic (ROC)
curves have been used to evaluate the tradeoff between
true- and false-positive rates of classification algorithms.

As a performance metric, the uncertainty coefficient has
the advantage over simple accuracy in that it is not af-
fected by the relative sizes of the different classes. U7
Further, it will not penalize an algorithm for simply rear-
ranging the classes.

CHAPTER 2. STATISTICAL CLASSIFICATION

2.9 Application domains

See also: Cluster analysis § Applications

Classification has many applications. In some of these it
is employed as a data mining procedure, while in others
more detailed statistical modeling is undertaken.

e Computer vision

e Medical imaging and medical image analysis
e Optical character recognition

e Video tracking
e Drug discovery and development

e Toxicogenomics

e Quantitative structure-activity relationship
o Geostatistics
e Speech recognition
e Handwriting recognition
e Biometric identification
e Biological classification
o Statistical natural language processing
e Document classification
e Internet search engines
e Credit scoring
e Pattern recognition

e Micro-array classification

2.10 See also

o Class membership probabilities
e (Classification rule

e Binary classification

e Compound term processing

e Data mining

e Fuzzy logic

e Data warehouse

e Information retrieval

e Artificial intelligence

e Machine learning

e Recommender system
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Chapter 3

Regression analysis

In statistics, regression analysis is a statistical process
for estimating the relationships among variables. It in-
cludes many techniques for modeling and analysing sev-
eral variables, when the focus is on the relationship be-
tween a dependent variable and one or more independent
variables. More specifically, regression analysis helps
one understand how the typical value of the dependent
variable (or 'criterion variable') changes when any one of
the independent variables is varied, while the other in-
dependent variables are held fixed. Most commonly, re-
gression analysis estimates the conditional expectation of
the dependent variable given the independent variables —
that is, the average value of the dependent variable when
the independent variables are fixed. Less commonly, the
focus is on a quantile, or other location parameter of the
conditional distribution of the dependent variable given
the independent variables. In all cases, the estimation
target is a function of the independent variables called
the regression function. In regression analysis, it is also
of interest to characterize the variation of the dependent
variable around the regression function which can be de-
scribed by a probability distribution.

Regression analysis is widely used for prediction and
forecasting, where its use has substantial overlap with the
field of machine learning. Regression analysis is also used
to understand which among the independent variables
are related to the dependent variable, and to explore the
forms of these relationships. In restricted circumstances,
regression analysis can be used to infer causal relation-
ships between the independent and dependent variables.
However this can lead to illusions or false relationships,
so caution is advisable;!!! for example, correlation does
not imply causation.

Many techniques for carrying out regression analysis have
been developed. Familiar methods such as linear regres-
sion and ordinary least squares regression are parametric,
in that the regression function is defined in terms of a fi-
nite number of unknown parameters that are estimated
from the data. Nonparametric regression refers to tech-
niques that allow the regression function to lie in a speci-
fied set of functions, which may be infinite-dimensional.

The performance of regression analysis methods in prac-
tice depends on the form of the data generating pro-
cess, and how it relates to the regression approach be-
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ing used. Since the true form of the data-generating pro-
cess is generally not known, regression analysis often de-
pends to some extent on making assumptions about this
process. These assumptions are sometimes testable if a
sufficient quantity of data is available. Regression mod-
els for prediction are often useful even when the assump-
tions are moderately violated, although they may not per-
form optimally. However, in many applications, espe-
cially with small effects or questions of causality based
on observational data, regression methods can give mis-
leading results.!?/13]

3.1 History

The earliest form of regression was the method of least
squares, which was published by Legendre in 1805,/ and
by Gauss in 1809.5! Legendre and Gauss both applied
the method to the problem of determining, from astro-
nomical observations, the orbits of bodies about the Sun
(mostly comets, but also later the then newly discovered
minor planets). Gauss published a further development
of the theory of least squares in 1821,/ including a ver-
sion of the Gauss—Markov theorem.

The term “regression” was coined by Francis Galton
in the nineteenth century to describe a biological phe-
nomenon. The phenomenon was that the heights of de-
scendants of tall ancestors tend to regress down towards a
normal average (a phenomenon also known as regression
toward the mean).!”/8! For Galton, regression had only
this biological meaning,”! ' but his work was later ex-
tended by Udny Yule and Karl Pearson to a more general
statistical context."'!l!? In the work of Yule and Pear-
son, the joint distribution of the response and explana-
tory variables is assumed to be Gaussian. This assump-
tion was weakened by R.A. Fisher in his works of 1922
and 1925.[13104105] Fisher assumed that the conditional
distribution of the response variable is Gaussian, but the
joint distribution need not be. In this respect, Fisher’s
assumption is closer to Gauss’s formulation of 1821.

In the 1950s and 1960s, economists used electromechani-
cal desk calculators to calculate regressions. Before 1970,
it sometimes took up to 24 hours to receive the result from


https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Average_value
https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Location_parameter
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Prediction
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Nonparametric_regression
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Data_generating_process
https://en.wikipedia.org/wiki/Data_generating_process
https://en.wikipedia.org/wiki/Effect_size
https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Observational_study
https://en.wikipedia.org/wiki/Method_of_least_squares
https://en.wikipedia.org/wiki/Method_of_least_squares
https://en.wikipedia.org/wiki/Adrien_Marie_Legendre
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Regression_toward_the_mean
https://en.wikipedia.org/wiki/Regression_toward_the_mean
https://en.wikipedia.org/wiki/Udny_Yule
https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Ronald_A._Fisher

3.2. REGRESSION MODELS

one regression.! 1!

Regression methods continue to be an area of active re-
search. In recent decades, new methods have been de-
veloped for robust regression, regression involving cor-
related responses such as time series and growth curves,
regression in which the predictor or response variables are
curves, images, graphs, or other complex data objects, re-
gression methods accommodating various types of miss-
ing data, nonparametric regression, Bayesian methods for
regression, regression in which the predictor variables are
measured with error, regression with more predictor vari-
ables than observations, and causal inference with regres-
sion.

3.2 Regression models

Regression models involve the following variables:

e The unknown parameters, denoted as , which
may represent a scalar or a vector.

e The independent variables, X.

e The dependent variable, Y.

In various fields of application, different terminologies are
used in place of dependent and independent variables.

A regression model relates Y to a function of X and .

Y~ f(X,8)

The approximation is usually formalized as E(Y | X) =
f(X, B). To carry out regression analysis, the form of
the function f must be specified. Sometimes the form of
this function is based on knowledge about the relationship
between Y and X that does not rely on the data. If no such
knowledge is available, a flexible or convenient form for
f is chosen.

Assume now that the vector of unknown parameters f3
is of length k. In order to perform a regression analysis
the user must provide information about the dependent
variable Y:

e If N data points of the form (Y, X) are observed,
where N < k, most classical approaches to regres-
sion analysis cannot be performed: since the system
of equations defining the regression model is under-
determined, there are not enough data to recover f.

o If exactly N = k data points are observed, and the
function f is linear, the equations Y = f(X, ) can
be solved exactly rather than approximately. This
reduces to solving a set of N equations with N un-
knowns (the elements of ), which has a unique so-
lution as long as the X are linearly independent. If f
is nonlinear, a solution may not exist, or many solu-
tions may exist.
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e The most common situation is where N > k data
points are observed. In this case, there is enough
information in the data to estimate a unique value
for @ that best fits the data in some sense, and the
regression model when applied to the data can be
viewed as an overdetermined system in f3.

In the last case, the regression analysis provides the tools
for:

1. Finding a solution for unknown parameters {3 that
will, for example, minimize the distance between
the measured and predicted values of the dependent
variable Y (also known as method of least squares).

2. Under certain statistical assumptions, the regression
analysis uses the surplus of information to provide
statistical information about the unknown parame-
ters p and predicted values of the dependent variable
Y.

3.2.1 Necessary number of independent
measurements

Consider a regression model which has three unknown
parameters, o, P1, and 2. Suppose an experimenter
performs 10 measurements all at exactly the same value
of independent variable vector X (which contains the in-
dependent variables X1, X5, and X3). In this case, regres-
sion analysis fails to give a unique set of estimated values
for the three unknown parameters; the experimenter did
not provide enough information. The best one can do is
to estimate the average value and the standard deviation
of the dependent variable Y. Similarly, measuring at two
different values of X would give enough data for a re-
gression with two unknowns, but not for three or more
unknowns.

If the experimenter had performed measurements at
three different values of the independent variable vector
X, then regression analysis would provide a unique set of
estimates for the three unknown parameters in f3.

In the case of general linear regression, the above state-
ment is equivalent to the requirement that the matrix X™X
is invertible.

3.2.2 Statistical assumptions

When the number of measurements, N, is larger than the
number of unknown parameters, k, and the measurement
errors ¢g; are normally distributed then the excess of in-
formation contained in (N — k) measurements is used to
make statistical predictions about the unknown param-
eters. This excess of information is referred to as the
degrees of freedom of the regression.
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3.3 Underlying assumptions

Classical assumptions for regression analysis include:

e The sample is representative of the population for
the inference prediction.

e The error is a random variable with a mean of zero
conditional on the explanatory variables.

e The independent variables are measured with no er-
ror. (Note: If this is not so, modeling may be done
instead using errors-in-variables model techniques).

e The predictors are linearly independent, i.e. it is not
possible to express any predictor as a linear combi-
nation of the others.

e The errors are uncorrelated, that is, the variance—
covariance matrix of the errors is diagonal and each
non-zero element is the variance of the error.

e The variance of the error is constant across obser-
vations (homoscedasticity). If not, weighted least
squares or other methods might instead be used.

These are sufficient conditions for the least-squares esti-
mator to possess desirable properties; in particular, these
assumptions imply that the parameter estimates will be
unbiased, consistent, and efficient in the class of linear
unbiased estimators. It is important to note that actual
data rarely satisfies the assumptions. That is, the method
is used even though the assumptions are not true. Vari-
ation from the assumptions can sometimes be used as a
measure of how far the model is from being useful. Many
of these assumptions may be relaxed in more advanced
treatments. Reports of statistical analyses usually include
analyses of tests on the sample data and methodology for
the fit and usefulness of the model.

Assumptions include the geometrical support of the
variables.!'”! Independent and dependent variables often
refer to values measured at point locations. There may be
spatial trends and spatial autocorrelation in the variables
that violate statistical assumptions of regression. Geo-
graphic weighted regression is one technique to deal with
such data.['® Also, variables may include values aggre-
gated by areas. With aggregated data the modifiable areal
unit problem can cause extreme variation in regression
parameters.''”! When analyzing data aggregated by polit-
ical boundaries, postal codes or census areas results may
be very distinct with a different choice of units.

3.4 Linear regression

Main article: Linear regression
See simple linear regression for a derivation of these
formulas and a numerical example

CHAPTER 3. REGRESSION ANALYSIS

In linear regression, the model specification is that the de-
pendent variable, y; is a linear combination of the param-
eters (but need not be linear in the independent variables).
For example, in simple linear regression for modeling n
data points there is one independent variable: z; , and
two parameters, 3y and (31 :

yi = Bo+ Prxi +e, i=1,...,n.

In multiple linear regression, there are several indepen-
dent variables or functions of independent variables.

Adding a term in xi? to the preceding regression gives:

yi = Bo + Brwi + foxi i, i=1,...,n.

This is still linear regression; although the expression on
the right hand side is quadratic in the independent variable
x; , it is linear in the parameters 3y , 51 and (5.

In both cases, ¢; is an error term and the subscript ¢ in-
dexes a particular observation.

Given a random sample from the population, we estimate
the population parameters and obtain the sample linear
regression model:

Ui = Bo + 31371‘-

The residual, e; = y; — ¥; , is the difference between the
value of the dependent variable predicted by the model,
¥i , and the true value of the dependent variable, y; .
One method of estimation is ordinary least squares. This
method obtains parameter estimates that minimize the
sum of squared residuals, SSE,?'21 also sometimes de-
noted RSS:

SSE = i e?.
i=1

Minimization of this function results in a set of normal
equations, a set of simultaneous linear equations in the
parameters, which are solved to yield the parameter esti-

mators, g, 31 .

In the case of simple regression, the formulas for the least
squares estimates are

S D)y 0)

and Bo =y— B}f

where T is the mean (average) of the = values and  is the
mean of the y values.

Under the assumption that the population error term has
a constant variance, the estimate of that variance is given
by:
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3.4. LINEAR REGRESSION

Hlustration of linear regression on a data set.

., SSE

o, =

n—2

This is called the mean square error (MSE) of the regres-
sion. The denominator is the sample size reduced by the
number of model parameters estimated from the same
data, (n-p) for p regressors or (n-p—1) if an intercept is
used.??! In this case, p=1 so the denominator is n—2.

The standard errors of the parameter estimates are given
by

e
R T S C ok

0g, = 0| ==
oV S )

Under the further assumption that the population error

term is normally distributed, the researcher can use these

estimated standard errors to create confidence intervals

and conduct hypothesis tests about the population param-

eters.

3.4.1 General linear model

For a derivation, see linear least squares
For a numerical example, see linear regression

In the more general multiple regression model, there are
p independent variables:

Yi = P1zin + Paxio + -+ + BpTip + €4,

where xij is the i observation on the j independent vari-
able, and where the first independent variable takes the
value 1 for all i (so 31 is the regression intercept).

The least squares parameter estimates are obtained from
p normal equations. The residual can be written as
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€ =Yi — B1wir — - — BpTip.

The normal equations are

n

SN X XiBk =Y Xijyi, j=1,...,p.

i=1 k=1 i=1

In matrix notation, the normal equations are written as

X'X)B=XT"Y,

where the ij element of X is xij, the i element of the col-
umn vector Y is yi, and the j element of 3 is §; . Thus X

is nxp, Y is nx1, and B is px1. The solution is
B=X"X)"IXTY.

3.4.2 Diagnostics

See also: Category:Regression diagnostics.

Once a regression model has been constructed, it may be
important to confirm the goodness of fit of the model and
the statistical significance of the estimated parameters.
Commonly used checks of goodness of fit include the R-
squared, analyses of the pattern of residuals and hypoth-
esis testing. Statistical significance can be checked by an
F-test of the overall fit, followed by t-tests of individual
parameters.

Interpretations of these diagnostic tests rest heavily on the
model assumptions. Although examination of the resid-
uals can be used to invalidate a model, the results of a t-
test or F-test are sometimes more difficult to interpret if
the model’s assumptions are violated. For example, if the
error term does not have a normal distribution, in small
samples the estimated parameters will not follow normal
distributions and complicate inference. With relatively
large samples, however, a central limit theorem can be
invoked such that hypothesis testing may proceed using
asymptotic approximations.

3.4.3 “Limited dependent” variables
The phrase “limited dependent” is used in econometric
statistics for categorical and constrained variables.

The response variable may be non-continuous (“limited”
to lie on some subset of the real line). For binary (zero or
one) variables, if analysis proceeds with least-squares lin-
ear regression, the model is called the linear probability
model. Nonlinear models for binary dependent variables
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include the probit and logit model. The multivariate pro-
bit model is a standard method of estimating a joint rela-
tionship between several binary dependent variables and
some independent variables. For categorical variables
with more than two values there is the multinomial logit.
For ordinal variables with more than two values, there are
the ordered logit and ordered probit models. Censored
regression models may be used when the dependent vari-
able is only sometimes observed, and Heckman correc-
tion type models may be used when the sample is not
randomly selected from the population of interest. An
alternative to such procedures is linear regression based
on polychoric correlation (or polyserial correlations) be-
tween the categorical variables. Such procedures differ in
the assumptions made about the distribution of the vari-
ables in the population. If the variable is positive with low
values and represents the repetition of the occurrence of
an event, then count models like the Poisson regression
or the negative binomial model may be used instead.

3.5 Interpolation and extrapola-
tion

Regression models predict a value of the Y variable given
known values of the X variables. Prediction within the
range of values in the dataset used for model-fitting is
known informally as interpolation. Prediction outside this
range of the data is known as extrapolation. Performing
extrapolation relies strongly on the regression assump-
tions. The further the extrapolation goes outside the data,
the more room there is for the model to fail due to dif-
ferences between the assumptions and the sample data or
the true values.

It is generally advised that when performing extrapola-
tion, one should accompany the estimated value of the de-
pendent variable with a prediction interval that represents
the uncertainty. Such intervals tend to expand rapidly as
the values of the independent variable(s) moved outside
the range covered by the observed data.

For such reasons and others, some tend to say that it might
be unwise to undertake extrapolation.?*!

However, this does not cover the full set of modelling er-
rors that may be being made: in particular, the assump-
tion of a particular form for the relation between Y and X.
A properly conducted regression analysis will include an
assessment of how well the assumed form is matched by
the observed data, but it can only do so within the range
of values of the independent variables actually available.
This means that any extrapolation is particularly reliant
on the assumptions being made about the structural form
of the regression relationship. Best-practice advice here
is that a linear-in-variables and linear-in-parameters rela-
tionship should not be chosen simply for computational
convenience, but that all available knowledge should be
deployed in constructing a regression model. If this
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knowledge includes the fact that the dependent variable
cannot go outside a certain range of values, this can be
made use of in selecting the model — even if the observed
dataset has no values particularly near such bounds. The
implications of this step of choosing an appropriate func-
tional form for the regression can be great when extrap-
olation is considered. At a minimum, it can ensure that
any extrapolation arising from a fitted model is “realistic”
(or in accord with what is known).

3.6 Nonlinear regression
Main article: Nonlinear regression

When the model function is not linear in the parameters,
the sum of squares must be minimized by an iterative pro-
cedure. This introduces many complications which are
summarized in Differences between linear and non-linear
least squares

3.7 Power and sample size calcula-
tions

There are no generally agreed methods for relating the
number of observations versus the number of indepen-
dent variables in the model. One rule of thumb suggested
by Good and Hardin is N = m™ , where NV is the sam-
ple size, n is the number of independent variables and m
is the number of observations needed to reach the de-
sired precision if the model had only one independent
variable.”*! For example, a researcher is building a lin-
ear regression model using a dataset that contains 1000
patients ( IV ). If the researcher decides that five observa-
tions are needed to precisely define a straight line ( m ),
then the maximum number of independent variables the
model can support is 4, because

log 1000 _
L1000 — 4.99.

3.8 Other methods

Although the parameters of a regression model are usu-
ally estimated using the method of least squares, other
methods which have been used include:

e Bayesian methods, e.g. Bayesian linear regression

e Percentage regression, for situations where reducing
percentage errors is deemed more appropriate.>!

e [ east absolute deviations, which is more robust in
the presence of outliers, leading to quantile regres-
sion
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e Nonparametric regression, requires a large number
of observations and is computationally intensive

e Distance metric learning, which is learned by the
search of a meaningful distance metric in a given
input space.%%!

3.9 Software

Main article: List of statistical packages

All major statistical software packages perform least
squares regression analysis and inference. Simple linear
regression and multiple regression using least squares can
be done in some spreadsheet applications and on some
calculators. While many statistical software packages can
perform various types of nonparametric and robust reon,
these methods are less standardized; different software
packages implement different methods, and a method
with a given name may be implemented differently in
different packages. Specialized regression software has
been developed for use in fields such as survey analysis
and neuroimaging.

3.10 See also

Curve fitting

e Forecasting

e Fraction of variance unexplained

e Kriging (a linear least squares estimation algorithm)
e [ ocal regression

e Modifiable areal unit problem

e Multivariate adaptive regression splines

e Multivariate normal distribution

e Pearson product-moment correlation coefficient
e Prediction interval

e Robust regression

e Segmented regression

e Stepwise regression

e Trend estimation
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Chapter 4

Perceptron

“Perceptrons” redirects here. For the book of that title,
see Perceptrons (book).

In machine learning, the perceptron is an algorithm for
supervised learning of binary classifiers: functions that
can decide whether an input (represented by a vector of
numbers) belong to one class or another.'! It is a type of
linear classifier, i.e. a classification algorithm that makes
its predictions based on a linear predictor function com-
bining a set of weights with the feature vector. The algo-
rithm allows for online learning, in that it processes ele-
ments in the training set one at a time.

The perceptron algorithm dates back to the late 1950s; its
first implementation, in custom hardware, was one of the
first artificial neural networks to be produced.

4.1 History

See also: History of artificial intelligence, Al
winter

The perceptron algorithm was invented in 1957 at the
Cornell Aeronautical Laboratory by Frank Rosenblatt,?!
funded by the United States Office of Naval Research."!
The perceptron was intended to be a machine, rather than
a program, and while its first implementation was in soft-
ware for the IBM 704, it was subsequently implemented
in custom-built hardware as the “Mark 1 perceptron”.
This machine was designed for image recognition: it had
an array of 400 photocells, randomly connected to the
“neurons”. Weights were encoded in potentiometers, and
weight updates during learning were performed by elec-
tric motors. 41193

In a 1958 press conference organized by the US Navy,
Rosenblatt made statements about the perceptron that
caused a heated controversy among the fledgling AI com-
munity; based on Rosenblatt’s statements, The New York
Times reported the perceptron to be “the embryo of an
electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious
of its existence.”l*!

Although the perceptron initially seemed promising, it
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was quickly proved that perceptrons could not be trained
to recognise many classes of patterns. This led to the field
of neural network research stagnating for many years,
before it was recognised that a feedforward neural net-
work with two or more layers (also called a multilayer
perceptron) had far greater processing power than per-
ceptrons with one layer (also called a single layer percep-
tron). Single layer perceptrons are only capable of learn-
ing linearly separable patterns; in 1969 a famous book en-
titled Perceptrons by Marvin Minsky and Seymour Papert
showed that it was impossible for these classes of network
to learn an XOR function. It is often believed that they
also conjectured (incorrectly) that a similar result would
hold for a multi-layer perceptron network. However, this
is not true, as both Minsky and Papert already knew
that multi-layer perceptrons were capable of producing
an XOR function. (See the page on Perceptrons (book)
for more information.) Three years later Stephen Gross-
berg published a series of papers introducing networks
capable of modelling differential, contrast-enhancing and
XOR functions. (The papers were published in 1972
and 1973, see e.g.:Grossberg (1973). “Contour enhance-
ment, short-term memory, and constancies in reverber-
ating neural networks” (PDF). Studies in Applied Math-
ematics 52: 213-257.). Nevertheless the often-miscited
Minsky/Papert text caused a significant decline in inter-
est and funding of neural network research. It took ten
more years until neural network research experienced a
resurgence in the 1980s. This text was reprinted in 1987
as “Perceptrons - Expanded Edition” where some errors
in the original text are shown and corrected.

The kernel perceptron algorithm was already introduced
in 1964 by Aizerman et al.® Margin bounds guaran-
tees were given for the Perceptron algorithm in the gen-
eral non-separable case first by Freund and Schapire
(1998),!' and more recently by Mohri and Rostamizadeh
(2013) who extend previous results and give new L1
bounds.®!

4.2 Definition

In the modern sense, the perceptron is an algorithm for
learning a binary classifier: a function that maps its input
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« (a real-valued vector) to an output value f(x) (a single
binary value):

1 ifw-z+b>0
flz) = .
0 otherwise

where w is a vector of real-valued weights, w - x is the
dot product ZZ w;x; , and b is the bias, a term that shifts
the decision boundary away from the origin and does not
depend on any input value.

The value of f(z) (0 or 1) is used to classify x as ei-
ther a positive or a negative instance, in the case of a
binary classification problem. If b is negative, then the
weighted combination of inputs must produce a positive
value greater than |b| in order to push the classifier neu-
ron over the 0 threshold. Spatially, the bias alters the posi-
tion (though not the orientation) of the decision boundary.
The perceptron learning algorithm does not terminate if
the learning set is not linearly separable. If the vectors are
not linearly separable learning will never reach a point
where all vectors are classified properly. The most fa-
mous example of the perceptron’s inability to solve prob-
lems with linearly nonseparable vectors is the Boolean
exclusive-or problem. The solution spaces of decision
boundaries for all binary functions and learning behav-
iors are studied in the reference.!”)

In the context of neural networks, a perceptron is an
artificial neuron using the Heaviside step function as the
activation function. The perceptron algorithm is also
termed the single-layer perceptron, to distinguish it
from a multilayer perceptron, which is a misnomer for a
more complicated neural network. As a linear classifier,
the single-layer perceptron is the simplest feedforward
neural network.

4.3 Learning algorithm

Below is an example of a learning algorithm for a (single-
layer) perceptron. For multilayer perceptrons, where a
hidden layer exists, more sophisticated algorithms such
as backpropagation must be used. Alternatively, meth-
ods such as the delta rule can be used if the function is
non-linear and differentiable, although the one below will
work as well.

When multiple perceptrons are combined in an artificial
neural network, each output neuron operates indepen-
dently of all the others; thus, learning each output can
be considered in isolation.

4.3.1 Definitions

We first define some variables:
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A diagram showing a perceptron updating its linear boundary as
more training examples are added.

e y = f(z) denotes the output from the perceptron
for an input vector z .

e b is the bias term, which in the example below we
take to be 0.

e D ={(x1,d1),...,(Xs,ds)} is the training set of
s samples, where:

e X; is the n -dimensional input vector.

e d; is the desired output value of the percep-
tron for that input.

‘We show the values of the features as follows:

e x;; is the value of the i th feature of the j th training
input vector.

(] .Tj’o =1.
To represent the weights:

e w; is the ¢ th value in the weight vector, to be mul-
tiplied by the value of the ¢ th input feature.

e Because ;0 = 1 , the wq is effectively a learned
bias that we use instead of the bias constant b .

To show the time-dependence of w , we use:

e w;(t) is the weight ¢ at time ¢ .
e « is the learning rate, where 0 < a < 1.
Too high a learning rate makes the perceptron periodi-

cally oscillate around the solution unless additional steps
are taken.
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The appropriate weights are applied to the inputs, and the result-
ing weighted sum passed to a function that produces the output

.

4.3.2 Steps

1. Initialize the weights and the threshold. Weights may
be initialized to O or to a small random value. In the ex-
ample below, we use 0.

2. For each example j in our training set D , perform
the following steps over the input x; and desired output
dj .

2a. Calculate the actual output:

y;i(t) = flw(t)x;] = flwo(t)+wy(t)w;1+wa(t)z; o+

2b. Update the weights:

wi(t + 1) = wi(t) + a(d; —
y;j(t))x;, , for all feature 0 < ¢ <
n.

3. For offline learning, the step 2 may be repeated until
the iteration error X Z;Zl |d; —y; ()| is less than a user-
specified error threshold ~ , or a predetermined number
of iterations have been completed.

The algorithm updates the weights after steps 2a and 2b.
These weights are immediately applied to a pair in the
training set, and subsequently updated, rather than wait-
ing until all pairs in the training set have undergone these
steps.

4.3.3 Convergence

The perceptron is a linear classifier, therefore it will never
get to the state with all the input vectors classified cor-
rectly if the training set D is not linearly separable, i.e.
if the positive examples can not be separated from the
negative examples by a hyperplane.

But if the training set is linearly separable, then the per-
ceptron is guaranteed to converge, and there is an upper
bound on the number of times the perceptron will adjust
its weights during the training.

19

Suppose that the input vectors from the two classes can
be separated by a hyperplane with a margin v , i.e. there
exists a weight vector w, ||w|| = 1, and a bias term b such
thatw-x; +b > yforallj: d; = landw-x; +b < —v
forall j : d; = 0. And also let R denote the maxi-
mum norm of an input vector. Novikoff (1962) proved
that in this case the perceptron algorithm converges af-
ter making O(R?/~?) updates. The idea of the proof is
that the weight vector is always adjusted by a bounded
amount in a direction that it has a negative dot product
with, and thus can be bounded above by O(v/t) where ¢
is the number of changes to the weight vector. But it can
also be bounded below by O(t) because if there exists an
(unknown) satisfactory weight vector, then every change
makes progress in this (unknown) direction by a positive
amount that depends only on the input vector.

The decision boundary of a perceptron is invariant with
respect to scaling of the weight vector; that is, a percep-
tron trained with initial weight vector w and learning rate
« behaves identically to a perceptron trained with initial
weight vector w/« and learning rate 1. Thus, since the
initial weights become irrelevant with increasing number
of iterations, the learning rate does not matter in the case
of the perceptron and is usually just set to 1.

4.4 Variants
+wp, (t)xj-,n

The pocket algorithm with ratchet (Gallant, 1990) solves
the stability problem of perceptron learning by keep-
ing the best solution seen so far “in its pocket”. The
pocket algorithm then returns the solution in the pocket,
rather than the last solution. It can be used also for non-
separable data sets, where the aim is to find a perceptron
with a small number of misclassifications.

In separable problems, perceptron training can also aim at
finding the largest separating margin between the classes.
The so-called perceptron of optimal stability can be de-
termined by means of iterative training and optimiza-
tion schemes, such as the Min-Over algorithm (Krauth
and Mezard, 1987)!8! or the AdaTron (Anlauf and Biehl,
1989)) .”! AdaTron uses the fact that the corresponding
quadratic optimization problem is convex. The percep-
tron of optimal stability, together with the kernel trick,
are the conceptual foundations of the support vector ma-
chine.

The « -perceptron further used a pre-processing layer of
fixed random weights, with thresholded output units. This
enabled the perceptron to classify analogue patterns, by
projecting them into a binary space. In fact, for a pro-
jection space of sufficiently high dimension, patterns can
become linearly separable.

For example, consider the case of having to classify data
into two classes. Here is a small such data set, consisting
of points coming from two Gaussian distributions.
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e Two-class Gaussian data
o A linear classifier operating on the original space

e A linear classifier operating on a high-dimensional
projection

A linear classifier can only separate points with a
hyperplane, so no linear classifier can classify all the
points here perfectly. On the other hand, the data can
be projected into a large number of dimensions. In our
example, a random matrix was used to project the data
linearly to a 1000-dimensional space; then each resulting
data point was transformed through the hyperbolic tan-
gent function. A linear classifier can then separate the
data, as shown in the third figure. However the data may
still not be completely separable in this space, in which
the perceptron algorithm would not converge. In the ex-
ample shown, stochastic steepest gradient descent was
used to adapt the parameters.

Another way to solve nonlinear problems without using
multiple layers is to use higher order networks (sigma-pi
unit). In this type of network, each element in the in-
put vector is extended with each pairwise combination of
multiplied inputs (second order). This can be extended
to an n-order network.

It should be kept in mind, however, that the best classifier
is not necessarily that which classifies all the training data
perfectly. Indeed, if we had the prior constraint that the
data come from equi-variant Gaussian distributions, the
linear separation in the input space is optimal.

Other linear classification algorithms include Winnow,
support vector machine and logistic regression.

4.5 Example

A perceptron learns to perform a binary NAND function
on inputs 1 and x5 .

Inputs: x¢ , 1 , x2 , with input z¢ held constant at 1.
Threshold (£ ): 0.5

Bias (b): 1

Learning rate (7 ): 0.1

Training  set, consisting of four  samples:
{((1,0,0),1), ((1,0,1),1), ((1,1,0), 1), (1, 1,1),0)}
In the following, the final weights of one iteration become

the initial weights of the next. Each cycle over all the
samples in the training set is demarcated with heavy lines.

This example can be implemented in the following
Python code.

threshold = 0.5 learning_rate = 0.1 weights = [0, O,
0] training_set = [((1, 0, 0), 1), ((1, O, 1), 1), ((1, 1,
0), 1), ((1, 1, 1), 0)] def dot_product(values, weights):
return sum(value * weight for value, weight in zip(values,
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weights)) while True: print('-' * 60) error_count =
0 for input_vector, desired_output in training_set:
print(weights) result = dot_product(input_vector,
weights) > threshold error = desired_output - result if
error != 0: error_count += 1 for index, value in enu-
merate(input_vector): weights[index] += learning_rate *
error * value if error_count == 0: break

4.6 Multiclass perceptron

Like most other techniques for training linear classifiers,
the perceptron generalizes naturally to multiclass classi-
fication. Here, the input x and the output y are drawn
from arbitrary sets. A feature representation function
f(z,y) maps each possible input/output pair to a finite-
dimensional real-valued feature vector. As before, the
feature vector is multiplied by a weight vector w , but
now the resulting score is used to choose among many
possible outputs:

§ = argmax,, f(x,y) - w.

Learning again iterates over the examples, predicting an
output for each, leaving the weights unchanged when the
predicted output matches the target, and changing them
when it does not. The update becomes:

Wyt = Wy + f(:my) - f(x,ﬂ)

This multiclass formulation reduces to the original per-
ceptron when x is a real-valued vector, y is chosen from

{0,1} ,and f(z,y) = yz .

For certain problems, input/output representations and
features can be chosen so that argmax, f (z,y) - w can
be found efficiently even though y is chosen from a very
large or even infinite set.

In recent years, perceptron training has become popular
in the field of natural language processing for such tasks
as part-of-speech tagging and syntactic parsing (Collins,
2002).
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Chapter 5

Linear regression

In statistics, linear regression is an approach for mod-
eling the relationship between a scalar dependent vari-
able y and one or more explanatory variables (or inde-
pendent variable) denoted X. The case of one explana-
tory variable is called simple linear regression. For more
than one explanatory variable, the process is called multi-
ple linear regression.!' (This term should be distinguished
from multivariate linear regression, where multiple cor-
related dependent variables are predicted, rather than a
single scalar variable.)?!

In linear regression, data are modeled using linear pre-
dictor functions, and unknown model parameters are
estimated from the data. Such models are called linear
models.®) Most commonly, linear regression refers to a
model in which the conditional mean of y given the value
of X is an affine function of X. Less commonly, linear
regression could refer to a model in which the median,
or some other quantile of the conditional distribution of
y given X is expressed as a linear function of X. Like
all forms of regression analysis, /inear regression focuses
on the conditional probability distribution of y given X,
rather than on the joint probability distribution of y and
X, which is the domain of multivariate analysis.

Linear regression was the first type of regression analy-
sis to be studied rigorously, and to be used extensively
in practical applications.!*! This is because models which
depend linearly on their unknown parameters are easier
to fit than models which are non-linearly related to their
parameters and because the statistical properties of the
resulting estimators are easier to determine.

Linear regression has many practical uses. Most applica-
tions fall into one of the following two broad categories:

o If the goal is prediction, or forecasting, or reduction,
linear regression can be used to fit a predictive model
to an observed data set of y and X values. After
developing such a model, if an additional value of X
is then given without its accompanying value of y,
the fitted model can be used to make a prediction of
the value of y.

Given a variable y and a number of variables X1, ...,
Xp that may be related to y, linear regression analy-
sis can be applied to quantify the strength of the re-
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lationship between y and the Xj, to assess which X
may have no relationship with y at all, and to identify
which subsets of the X;j contain redundant informa-
tion about y.

Linear regression models are often fitted using the least
squares approach, but they may also be fitted in other
ways, such as by minimizing the “lack of fit” in some
other norm (as with least absolute deviations regression),
or by minimizing a penalized version of the least squares
loss function as in ridge regression (L2-norm penalty) and
lasso (L1-norm penalty). Conversely, the least squares
approach can be used to fit models that are not linear
models. Thus, although the terms “least squares” and “lin-
ear model” are closely linked, they are not synonymous.

5.1 Introduction to linear regres-
sion

Example of simple linear regression, which has one independent
variable

Given a data set {y;, z;1,...,%p}r_; of n statistical
units, a linear regression model assumes that the relation-
ship between the dependent variable yi and the p-vector
of regressors xi is linear. This relationship is modeled
through a disturbance term or error variable i — an un-
observed random variable that adds noise to the linear re-
lationship between the dependent variable and regressors.
Thus the model takes the form
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Example of a cubic polynomial regression, which is a type of
linear regression.

T .
yi = Brza+ -+ BpTipte; = X; Btei, i=1,...
where T denotes the transpose, so that xi8 is the inner
product between vectors xi and £3.
Often these n equations are stacked together and written
in vector form as
y=XB+e,
where
Y1 X¥ T11 T1p
T
Y2 X2 21 Top
y=1.1 X=|.[|= |, B
b
Yn X, Tnl Tnp

Some remarks on terminology and general use:

e 1y, is called the regressand, endogenous variable, re-
sponse variable, measured variable, criterion vari-
able, or dependent variable (see dependent and in-
dependent variables.) The decision as to which vari-
able in a data set is modeled as the dependent vari-
able and which are modeled as the independent vari-
ables may be based on a presumption that the value
of one of the variables is caused by, or directly in-
fluenced by the other variables. Alternatively, there
may be an operational reason to model one of the
variables in terms of the others, in which case there
need be no presumption of causality.

® T;1, Tio, .., Tip are called regressors, exogenous
variables, explanatory variables, covariates, input
variables, predictor variables, or independent vari-
ables (see dependent and independent variables, but

7”3

23

not to be confused with independent random vari-
ables). The matrix X is sometimes called the design
matrix.

e Usually a constant is included as one of the re-
gressors. For example we can take xi; = 1 for
i =1, .., n. The corresponding element of 3
is called the intercept. Many statistical infer-
ence procedures for linear models require an
intercept to be present, so it is often included
even if theoretical considerations suggest that
its value should be zero.

e Sometimes one of the regressors can be a
non-linear function of another regressor or
of the data, as in polynomial regression and
segmented regression. The model remains lin-
ear as long as it is linear in the parameter vec-

tor 3.

e The regressors xij may be viewed either as
random variables, which we simply observe, or
they can be considered as predetermined fixed
values which we can choose. Both interpre-
tations may be appropriate in different cases,
and they generally lead to the same estimation
procedures; however different approaches to
asymptotic analysis are used in these two situ-
ations.

e (3 is a p-dimensional parameter vector. Its elements
are also called effects, or regression coefficients. Sta-
tistical estimation and inference in linear regression
focuses on . The elements of this parameter vec-
tor are interpreted as the partial derivatives of the
dependent variable with respect to the various inde-

Spopdent variablgs

; fis calded:-t eEe.%'r 1 term, disturbance term, or noise.
Thjis variabld captjires all other factors which influ-
e the dep t variable yi other than the regres-
sors xi. The relationship between the error term
and the regressors, for example whether they are
correlated, is a crucial step in formulating a linear
regression model, as it will determine the method to
use for estimation.

Example. Consider a situation where a small ball is being
tossed up in the air and then we measure its heights of
ascent hi at various moments in time #i. Physics tells us
that, ignoring the drag, the relationship can be modeled
as

hi = Bit; + Bt + &4,

where f; determines the initial velocity of the ball, S
is proportional to the standard gravity, and &i is due to
measurement errors. Linear regression can be used to es-
timate the values of 8; and 2 from the measured data.
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This model is non-linear in the time variable, but it is lin-
ear in the parameters 31 and (3o; if we take regressors xi =
(xiy, xip) = (ti, %), the model takes on the standard form

h; = X;rﬂ + €.

5.1.1 Assumptions

Standard linear regression models with standard estima-
tion techniques make a number of assumptions about the
predictor variables, the response variables and their rela-
tionship. Numerous extensions have been developed that
allow each of these assumptions to be relaxed (i.e. re-
duced to a weaker form), and in some cases eliminated
entirely. Some methods are general enough that they can
relax multiple assumptions at once, and in other cases
this can be achieved by combining different extensions.
Generally these extensions make the estimation proce-
dure more complex and time-consuming, and may also
require more data in order to produce an equally precise
model.

The following are the major assumptions made by stan-
dard linear regression models with standard estimation
techniques (e.g. ordinary least squares):

o Weak exogeneity. This essentially means that the
predictor variables x can be treated as fixed values,
rather than random variables. This means, for ex-
ample, that the predictor variables are assumed to be
error-free—that is, not contaminated with measure-
ment errors. Although this assumption is not realis-
tic in many settings, dropping it leads to significantly
more difficult errors-in-variables models.

e Linearity. This means that the mean of the re-
sponse variable is a linear combination of the param-
eters (regression coefficients) and the predictor vari-
ables. Note that this assumption is much less restric-
tive than it may at first seem. Because the predictor
variables are treated as fixed values (see above), lin-
earity is really only a restriction on the parameters.
The predictor variables themselves can be arbitrarily
transformed, and in fact multiple copies of the same
underlying predictor variable can be added, each one
transformed differently. This trick is used, for ex-
ample, in polynomial regression, which uses linear
regression to fit the response variable as an arbitrary
polynomial function (up to a given rank) of a pre-
dictor variable. This makes linear regression an ex-
tremely powerful inference method. In fact, models
such as polynomial regression are often “too power-
ful”, in that they tend to overfit the data. As a re-
sult, some kind of regularization must typically be
used to prevent unreasonable solutions coming out
of the estimation process. Common examples are
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ridge regression and lasso regression. Bayesian lin-
ear regression can also be used, which by its nature
is more or less immune to the problem of overfit-
ting. (In fact, ridge regression and lasso regression
can both be viewed as special cases of Bayesian lin-
ear regression, with particular types of prior distri-
butions placed on the regression coefficients.)

Constant variance (a.k.a. homoscedasticity).
This means that different response variables have
the same variance in their errors, regardless of
the values of the predictor variables. In prac-
tice this assumption is invalid (i.e. the errors are
heteroscedastic) if the response variables can vary
over a wide scale. In order to determine for hetero-
geneous error variance, or when a pattern of resid-
uals violates model assumptions of homoscedastic-
ity (error is equally variable around the 'best-fitting
line' for all points of x), it is prudent to look for
a “fanning effect” between residual error and pre-
dicted values. This is to say there will be a system-
atic change in the absolute or squared residuals when
plotted against the predicting outcome. Error will
not be evenly distributed across the regression line.
Heteroscedasticity will result in the averaging over
of distinguishable variances around the points to get
a single variance that is inaccurately representing all
the variances of the line. In effect, residuals appear
clustered and spread apart on their predicted plots
for larger and smaller values for points along the lin-
ear regression line, and the mean squared error for
the model will be wrong. Typically, for example,
a response variable whose mean is large will have
a greater variance than one whose mean is small.
For example, a given person whose income is pre-
dicted to be $100,000 may easily have an actual in-
come of $80,000 or $120,000 (a standard devia-
tion of around $20,000), while another person with
a predicted income of $10,000 is unlikely to have
the same $20,000 standard deviation, which would
imply their actual income would vary anywhere be-
tween -$10,000 and $30,000. (In fact, as this shows,
in many cases—often the same cases where the as-
sumption of normally distributed errors fails—the
variance or standard deviation should be predicted
to be proportional to the mean, rather than con-
stant.) Simple linear regression estimation meth-
ods give less precise parameter estimates and mis-
leading inferential quantities such as standard errors
when substantial heteroscedasticity is present. How-
ever, various estimation techniques (e.g. weighted
least squares and heteroscedasticity-consistent stan-
dard errors) can handle heteroscedasticity in a quite
general way. Bayesian linear regression techniques
can also be used when the variance is assumed to be
a function of the mean. It is also possible in some
cases to fix the problem by applying a transforma-
tion to the response variable (e.g. fit the logarithm
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of the response variable using a linear regression
model, which implies that the response variable has
a log-normal distribution rather than a normal dis-
tribution).

e Independence of errors. This assumes that the er-
rors of the response variables are uncorrelated with
each other. (Actual statistical independence is a
stronger condition than mere lack of correlation and
is often not needed, although it can be exploited if it
is known to hold.) Some methods (e.g. generalized
least squares) are capable of handling correlated
errors, although they typically require significantly
more data unless some sort of regularization is used
to bias the model towards assuming uncorrelated er-
rors. Bayesian linear regression is a general way of
handling this issue.

e Lack of multicollinearity in the predictors. For
standard least squares estimation methods, the de-
sign matrix X must have full column rank p,; other-
wise, we have a condition known as multicollinearity
in the predictor variables. This can be triggered
by having two or more perfectly correlated predic-
tor variables (e.g. if the same predictor variable is
mistakenly given twice, either without transform-
ing one of the copies or by transforming one of the
copies linearly). It can also happen if there is too
little data available compared to the number of pa-
rameters to be estimated (e.g. fewer data points
than regression coefficients). In the case of mul-
ticollinearity, the parameter vector § will be non-
identifiable—it has no unique solution. At most we
will be able to identify some of the parameters, i.e.
narrow down its value to some linear subspace of
R?. See partial least squares regression. Methods
for fitting linear models with multicollinearity have
been developed;P!191718] some require additional
assumptions such as “effect sparsity”—that a large
fraction of the effects are exactly zero. Note that
the more computationally expensive iterated algo-
rithms for parameter estimation, such as those used
in generalized linear models, do not suffer from this
problem—and in fact it’s quite normal to when han-
dling categorically valued predictors to introduce a
separate indicator variable predictor for each pos-
sible category, which inevitably introduces multi-
collinearity.

Beyond these assumptions, several other statistical prop-
erties of the data strongly influence the performance of
different estimation methods:

o The statistical relationship between the error terms
and the regressors plays an important role in deter-
mining whether an estimation procedure has desir-
able sampling properties such as being unbiased and
consistent.
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e The arrangement, or probability distribution of the
predictor variables x has a major influence on the
precision of estimates of 8. Sampling and design of
experiments are highly developed subfields of statis-
tics that provide guidance for collecting data in such
a way to achieve a precise estimate of S.

5.1.2 Interpretation
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The sets in the Anscombe’s quartet have the same linear regres-
sion line but are themselves very different.

A fitted linear regression model can be used to identify the
relationship between a single predictor variable xj and the
response variable y when all the other predictor variables
in the model are “held fixed”. Specifically, the interpre-
tation of Sj is the expected change in y for a one-unit
change in xj when the other covariates are held fixed—
that is, the expected value of the partial derivative of y
with respect to xj. This is sometimes called the unique
effect of xj on y. In contrast, the marginal effect of xj on
y can be assessed using a correlation coefficient or simple
linear regression model relating x;j to y; this effect is the
total derivative of y with respect to xj.

Care must be taken when interpreting regression results,
as some of the regressors may not allow for marginal
changes (such as dummy variables, or the intercept term),
while others cannot be held fixed (recall the example from
the introduction: it would be impossible to “hold # fixed”
and at the same time change the value of #?).

It is possible that the unique effect can be nearly zero even
when the marginal effect is large. This may imply that
some other covariate captures all the information in xj, so
that once that variable is in the model, there is no contri-
bution of xj to the variation in y. Conversely, the unique
effect of xj can be large while its marginal effect is nearly
zero. This would happen if the other covariates explained
a great deal of the variation of y, but they mainly explain
variation in a way that is complementary to what is cap-
tured by xj. In this case, including the other variables in
the model reduces the part of the variability of y that is
unrelated to xj, thereby strengthening the apparent rela-
tionship with x;j.
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The meaning of the expression “held fixed” may depend
on how the values of the predictor variables arise. If
the experimenter directly sets the values of the predic-
tor variables according to a study design, the compar-
isons of interest may literally correspond to comparisons
among units whose predictor variables have been “held
fixed” by the experimenter. Alternatively, the expression
“held fixed” can refer to a selection that takes place in the
context of data analysis. In this case, we “hold a variable
fixed” by restricting our attention to the subsets of the data
that happen to have a common value for the given predic-
tor variable. This is the only interpretation of “held fixed”
that can be used in an observational study.

The notion of a “unique effect” is appealing when study-
ing a complex system where multiple interrelated com-
ponents influence the response variable. In some cases,
it can literally be interpreted as the causal effect of an
intervention that is linked to the value of a predictor vari-
able. However, it has been argued that in many cases mul-
tiple regression analysis fails to clarify the relationships
between the predictor variables and the response variable
when the predictors are correlated with each other and are
not assigned following a study design.[’’ A commonality
analysis may be helpful in disentangling the shared and
unique impacts of correlated independent variables.!'!

5.2 Extensions

Numerous extensions of linear regression have been de-
veloped, which allow some or all of the assumptions un-
derlying the basic model to be relaxed.

5.2.1 Simple and multiple regression

The very simplest case of a single scalar predictor vari-
able x and a single scalar response variable y is known as
simple linear regression. The extension to multiple and/or
vector-valued predictor variables (denoted with a capital
X) is known as multiple linear regression, also known as
multivariable linear regression. Nearly all real-world re-
gression models involve multiple predictors, and basic de-
scriptions of linear regression are often phrased in terms
of the multiple regression model. Note, however, that in
these cases the response variable y is still a scalar. An-
other term multivariate linear regression refers to cases
where y is a vector, i.e., the same as general linear regres-
sion. The difference between multivariate linear regres-
sion and multivariable linear regression should be empha-
sized as it causes much confusion and misunderstanding
in the literature.

5.2.2 General linear models

The general linear model considers the situation when the
response variable Y is not a scalar but a vector. Con-
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ditional linearity of E(ylx) = Bx is still assumed, with a
matrix B replacing the vector 8 of the classical linear re-
gression model. Multivariate analogues of OLS and GLS
have been developed. The term “general linear models”
is equivalent to “multivariate linear models”. It should
be noted the difference of “multivariate linear models”
and “multivariable linear models,” where the former is
the same as “general linear models” and the latter is the
same as “multiple linear models.”

5.2.3 Heteroscedastic models

Various models have been created that allow for
heteroscedasticity, i.e. the errors for different response
variables may have different variances. For example,
weighted least squares is a method for estimating linear
regression models when the response variables may have
different error variances, possibly with correlated errors.
(See also Weighted linear least squares, and generalized
least squares.) Heteroscedasticity-consistent standard er-
rors is an improved method for use with uncorrelated but
potentially heteroscedastic errors.

5.2.4 Generalized linear models

Generalized linear models (GLMSs) are a framework for
modeling a response variable y that is bounded or dis-
crete. This is used, for example:

e when modeling positive quantities (e.g. prices or
populations) that vary over a large scale—which are
better described using a skewed distribution such as
the log-normal distribution or Poisson distribution
(although GLMs are not used for log-normal data,
instead the response variable is simply transformed
using the logarithm function);

e when modeling categorical data, such as the choice
of a given candidate in an election (which is bet-
ter described using a Bernoulli distribution/binomial
distribution for binary choices, or a categorical
distribution/multinomial distribution for multi-way
choices), where there are a fixed number of choices
that cannot be meaningfully ordered;

e when modeling ordinal data, e.g. ratings on a scale
from O to 5, where the different outcomes can be
ordered but where the quantity itself may not have
any absolute meaning (e.g. a rating of 4 may not be
“twice as good” in any objective sense as a rating of
2, but simply indicates that it is better than 2 or 3
but not as good as 5).

Generalized linear models allow for an arbitrary link
function g that relates the mean of the response variable
to the predictors, i.e. E(y) = g(8'x). The link function is
often related to the distribution of the response, and in
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particular it typically has the effect of transforming be-
tween the (—oo, 00) range of the linear predictor and the
range of the response variable.

Some common examples of GLMs are:

Poisson regression for count data.

Logistic regression and probit regression for binary
data.

e Multinomial logistic regression and multinomial
probit regression for categorical data.

Ordered probit regression for ordinal data.

Single index models allow some degree of nonlinearity
in the relationship between x and y, while preserving the
central role of the linear predictor §'x as in the classical
linear regression model. Under certain conditions, simply
applying OLS to data from a single-index model will con-
sistently estimate 8 up to a proportionality constant.['!]

5.2.5 Hierarchical linear models

Hierarchical linear models (or multilevel regression) or-
ganizes the data into a hierarchy of regressions, for ex-
ample where A is regressed on B, and B is regressed on
C. It is often used where the data have a natural hierar-
chical structure such as in educational statistics, where
students are nested in classrooms, classrooms are nested
in schools, and schools are nested in some administrative
grouping, such as a school district. The response variable
might be a measure of student achievement such as a test
score, and different covariates would be collected at the
classroom, school, and school district levels.

5.2.6 Errors-in-variables

Errors-in-variables models (or “measurement error mod-
els”) extend the traditional linear regression model to al-
low the predictor variables X to be observed with error.
This error causes standard estimators of 5 to become bi-
ased. Generally, the form of bias is an attenuation, mean-
ing that the effects are biased toward zero.

5.2.7 Others

e In Dempster—Shafer theory, or a linear belief func-
tion in particular, a linear regression model may be
represented as a partially swept matrix, which can
be combined with similar matrices representing ob-
servations and other assumed normal distributions
and state equations. The combination of swept or
unswept matrices provides an alternative method for
estimating linear regression models.
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5.3

Estimation methods

Comparison of the Theil-Sen estimator (black) and simple linear
regression (blue) for a set of points with outliers.

A large number of procedures have been developed for
parameter estimation and inference in linear regression.
These methods differ in computational simplicity of al-
gorithms, presence of a closed-form solution, robustness
with respect to heavy-tailed distributions, and theoretical
assumptions needed to validate desirable statistical prop-
erties such as consistency and asymptotic efficiency.

Some of the more common estimation techniques for lin-
ear regression are summarized below.

5.3.1 Least-squares estimation and related
techniques

e Ordinary least squares (OLS) is the simplest
and thus most common estimator. It is concep-
tually simple and computationally straightforward.
OLS estimates are commonly used to analyze both
experimental and observational data.

The OLS method minimizes the sum of squared
residuals, and leads to a closed-form expression for
the estimated value of the unknown parameter (3:

. _ -1
B=X"X)"X"y = (Xxix; ) (Xxivi)-
The estimator is unbiased and consistent if the errors

have finite variance and are uncorrelated with the
regressors!!?]
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It is also efficient under the assumption that the
errors have finite variance and are homoscedastic,
meaning that E[ei?Ixi] does not depend on i. The
condition that the errors are uncorrelated with the
regressors will generally be satisfied in an experi-
ment, but in the case of observational data, it is dif-
ficult to exclude the possibility of an omitted covari-
ate z that is related to both the observed covariates
and the response variable. The existence of such a
covariate will generally lead to a correlation between
the regressors and the response variable, and hence
to an inconsistent estimator of 3. The condition of
homoscedasticity can fail with either experimental
or observational data. If the goal is either inference
or predictive modeling, the performance of OLS es-
timates can be poor if multicollinearity is present,
unless the sample size is large.

In simple linear regression, where there is only one
regressor (with a constant), the OLS coefficient es-
timates have a simple form that is closely related to
the correlation coefficient between the covariate and
the response.

Generalized least squares (GLS) is an extension of
the OLS method, that allows efficient estimation of
p when either heteroscedasticity, or correlations, or
both are present among the error terms of the model,
as long as the form of heteroscedasticity and correla-
tion is known independently of the data. To handle
heteroscedasticity when the error terms are uncor-
related with each other, GLS minimizes a weighted
analogue to the sum of squared residuals from OLS
regression, where the weight for the i" case is in-
versely proportional to var(ei). This special case of
GLS is called “weighted least squares”. The GLS
solution to estimation problem is

B — (XTQ—lx)fleQ—ly’

where €2 is the covariance matrix of the errors. GLS
can be viewed as applying a linear transformation to
the data so that the assumptions of OLS are met for
the transformed data. For GLS to be applied, the
covariance structure of the errors must be known up
to a multiplicative constant.

Percentage least squares focuses on reducing per-
centage errors, which is useful in the field of fore-
casting or time series analysis. It is also useful in
situations where the dependent variable has a wide
range without constant variance, as here the larger
residuals at the upper end of the range would domi-
nate if OLS were used. When the percentage or rel-
ative error is normally distributed, least squares per-
centage regression provides maximum likelihood
estimates. Percentage regression is linked to a mul-
tiplicative error model, whereas OLS is linked to
models containing an additive error term.!3!
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o Iteratively reweighted least squares (IRLS) is

used when heteroscedasticity, or correlations, or
both are present among the error terms of the model,
but where little is known about the covariance struc-
ture of the errors independently of the data.l'*! In
the first iteration, OLS, or GLS with a provisional
covariance structure is carried out, and the residuals
are obtained from the fit. Based on the residuals, an
improved estimate of the covariance structure of the
errors can usually be obtained. A subsequent GLS
iteration is then performed using this estimate of the
error structure to define the weights. The process
can be iterated to convergence, but in many cases,
only one iteration is sufficient to achieve an efficient
estimate of B.[1/116]

¢ Instrumental variables regression (IV) can be per-

formed when the regressors are correlated with the
errors. In this case, we need the existence of some
auxiliary instrumental variables zi such that E[ziei]
= (0. If Z is the matrix of instruments, then the esti-
mator can be given in closed form as

B=X"2(2"2)"'2"X)"'X"2(2"2) ' Z"y.

e Optimal instruments regression is an extension of

classical IV regression to the situation where E[¢ilzi]
=0.

o Total least squares (TLS)!'7) is an approach to least

squares estimation of the linear regression model
that treats the covariates and response variable in a
more geometrically symmetric manner than OLS. It
is one approach to handling the “errors in variables”
problem, and is sometimes used when the covariates
are assumed to be error-free.

5.3.2 Maximum-likelihood estimation and

related techniques

e Maximum likelihood estimation can be per-

formed when the distribution of the error terms is
known to belong to a certain parametric family fO
of probability distributions.'"®! When f0 is a nor-
mal distribution with zero mean and variance 0, the
resulting estimate is identical to the OLS estimate.
GLS estimates are maximum likelihood estimates
when ¢ follows a multivariate normal distribution
with a known covariance matrix.

¢ Ridge regression,!'”2011211 and other forms of pe-

nalized estimation such as Lasso regression,’! de-
liberately introduce bias into the estimation of
in order to reduce the variability of the estimate.
The resulting estimators generally have lower mean
squared error than the OLS estimates, particularly
when multicollinearity is present. They are gener-
ally used when the goal is to predict the value of the
response variable y for values of the predictors x that
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have not yet been observed. These methods are not
as commonly used when the goal is inference, since
it is difficult to account for the bias.

e Least absolute deviation (LAD) regression is a
robust estimation technique in that it is less sensi-
tive to the presence of outliers than OLS (but is less
efficient than OLS when no outliers are present). It
is equivalent to maximum likelihood estimation un-
der a Laplace distribution model for &.??!

e Adaptive estimation. If we assume that error terms
are independent from the regressors €; L X; , the
optimal estimator is the 2-step MLE, where the first
step is used to non-parametrically estimate the dis-
tribution of the error term.?*

5.3.3 Other estimation techniques

¢ Bayesian linear regression applies the framework
of Bayesian statistics to linear regression. (See also
Bayesian multivariate linear regression.) In particu-
lar, the regression coefficients § are assumed to be
random variables with a specified prior distribution.
The prior distribution can bias the solutions for the
regression coefficients, in a way similar to (but more
general than) ridge regression or lasso regression. In
addition, the Bayesian estimation process produces
not a single point estimate for the “best” values of the
regression coefficients but an entire posterior distri-
bution, completely describing the uncertainty sur-
rounding the quantity. This can be used to estimate
the “best” coefficients using the mean, mode, me-
dian, any quantile (see quantile regression), or any
other function of the posterior distribution.

e Quantile regression focuses on the conditional
quantiles of y given X rather than the conditional
mean of y given X. Linear quantile regression mod-
els a particular conditional quantile, for example the
conditional median, as a linear function BTx of the
predictors.

e Mixed models are widely used to analyze linear
regression relationships involving dependent data
when the dependencies have a known structure.
Common applications of mixed models include
analysis of data involving repeated measurements,
such as longitudinal data, or data obtained from clus-
ter sampling. They are generally fit as parametric
models, using maximum likelihood or Bayesian es-
timation. In the case where the errors are modeled
as normal random variables, there is a close con-
nection between mixed models and generalized least
squares.”**! Fixed effects estimation is an alternative
approach to analyzing this type of data.

e Principal component regression (PCR)!7!®! is
used when the number of predictor variables is
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large, or when strong correlations exist among the
predictor variables. This two-stage procedure first
reduces the predictor variables using principal com-
ponent analysis then uses the reduced variables in
an OLS regression fit. While it often works well in
practice, there is no general theoretical reason that
the most informative linear function of the predictor
variables should lie among the dominant principal
components of the multivariate distribution of the
predictor variables. The partial least squares regres-
sion is the extension of the PCR method which does
not suffer from the mentioned deficiency.

e Least-angle regression'® is an estimation proce-
dure for linear regression models that was developed
to handle high-dimensional covariate vectors, po-
tentially with more covariates than observations.

e The Theil-Sen estimator is a simple robust estima-
tion technique that chooses the slope of the fit line
to be the median of the slopes of the lines through
pairs of sample points. It has similar statistical ef-
ficiency properties to simple linear regression but is
much less sensitive to outliers.?!

e Other robust estimation techniques, including the a.-
trimmed mean approach, and L-, M-, S-, and R-
estimators have been introduced.

5.3.4 Further discussion

In statistics and numerical analysis, the problem of nu-
merical methods for linear least squares is an impor-
tant one because linear regression models are one of the
most important types of model, both as formal statistical
models and for exploration of data sets. The majority of
statistical computer packages contain facilities for regres-
sion analysis that make use of linear least squares compu-
tations. Hence it is appropriate that considerable effort
has been devoted to the task of ensuring that these com-
putations are undertaken efficiently and with due regard
to numerical precision.

Individual statistical analyses are seldom undertaken in
isolation, but rather are part of a sequence of investiga-
tory steps. Some of the topics involved in considering
numerical methods for linear least squares relate to this
point. Thus important topics can be

e Computations where a number of similar, and of-
ten nested, models are considered for the same data
set. That is, where models with the same dependent
variable but different sets of independent variables
are to be considered, for essentially the same set of
data points.

e Computations for analyses that occur in a sequence,
as the number of data points increases.

e Special considerations for very extensive data sets.
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Fitting of linear models by least squares often, but not al-
ways, arises in the context of statistical analysis. It can
therefore be important that considerations of computa-
tional efficiency for such problems extend to all of the
auxiliary quantities required for such analyses, and are not
restricted to the formal solution of the linear least squares
problem.

Matrix calculations, like any others, are affected by
rounding errors. An early summary of these effects, re-
garding the choice of computational methods for matrix
inversion, was provided by Wilkinson.[?®!

5.4 Applications of linear regres-
sion

Linear regression is widely used in biological, behavioral
and social sciences to describe possible relationships be-
tween variables. It ranks as one of the most important
tools used in these disciplines.

5.4.1 Trend line

Main article: Trend estimation

A trend line represents a trend, the long-term movement
in time series data after other components have been ac-
counted for. It tells whether a particular data set (say
GDP, oail prices or stock prices) have increased or de-
creased over the period of time. A trend line could sim-
ply be drawn by eye through a set of data points, but
more properly their position and slope is calculated using
statistical techniques like linear regression. Trend lines
typically are straight lines, although some variations use
higher degree polynomials depending on the degree of
curvature desired in the line.

Trend lines are sometimes used in business analytics to
show changes in data over time. This has the advantage
of being simple. Trend lines are often used to argue that
a particular action or event (such as training, or an ad-
vertising campaign) caused observed changes at a point
in time. This is a simple technique, and does not require
a control group, experimental design, or a sophisticated
analysis technique. However, it suffers from a lack of sci-
entific validity in cases where other potential changes can
affect the data.

5.4.2 Epidemiology

Early evidence relating tobacco smoking to mortality and
morbidity came from observational studies employing re-
gression analysis. In order to reduce spurious correlations
when analyzing observational data, researchers usually in-
clude several variables in their regression models in addi-
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tion to the variable of primary interest. For example, sup-
pose we have a regression model in which cigarette smok-
ing is the independent variable of interest, and the depen-
dent variable is lifespan measured in years. Researchers
might include socio-economic status as an additional in-
dependent variable, to ensure that any observed effect of
smoking on lifespan is not due to some effect of educa-
tion or income. However, it is never possible to include
all possible confounding variables in an empirical anal-
ysis. For example, a hypothetical gene might increase
mortality and also cause people to smoke more. For this
reason, randomized controlled trials are often able to gen-
erate more compelling evidence of causal relationships
than can be obtained using regression analyses of obser-
vational data. When controlled experiments are not fea-
sible, variants of regression analysis such as instrumental
variables regression may be used to attempt to estimate
causal relationships from observational data.

5.4.3 Finance

The capital asset pricing model uses linear regression as
well as the concept of beta for analyzing and quantifying
the systematic risk of an investment. This comes directly
from the beta coefficient of the linear regression model
that relates the return on the investment to the return on
all risky assets.

5.4.4 Economics

Main article: Econometrics

Linear regression is the predominant empirical tool
in economics.  For example, it is used to pre-
dict consumption spending,?’! fixed investment spend-
ing, inventory investment, purchases of a country’s
exports,!?8! spending on imports,'?8! the demand to hold
liquid assets,!?”! labor demand,*”! and labor supply.!3"!

5.4.5 Environmental science

Linear regression finds application in a wide range of
environmental science applications. In Canada, the En-
vironmental Effects Monitoring Program uses statistical
analyses on fish and benthic surveys to measure the ef-
fects of pulp mill or metal mine effluent on the aquatic
ecosystem. !l

5.5 See also

e Analysis of variance
e Censored regression model

e Cross-sectional regression
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5.6.

NOTES

Curve fitting

Empirical Bayes methods
Lack-of-fit sum of squares
Logistic regression
M-estimator

MLPACK contains a C++ implementation of linear
regression

Multivariate adaptive regression splines
Nonlinear regression

Nonparametric regression

Normal equations

Projection pursuit regression
Segmented linear regression

Stepwise regression

Support vector machine

Truncated regression model
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5.9. EXTERNAL LINKS

e Lecture notes on linear regression analysis (Robert
Nau, Duke University)
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Chapter 6

Logistic regression

In statistics, logistic regression, or logit regression, or
logit model'!! is a direct probability model that was de-
veloped by statistician D. R. Cox in 1958 31 although
much work was done in the single independent vari-
able case almost two decades earlier. The binary logis-
tic model is used to predict a binary response based on
one or more predictor variables (features). That is, it
is used in estimating the parameters of a qualitative re-
sponse model. The probabilities describing the possible
outcomes of a single trial are modeled, as a function of the
explanatory (predictor) variables, using a logistic func-
tion. Frequently (and hereafter in this article) “logistic
regression” is used to refer specifically to the problem in
which the dependent variable is binary—that is, the num-
ber of available categories is two—while problems with
more than two categories are referred to as multinomial
logistic regression or polytomous logistic regression,
or, if the multiple categories are ordered, as ordinal lo-
gistic regression.[’!

Logistic regression measures the relationship between the
categorical dependent variable and one or more indepen-
dent variables, which are usually (but not necessarily)
continuous, by estimating probabilities. Thus, it treats the
same set of problems as does probit regression using sim-
ilar techniques; the first assumes a logistic function and
the second a standard normal distribution function.

Logistic regression can be seen as a special case of
generalized linear model and thus analogous to linear re-
gression. The model of logistic regression, however, is
based on quite different assumptions (about the relation-
ship between dependent and independent variables) from
those of linear regression. In particular the key differ-
ences of these two models can be seen in the following
two features of logistic regression. First, the conditional
distribution p(y | «) is a Bernoulli distribution rather
than a Gaussian distribution, because the dependent vari-
able is binary. Second, the estimated probabilities are
restricted to [0,1] through the logistic distribution func-
tion because logistic regression predicts the probability
of the instance being positive.

Logistic regression is an alternative to Fisher’s 1936 clas-
sification method, linear discriminant analysis.*! If the
assumptions of linear discriminant analysis hold, appli-
cation of Bayes’ rule to reverse the conditioning results
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in the logistic model, so if linear discriminant assump-
tions are true, logistic regression assumptions must hold.
The converse is not true, so the logistic model has fewer
assumptions than discriminant analysis and makes no as-
sumption on the distribution of the independent variables.

6.1 Fields and example applica-
tions

Logistic regression is used widely in many fields, in-
cluding the medical and social sciences. For example,
the Trauma and Injury Severity Score (TRISS), which
is widely used to predict mortality in injured patients,
was originally developed by Boyd et al. using logistic
regression.”) Many other medical scales used to assess
severity of a patient have been developed using logis-
tic regression.!®71B1%1 [ ogistic regression may be used
to predict whether a patient has a given disease (e.g.
diabetes; coronary heart disease), based on observed
characteristics of the patient (age, sex, body mass in-
dex, results of various blood tests, etc.; age, blood choles-
terol level, systolic blood pressure, relative weight, blood
hemoglobin level, smoking (at 3 levels), and abnormal
electrocardiogram.)."111%" Another example might be to
predict whether an American voter will vote Democratic
or Republican, based on age, income, sex, race, state of
residence, votes in previous elections, etc.!'!] The tech-
nique can also be used in engineering, especially for pre-
dicting the probability of failure of a given process, sys-
tem or product.''?!1!3] Tt is also used in marketing applica-
tions such as prediction of a customer’s propensity to pur-
chase a product or halt a subscription, etc. In economics it
can be used to predict the likelihood of a person’s choos-
ing to be in the labor force, and a business application
would be to predict the likelihood of a homeowner de-
faulting on a mortgage. Conditional random fields, an ex-
tension of logistic regression to sequential data, are used
in natural language processing.
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6.2 Basics

Logistic regression can be binomial or multinomial. Bi-
nomial or binary logistic regression deals with situations
in which the observed outcome for a dependent variable
can have only two possible types (for example, “dead”
vs. “alive” or “win” vs. “loss”). Multinomial logistic re-
gression deals with situations where the outcome can have
three or more possible types (e.g., “disease A” vs. “dis-
ease B” vs. “disease C”). In binary logistic regression,
the outcome is usually coded as “0” or “1”, as this leads
to the most straightforward interpretation.!'*! If a partic-
ular observed outcome for the dependent variable is the
noteworthy possible outcome (referred to as a “success”
or a “case”) it is usually coded as “1” and the contrary out-
come (referred to as a “failure” or a “noncase”) as “0”.
Logistic regression is used to predict the odds of being
a case based on the values of the independent variables
(predictors). The odds are defined as the probability that
a particular outcome is a case divided by the probability
that it is a noncase.

Like other forms of regression analysis, logistic regres-
sion makes use of one or more predictor variables that
may be either continuous or categorical data. Unlike ordi-
nary linear regression, however, logistic regression is used
for predicting binary outcomes of the dependent vari-
able (treating the dependent variable as the outcome of a
Bernoulli trial) rather than a continuous outcome. Given
this difference, it is necessary that logistic regression take
the natural logarithm of the odds of the dependent vari-
able being a case (referred to as the logit or log-odds)
to create a continuous criterion as a transformed version
of the dependent variable. Thus the logit transformation
is referred to as the link function in logistic regression—
although the dependent variable in logistic regression is
binomial, the logit is the continuous criterion upon which
linear regression is conducted.!!4!

The logit of success is then fitted to the predictors using
linear regression analysis. The predicted value of the logit
is converted back into predicted odds via the inverse of
the natural logarithm, namely the exponential function.
Thus, although the observed dependent variable in logis-
tic regression is a zero-or-one variable, the logistic regres-
sion estimates the odds, as a continuous variable, that the
dependent variable is a success (a case). In some applica-
tions the odds are all that is needed. In others, a specific
yes-or-no prediction is needed for whether the dependent
variable is or is not a case; this categorical prediction can
be based on the computed odds of a success, with pre-
dicted odds above some chosen cutoff value being trans-
lated into a prediction of a success.

\
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Figure 1. The logistic function o(t) ; note that o (t) € [0, 1] for
allt.

6.3 Logistic function, odds, odds
ratio, and logit

6.3.1 Definition of the logistic function

An explanation of logistic regression begins with an ex-
planation of the logistic function. The logistic function is
useful because it can take an input with any value from
negative to positive infinity, whereas the output always
takes values between zero and one!'*! and hence is inter-
pretable as a probability. The logistic function o(t) is
defined as follows:

e 1
et+1 1+4+et’

o(t) =

A graph of the logistic function is shown in Figure 1.

If ¢ is viewed as a linear function of an explanatory vari-
able z (or of a linear combination of explanatory vari-
ables), then we express ¢ as follows:

t=Bo+ piz

And the logistic function can now be written as:

1
F(z) = 1+ e (Bothiz)
Note that F'(z) is interpreted as the probability of the
dependent variable equaling a “success” or “case” rather
than a failure or non-case. It’s clear that the response vari-
ables Y; are not identically distributed: P(Y; = 1 | X)
differs from one data point X; to another, though they
are independent given design matrix X and shared with
parameters 3 .11}
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6.3.2 Definition of the inverse of the logis-
tic function

We can now define the inverse of the logistic function, g
, the logit (log odds):

g(F(z)) = lnl—iF(m)

= Bo + B,

and equivalently:

F(z)

— pPothiz
1—F(x)

6.3.3 Interpretation of these terms

In the above equations, the terms are as follows:

e ¢(-) refers to the logit function. The equation for
g(F(z)) illustrates that the logit (i.e., log-odds or
natural logarithm of the odds) is equivalent to the
linear regression expression.

e In denotes the natural logarithm.

e F(z) is the probability that the dependent variable
equals a case, given some linear combination x of
the predictors. The formula for F'(z) illustrates that
the probability of the dependent variable equaling a
case is equal to the value of the logistic function of
the linear regression expression. This is important
in that it shows that the value of the linear regres-
sion expression can vary from negative to positive
infinity and yet, after transformation, the resulting
expression for the probability F'(x) ranges between
Oand 1.

e [ is the intercept from the linear regression equa-
tion (the value of the criterion when the predictor is
equal to zero).

e [z is the regression coeflicient multiplied by some
value of the predictor.

e base e denotes the exponential function.

6.3.4 Definition of the odds

The odds of the dependent variable equaling a case (given
some linear combination z of the predictors) is equiva-
lent to the exponential function of the linear regression
expression. This illustrates how the logit serves as a link
function between the probability and the linear regres-
sion expression. Given that the logit ranges between neg-
ative and positive infinity, it provides an adequate crite-
rion upon which to conduct linear regression and the logit
is easily converted back into the odds.!!*!
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So we define odds of the dependent variable equaling a
case (given some linear combination x of the predictors)
as follows:

odds = ePothiz,

6.3.5 Definition of the odds ratio

The odds ratio can be defined as:

F(z+1)
OR = odds(z+1)/ odds(z) = Fa)
1-F(x)
or for binary variable F(0) instead of F(x) and F(1) for
F(x+1). This exponential relationship provides an inter-
pretation for 3, : The odds multiply by e’ for every 1-
unit increase in x.!'3)

6.3.6 Multiple explanatory variables

If there are multiple explanatory variables, the above ex-
pression 3y + 31 can be revised to 5y + B1x1 + Boxo +
-+ + BmTm. Then when this is used in the equation re-
lating the logged odds of a success to the values of the
predictors, the linear regression will be a multiple regres-
sion with m explanators; the parameters (3; for all j = 0,
1, 2, ..., m are all estimated.

6.4 Model fitting

6.4.1 Estimation

Because the model can be expressed as a generalized lin-
ear model (see below), for O<p<1, ordinary least squares
can suffice, with R-squared as the measure of goodness
of fit in the fitting space. When p=0 or 1, more complex
methods are required.

Maximum likelihood estimation

The regression coefficients are usually estimated using
maximum likelihood estimation.['®! Unlike linear regres-
sion with normally distributed residuals, it is not possible
to find a closed-form expression for the coefficient values
that maximize the likelihood function, so that an itera-
tive process must be used instead; for example Newton’s
method. This process begins with a tentative solution, re-
vises it slightly to see if it can be improved, and repeats
this revision until improvement is minute, at which point
the process is said to have converged.!!”!

In some instances the model may not reach convergence.
Nonconvergence of a model indicates that the coefficients

1-Fz+1) _ PotPr(atl) jobothriz —
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are not meaningful because the iterative process was un-
able to find appropriate solutions. A failure to converge
may occur for a number of reasons: having a large ra-
tio of predictors to cases, multicollinearity, sparseness,
or complete separation.

e Having a large ratio of variables to cases results in an
overly conservative Wald statistic (discussed below)
and can lead to nonconvergence.

e Multicollinearity refers to unacceptably high corre-
lations between predictors. As multicollinearity in-
creases, coefficients remain unbiased but standard
errors increase and the likelihood of model con-
vergence decreases.!'® To detect multicollinearity
amongst the predictors, one can conduct a linear re-
gression analysis with the predictors of interest for
the sole purpose of examining the tolerance statistic
[16] ysed to assess whether multicollinearity is unac-
ceptably high.

e Sparseness in the data refers to having a large pro-
portion of empty cells (cells with zero counts). Zero
cell counts are particularly problematic with cate-
gorical predictors. With continuous predictors, the
model can infer values for the zero cell counts, but
this is not the case with categorical predictors. The
model will not converge with zero cell counts for cat-
egorical predictors because the natural logarithm of
zero is an undefined value, so that final solutions to
the model cannot be reached. To remedy this prob-
lem, researchers may collapse categories in a the-
oretically meaningful way or add a constant to all
cells.!6!

e Another numerical problem that may lead to a lack
of convergence is complete separation, which refers
to the instance in which the predictors perfectly pre-
dict the criterion — all cases are accurately classified.
In such instances, one should reexamine the data, as
there is likely some kind of error.['¥]

As a general rule of thumb, logistic regression models re-
quire a minimum of about 10 events per explaining vari-
able (where event denotes the cases belonging to the less
frequent category in the dependent variable).!'®!

Minimum chi-squared estimator for grouped data

While individual data will have a dependent variable with
a value of zero or one for every observation, with grouped
data one observation is on a group of people who all share
the same characteristics (e.g., demographic characteris-
tics); in this case the researcher observes the proportion
of people in the group for whom the response variable
falls into one category or the other. If this proportion
is neither zero nor one for any group, the minimum chi-
squared estimator involves using weighted least squares
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to estimate a linear model in which the dependent vari-
able is the logit of the proportion: that is, the log of the
ratio of the fraction in one group to the fraction in the
other group.191:p-686-9

6.4.2 Evaluating goodness of fit

Goodness of fit in linear regression models is generally
measured using the R2. Since this has no direct analog in
logistic regression, various methods!'?**"2! including the
following can be used instead.

Deviance and likelihood ratio tests

In linear regression analysis, one is concerned with par-
titioning variance via the sum of squares calculations —
variance in the criterion is essentially divided into vari-
ance accounted for by the predictors and residual vari-
ance. In logistic regression analysis, deviance is used
in lieu of sum of squares calculations.””®! Deviance is
analogous to the sum of squares calculations in linear
regression!'¥ and is a measure of the lack of fit to the
data in a logistic regression model.”””! When a “saturated”
model is available (a model with a theoretically perfect
fit), deviance is calculated by comparing a given model
with the saturated model.!'* This computation give the
likelihood-ratio test:.['4!

model fitted the of likelihood

D= -2l model saturated the of likelihood

In the above equation D represents the deviance and In
represents the natural logarithm. The log of the likeli-
hood ratio (the ratio of the fitted model to the saturated
model) will produce a negative value, so the product is
multiplied by negative two times its natural logarithm to
produce a value with an approximate chi-squared distri-
bution.['*] Smaller values indicate better fit as the fitted
model deviates less from the saturated model. When as-
sessed upon a chi-square distribution, nonsignificant chi-
square values indicate very little unexplained variance
and thus, good model fit. Conversely, a significant chi-
square value indicates that a significant amount of the
variance is unexplained.

When the saturated model is not available (a common
case), deviance is calculated simply as (—2)x(log likeli-
hood of the fitted model), and the reference to the satu-
rated model’s log likelihood can be removed from all that
follows without harm.

Two measures of deviance are particularly important in
logistic regression: null deviance and model deviance.
The null deviance represents the difference between a
model with only the intercept (which means “no predic-
tors”) and the saturated model. The model deviance rep-
resents the difference between a model with at least one
predictor and the saturated model.?’! In this respect, the
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null model provides a baseline upon which to compare
predictor models. Given that deviance is a measure of
the difference between a given model and the saturated
model, smaller values indicate better fit. Thus, to assess
the contribution of a predictor or set of predictors, one
can subtract the model deviance from the null deviance
and assess the difference on a Xiﬂﬂ chi-square distribu-
tion with degrees of freedom!'*! equal to the difference
in the number of parameters estimated.
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does not necessarily increase as the odds ratio increases
and does not necessarily decrease as the odds ratio de-
creases.

The Cox and Snell R? is an alternative index of good-
ness of fit related to the R? value from linear regression.
The Cox and Snell index is problematic as its maximum
value is .75, when the variance is at its maximum (.25).
The Nagelkerke R? provides a correction to the Cox and
Snell R? so that the maximum value is equal to one. Nev-
ertheless, the Cox and Snell and likelihood ratio R2s show
greater agreement with each other than either does with
the Nagelkerke R2.?°! Of course, this might not be the
case for values exceeding .75 as the Cox and Snell index
is capped at this value. The likelihood ratio R? is often
preferred to the alternatives as it is most analogous to R?
in linear regression, is independent of the base rate (both
Cox and Snell and Nagelkerke R?s increase as the propor-
tion of cases increase from O to .5) and varies between 0
and 1.

Let
D 91 model null of likelihood
mull = —< 1N s "
1 model saturated the of likelihood
D 91 model fitted of likelihood
= — n .
ftted model saturated the of likelihood
Then
model null of likelihood
Dout — Dhttea = | —2 —
ull - ied ( " Model saturated the of likelihood

model null of likelihood

word of caution is iny order when interpreting pseudo-
2 sedtisticy, T! model gﬁe(fo 1Eeiﬂlo€@£ ﬂéreferre d

as pseudo RPLARIEdSHoPEPielibethé propor-

= —2 —
( " model saturated the of likelihooddo

( model null of likelihood )
— _91n model saturated the of likelihood
( model fitted of likelihood )
model saturated the of likelihood

model null the of likelihood
model fitted of likelihood

If the model deviance is significantly smaller than the null
deviance then one can conclude that the predictor or set of
predictors significantly improved model fit. This is anal-
ogous to the F-test used in linear regression analysis to
assess the significance of prediction.!?!

Pseudo-R2s

In linear regression the squared multiple correlation, R?
is used to assess goodness of fit as it represents the pro-
portion of variance in the criterion that is explained by
the predictors.?”! In logistic regression analysis, there is
no agreed upon analogous measure, but there are several
competing measures each with limitations.”°! Three of
the most commonly used indices are examined on this
page beginning with the likelihood ratio R?, R?L.:[?"!

Dy — Drigted

R? =
L
D, null

This is the most analogous index to the squared multiple
correlation in linear regression.!'¢! It represents the pro-
portional reduction in the deviance wherein the deviance
is treated as a measure of variation analogous but not
identical to the variance in linear regression analysis.[!®!
One limitation of the likelihood ratio R? is that it is not
monotonically related to the odds ratio,'*”! meaning that it

tionate retieéRittedioblikelthooR? in Ninear regression
es. flodenesmratedetision hidselihemchpmoscedasticity,
that the error variance is the same for all values of the cri-
terion. Logistic regression will always be heteroscedastic
— the error variances differ for each value of the predicted
score. For each value of the predicted score there would
be a different value of the proportionate reduction in er-
ror. Therefore, it is inappropriate to think of R? as a pro-
portionate reduction in error in a universal sense in logis-
tic regression.?"!

Hosmer-Lemeshow test

The Hosmer—Lemeshow test uses a test statistic that
asymptotically follows a x? distribution to assess whether
or not the observed event rates match expected event rates
in subgroups of the model population.

Evaluating binary classification performance

If the estimated probabilities are to be used to classify
each observation of independent variable values as pre-
dicting the category that the dependent variable is found
in, the various methods below for judging the model’s
suitability in out-of-sample forecasting can also be used
on the data that were used for estimation—accuracy,
precision (also called positive predictive value), recall
(also called sensitivity), specificity and negative predic-
tive value. In each of these evaluative methods, an aspect
of the model’s effectiveness in assigning instances to the
correct categories is measured.
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6.5 Coefficients

After fitting the model, it is likely that researchers will
want to examine the contribution of individual predic-
tors. To do so, they will want to examine the regression
coefficients. In linear regression, the regression coeffi-
cients represent the change in the criterion for each unit
change in the predictor.””®! In logistic regression, how-
ever, the regression coefficients represent the change in
the logit for each unit change in the predictor. Given that
the logit is not intuitive, researchers are likely to focus on
a predictor’s effect on the exponential function of the re-
gression coefficient — the odds ratio (see definition). In
linear regression, the significance of a regression coeffi-
cient is assessed by computing a ¢ test. In logistic regres-
sion, there are several different tests designed to assess
the significance of an individual predictor, most notably
the likelihood ratio test and the Wald statistic.

6.5.1 Likelihood ratio test

The likelihood-ratio test discussed above to assess
model fit is also the recommended procedure to assess
the contribution of individual “predictors” to a given
model.'1161120]1 T the case of a single predictor model,
one simply compares the deviance of the predictor model
with that of the null model on a chi-square distribution
with a single degree of freedom. If the predictor model
has a significantly smaller deviance (c.f chi-square using
the difference in degrees of freedom of the two models),
then one can conclude that there is a significant associa-
tion between the “predictor” and the outcome. Although
some common statistical packages (e.g. SPSS) do pro-
vide likelihood ratio test statistics, without this computa-
tionally intensive test it would be more difficult to assess
the contribution of individual predictors in the multiple
logistic regression case. To assess the contribution of in-
dividual predictors one can enter the predictors hierar-
chically, comparing each new model with the previous to
determine the contribution of each predictor.!*"! There is
some debate among statisticians about the appropriate-
ness of so-called “stepwise” procedures. The fear is that
they may not preserve nominal statistical properties and
may become misleading.

6.5.2 Wald statistic

Alternatively, when assessing the contribution of individ-
ual predictors in a given model, one may examine the sig-
nificance of the Wald statistic. The Wald statistic, analo-
gous to the #-test in linear regression, is used to assess the
significance of coefficients. The Wald statistic is the ratio
of the square of the regression coefficient to the square of
the standard error of the coefficient and is asymptotically
distributed as a chi-square distribution.'®/
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B2
Although several statistical packages (e.g., SPSS, SAS)
report the Wald statistic to assess the contribution of
individual predictors, the Wald statistic has limitations.
When the regression coefficient is large, the standard er-
ror of the regression coefficient also tends to be large
increasing the probability of Type-II error. The Wald
statistic also tends to be biased when data are sparse.[?]

6.5.3 Case-control sampling

Suppose cases are rare. Then we might wish to sample
them more frequently than their prevalence in the popula-
tion. For example, suppose there is a disease that affects
1 person in 10,000 and to collect our data we need to do
a complete physical. It may be too expensive to do thou-
sands of physicals of healthy people in order to obtain
data for only a few diseased individuals. Thus, we may
evaluate more diseased individuals. This is also called
unbalanced data. As a rule of thumb, sampling controls
at a rate of five times the number of cases will produce
sufficient control data.*!!

If we form a logistic model from such data, if the model
is correct, the 3; parameters are all correct except for 3y
. We can correct (3 if we know the true prevalence as
follows:1211

% __ A T s
/BS - ﬁO + lOgﬁ - 10g 1—7
where 7 is the true prevalence and 7 is the prevalence in
the sample.

6.6 Formal mathematical specifi-
cation

There are various equivalent specifications of logistic re-
gression, which fit into different types of more general
models. These different specifications allow for different
sorts of useful generalizations.

6.6.1 Setup

The basic setup of logistic regression is the same as for
standard linear regression.

It is assumed that we have a series of N observed data
points. Each data point i consists of a set of m explana-
tory variables x1,i ... xm,i (also called independent vari-
ables, predictor variables, input variables, features, or at-
tributes), and an associated binary-valued outcome vari-
able Yi (also known as a dependent variable, response
variable, output variable, outcome variable or class vari-
able), i.e. it can assume only the two possible values O (of -
ten meaning “no” or “failure”) or 1 (often meaning “yes”
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or “success”). The goal of logistic regression is to ex-
plain the relationship between the explanatory variables
and the outcome, so that an outcome can be predicted for
a new set of explanatory variables.

Some examples:

e The observed outcomes are the presence or absence
of a given disease (e.g. diabetes) in a set of patients,
and the explanatory variables might be characteris-
tics of the patients thought to be pertinent (sex, race,
age, blood pressure, body-mass index, etc.).

e The observed outcomes are the votes (e.g.
Democratic or Republican) of a set of people in
an election, and the explanatory variables are the
demographic characteristics of each person (e.g.
sex, race, age, income, etc.). In such a case, one of
the two outcomes is arbitrarily coded as 1, and the
other as 0.

As in linear regression, the outcome variables Yi are as-
sumed to depend on the explanatory variables xy,i ... xm,i.

Explanatory variables

As shown above in the above examples, the explana-
tory variables may be of any type: real-valued, binary,
categorical, etc. = The main distinction is between
continuous variables (such as income, age and blood pres-
sure) and discrete variables (such as sex or race). Discrete
variables referring to more than two possible choices are
typically coded using dummy variables (or indicator vari-
ables), that is, separate explanatory variables taking the
value O or 1 are created for each possible value of the
discrete variable, with a 1 meaning “variable does have
the given value” and a 0 meaning “variable does not have
that value”. For example, a four-way discrete variable of
blood type with the possible values “A, B, AB, O” can
be converted to four separate two-way dummy variables,
“is-A, is-B, is-AB, is-O”, where only one of them has the
value 1 and all the rest have the value 0. This allows for
separate regression coefficients to be matched for each
possible value of the discrete variable. (In a case like this,
only three of the four dummy variables are independent
of each other, in the sense that once the values of three of
the variables are known, the fourth is automatically deter-
mined. Thus, it is necessary to encode only three of the
four possibilities as dummy variables. This also means
that when all four possibilities are encoded, the overall
model is not identifiable in the absence of additional con-
straints such as a regularization constraint. Theoretically,
this could cause problems, but in reality almost all logis-
tic regression models are fitted with regularization con-
straints.)

Outcome variables
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Formally, the outcomes Yi are described as being
Bernoulli-distributed data, where each outcome is deter-
mined by an unobserved probability pi that is specific
to the outcome at hand, but related to the explanatory
variables. This can be expressed in any of the following
equivalent forms:

Y| @14y %m,; ~ Bernoulli(p;)
E[Yé \ L1y - 7xm,i] = Di
i ify; =1
Pr(Yi*y’L|xll7 'azmi): b ly
’ 1—p; ify; =0

Pr(Yi = yi | 21,0 i) = pJ (1= py) 1740

The meanings of these four lines are:

1. The first line expresses the probability distribution
of each Yi: Conditioned on the explanatory vari-
ables, it follows a Bernoulli distribution with param-
eters pi, the probability of the outcome of 1 for trial
i. As noted above, each separate trial has its own
probability of success, just as each trial has its own
explanatory variables. The probability of success pi
is not observed, only the outcome of an individual
Bernoulli trial using that probability.

2. The second line expresses the fact that the expected
value of each Yiis equal to the probability of success
pi, which is a general property of the Bernoulli dis-
tribution. In other words, if we run a large number
of Bernoulli trials using the same probability of suc-
cess pi, then take the average of all the 1 and 0 out-
comes, then the result would be close to pi. This is
because doing an average this way simply computes
the proportion of successes seen, which we expect to
converge to the underlying probability of success.

3. The third line writes out the probability mass func-
tion of the Bernoulli distribution, specifying the
probability of seeing each of the two possible out-
comes.

4. The fourth line is another way of writing the proba-
bility mass function, which avoids having to write
separate cases and is more convenient for certain
types of calculations. This relies on the fact that Yi
can take only the value O or 1. In each case, one of
the exponents will be 1, “choosing” the value under
it, while the other is 0, “canceling out” the value un-
der it. Hence, the outcome is either pi or 1 — pi, as
in the previous line.

Linear predictor function

The basic idea of logistic regression is to use the mecha-
nism already developed for linear regression by modeling
the probability pi using a linear predictor function, i.e. a
linear combination of the explanatory variables and a set
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of regression coefficients that are specific to the model
at hand but the same for all trials. The linear predictor
function f(¢) for a particular data point i is written as:

f@)=Bo+ fizii+ -+ BmTm,i,

where Sy, ..., Bm are regression coefficients indicating
the relative effect of a particular explanatory variable on
the outcome.

The model is usually put into a more compact form as
follows:

e The regression coefficients By, (1, ..., pm are
grouped into a single vector 3 of size m + 1.

e For each data point i, an additional explanatory
pseudo-variable x,i is added, with a fixed value of
1, corresponding to the intercept coefficient .

e The resulting explanatory variables x,i, X1,1, ..., Xm,i
are then grouped into a single vector Xi of size m +
1.

This makes it possible to write the linear predictor func-
tion as follows:

f(@) =8-X;,

using the notation for a dot product between two vectors.

6.6.2 As a generalized linear model

The particular model used by logistic regression, which
distinguishes it from standard linear regression and from
other types of regression analysis used for binary-valued
outcomes, is the way the probability of a particular out-
come is linked to the linear predictor function:

logit(E[Y; | 21, ..., @m,]) = logit(p;) = In (1 = )
—Pi

Written using the more compact notation described
above, this is:

ogi([Y; | X)) = logi(p) = 1n (2 ) = 5-x,

This formulation expresses logistic regression as a type of
generalized linear model, which predicts variables with
various types of probability distributions by fitting a lin-
ear predictor function of the above form to some sort of
arbitrary transformation of the expected value of the vari-
able.
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The intuition for transforming using the logit function (the
natural log of the odds) was explained above. It also has
the practical effect of converting the probability (which is
bounded to be between 0 and 1) to a variable that ranges
over (—00, +00) — thereby matching the potential range
of the linear prediction function on the right side of the
equation.

Note that both the probabilities pi and the regression co-
efficients are unobserved, and the means of determining
them is not part of the model itself. They are typically
determined by some sort of optimization procedure, e.g.
maximum likelihood estimation, that finds values that
best fit the observed data (i.e. that give the most accurate
predictions for the data already observed), usually subject
to regularization conditions that seek to exclude unlikely
values, e.g. extremely large values for any of the regres-
sion coefficients. The use of a regularization condition
is equivalent to doing maximum a posteriori (MAP) esti-
mation, an extension of maximum likelihood. (Regular-
ization is most commonly done using a squared regulariz-
ing function, which is equivalent to placing a zero-mean
Gaussian prior distribution on the coefficients, but other
regularizers are also possible.) Whether or not regulariza-
tion is used, it is usually not possible to find a closed-form
solution; instead, an iterative numerical method must be
used, such as iteratively reweighted least squares (IRLS)
or, more commonly these days, a quasi-Newton method
such as the L-BFGS method.

The interpretation of the 3j parameter estimates is as the
additive effect on the log of the odds for a unit change in
the jth explanatory variable. In the case of a dichotomous
explanatory variable, for instance gender, e” is the esti-
mate of the odds of having the outcome for, say, males
compared with females.

An equivalent formula uses the inverse of the logit func-
tion, which is the logistic function, i.e.:

B 1

E[Y; | Xi] = pi = logit” (8- Xi) = 75

The formula can also be written (somewhat awk-

wardlég as a probability distribution (specifically, using
= Bk Bﬁkwgasﬁféﬁcﬁw):

_ ) 1 y?
Pr(Y; =y; | X;) = p¥i(1-p;)' ¥ = (Heﬁ-&)

6.6.3 As a latent-variable model

The above model has an equivalent formulation as a
latent-variable model. This formulation is common in the
theory of discrete choice models, and makes it easier to
extend to certain more complicated models with multiple,
correlated choices, as well as to compare logistic regres-
sion to the closely related probit model.

(

T 1+ e BX


https://en.wikipedia.org/wiki/Regression_coefficient
https://en.wikipedia.org/wiki/Regression_coefficient
https://en.wikipedia.org/wiki/Y-intercept
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Binary-valued
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Maximum_a_posteriori
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Gaussian_distribution
https://en.wikipedia.org/wiki/Prior_distribution
https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/L-BFGS
https://en.wikipedia.org/wiki/Odds
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Latent-variable_model
https://en.wikipedia.org/wiki/Discrete_choice
https://en.wikipedia.org/wiki/Probit_model

42

Imagine that, for each trial i, there is a continuous latent
variable Yi* (i.e. an unobserved random variable) that is
distributed as follows:

Yi=08-Xi+e

where

e ~ Logistic(0,1)

i.e. the latent variable can be written directly in terms of
the linear predictor function and an additive random error
variable that is distributed according to a standard logistic
distribution.

Then Yi can be viewed as an indicator for whether this
latent variable is positive:

Y — 1 ifY >0 ie. —e< 3 -X,,
10 otherwise.

The choice of modeling the error variable specifically
with a standard logistic distribution, rather than a gen-
eral logistic distribution with the location and scale set
to arbitrary values, seems restrictive, but in fact it is not.
It must be kept in mind that we can choose the regres-
sion coefficients ourselves, and very often can use them
to offset changes in the parameters of the error variable’s
distribution. For example, a logistic error-variable distri-
bution with a non-zero location parameter u (which sets
the mean) is equivalent to a distribution with a zero loca-
tion parameter, where ¢ has been added to the intercept
coefficient. Both situations produce the same value for
Yi" regardless of settings of explanatory variables. Simi-
larly, an arbitrary scale parameter s is equivalent to setting
the scale parameter to 1 and then dividing all regression
coefficients by s. In the latter case, the resulting value
of Yi* will be smaller by a factor of s than in the former
case, for all sets of explanatory variables — but critically,
it will always remain on the same side of 0, and hence lead
to the same Yi choice.

(Note that this predicts that the irrelevancy of the scale
parameter may not carry over into more complex models
where more than two choices are available.)

It turns out that this formulation is exactly equivalent to
the preceding one, phrased in terms of the generalized
linear model and without any latent variables. This can
be shown as follows, using the fact that the cumulative
distribution function (CDF) of the standard logistic dis-
tribution is the logistic function, which is the inverse of
the logit function, i.e.

Pr(c < x) = logit™* ()

Then:
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Pr(Y; = 1|X;)

Pr(Y; > 0] X;)
r(B-X; +¢ > 0)

r(e > —-06-X;)

r(e <B-X;)

= logit ™' (8- X;)

=D

P
P
P

above) (see

This formulation—which is standard in discrete choice
models—makes clear the relationship between logistic
regression (the “logit model”) and the probit model,
which uses an error variable distributed according to a
standard normal distribution instead of a standard logis-
tic distribution. Both the logistic and normal distributions
are symmetric with a basic unimodal, “bell curve” shape.
The only difference is that the logistic distribution has
somewhat heavier tails, which means that it is less sensi-
tive to outlying data (and hence somewhat more robust to
model mis-specifications or erroneous data).

6.6.4 As a two-way latent-variable model

Yet another formulation uses two separate latent vari-
ables:

Y =By Xi +eo
V=8 Xi+ea

where

g0 ~EV1(0,1)
e1 ~EV1(0,1)

where EV1(0,1) is a standard type-1 extreme value dis-
tribution: i.e.

—x_—e ¥

Pr(eg =2) =Pr(e; = z) = e e

Then

- 1 1fY11* > }/io*,
‘10 otherwise.

This model has a separate latent variable and a separate
set of regression coeflicients for each possible outcome of
the dependent variable. The reason for this separation is
that it makes it easy to extend logistic regression to multi-
outcome categorical variables, as in the multinomial logit
model. In such a model, it is natural to model each pos-
sible outcome using a different set of regression coeffi-
cients. It is also possible to motivate each of the separate
latent variables as the theoretical utility associated with

symmetric) is distribution logisti
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making the associated choice, and thus motivate logistic
regression in terms of utility theory. (In terms of utility
theory, a rational actor always chooses the choice with
the greatest associated utility.) This is the approach taken
by economists when formulating discrete choice models,
because it both provides a theoretically strong foundation
and facilitates intuitions about the model, which in turn
makes it easy to consider various sorts of extensions. (See
the example below.)

The choice of the type-1 extreme value distribution seems
fairly arbitrary, but it makes the mathematics work out,
and it may be possible to justify its use through rational
choice theory.

It turns out that this model is equivalent to the previous
model, although this seems non-obvious, since there are
now two sets of regression coefficients and error variables,
and the error variables have a different distribution. In
fact, this model reduces directly to the previous one with
the following substitutions:

ﬁzﬁ1_/30
E=€1—¢&

An intuition for this comes from the fact that, since we
choose based on the maximum of two values, only their
difference matters, not the exact values — and this ef-
fectively removes one degree of freedom. Another crit-
ical fact is that the difference of two type-1 extreme-
value-distributed variables is a logistic distribution, i.e.
if e =1 — g9 ~ Logistic(0, 1).

We can demonstrate the equivalent as follows:

Pr(Y; =1|X,)

(Y;
r(}/zl* > YO* ‘ X. )

(Y =Y > 0] X))

r(B - X +e1— (Bg - Xi +€9) > 0)
r((B1 - Xi — By - Xi) + (61 —€0) > 0)
r((B1 — Bo) - Xi + (61 —€0) > 0)
(
(
(
(

[
ww*u-uw

f((8) — By) - X +¢ > 0)
B-X;+¢e>0)

€

(e

r(e > —-06-X;)
<ﬂ. )

(8- X;)

P
Pr
P
Pr

logit™

Di

Example

As an example, consider a province-level election where
the choice is between a right-of-center party, a left-of-
center party, and a secessionist party (e.g. the Parti
Québécois, which wants Quebec to secede from Canada).

(substitutecabove g
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‘We would then use three latent variables, one for each
choice. Then, in accordance with utility theory, we can
then interpret the latent variables as expressing the utility
that results from making each of the choices. We can
also interpret the regression coefficients as indicating the
strength that the associated factor (i.e. explanatory vari-
able) has in contributing to the utility — or more cor-
rectly, the amount by which a unit change in an explana-
tory variable changes the utility of a given choice. A
voter might expect that the right-of-center party would
lower taxes, especially on rich people. This would give
low-income people no benefit, i.e. no change in utility
(since they usually don't pay taxes); would cause mod-
erate benefit (i.e. somewhat more money, or moderate
utility increase) for middle-incoming people; and would
cause significant benefits for high-income people. On the
other hand, the left-of-center party might be expected to
raise taxes and offset it with increased welfare and other
assistance for the lower and middle classes. This would
cause significant positive benefit to low-income people,
perhaps weak benefit to middle-income people, and sig-
nificant negative benefit to high-income people. Finally,
the secessionist party would take no direct actions on the
economy, but simply secede. A low-income or middle-
income voter might expect basically no clear utility gain
or loss from this, but a high-income voter might expect
negative utility, since he/she is likely to own companies,
which will have a harder time doing business in such an
environment and probably lose money.

These intuitions can be expressed as follows:

This clearly shows that

1. Separate sets of regression coefficients need to exist
for each choice. When phrased in terms of utility,
this can be seen very easily. Different choices have
different effects on net utility; furthermore, the ef-
fects vary in complex ways that depend on the char-
acteristics of each individual, so there need to be
separate sets of coefficients for each characteristic,
not simply a single extra per-choice characteristic.

2. Even though income is a continuous variable, its ef-
fect on utility is too complex for it to be treated as
a’single variable. Either it needs to be directly split

(substitute/3aboyp)iato ranges, or higher powers of income need to
model) above asbandd@abso, that polynomial regression on income is

effectively done.

6.6.5 As a “log-linear” model

Yet another formulation combines the two-way latent
variable formulation above with the original formulation
higher up without latent variables, and in the process pro-
vides a link to one of the standard formulations of the
multinomial logit.

Here, instead of writing the logit of the probabilities pi
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as a linear predictor, we separate the linear predictor into
two, one for each of the two outcomes:

Note that two separate sets of regression coefficients have
been introduced, just as in the two-way latent variable
model, and the two equations appear a form that writes
the logarithm of the associated probability as a linear pre-
dictor, with an extra term —(nZ at the end. This term, as
it turns out, serves as the normalizing factor ensuring that
the result is a distribution. This can be seen by exponen-
tiating both sides:

1

Pr(Y; =0) = Eeﬂwxi
1

Pr(Y; =1) = Eeﬂrxi

In this form it is clear that the purpose of Z is to en-
sure that the resulting distribution over Yi is in fact a
probability distribution, i.e. it sums to 1. This means that
Z is simply the sum of all un-normalized probabilities,
and by dividing each probability by Z, the probabilities
become "normalized". That is:

Z = ePoXi | PrXi

and the resulting equations are

eBoXi
Pl =0 = x remx
eﬁl'xi
Pr(Yl = 1) = —e,ao'xi n eﬁl'xi
Or generally:
( ) eﬁc'Xi
Pr(Y; =¢c) = =——F%—~
' Zh ePnXi

This shows clearly how to generalize this formulation to
more than two outcomes, as in multinomial logit. Note
that this general formulation is exactly the Softmax func-
tion as in

Pr(Y; = ¢) = softmax(c, By - Xi, 81 - X4y .- - ).

In order to prove that this is equivalent to the previous
model, note that the above model is overspecified, in that
Pr(Y; = 0) and Pr(Y; = 1) cannot be independently
specified: rather Pr(Y; = 0) 4+ Pr(Y; = 1) = 1 so know-
ing one automatically determines the other. As a result,
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the model is nonidentifiable, in that multiple combina-
tions of By and Sy will produce the same probabilities
for all possible explanatory variables. In fact, it can be
seen that adding any constant vector to both of them will
produce the same probabilities:

(B 40X,
e(Bo+C)Xi 4 ¢(B:1+C)-X;
eB1Xi C-X;

eBoXieC-Xi 4 B:1-XiCX;
eCXi B X

CX (BoXi 1 ePrXi)
6,61'Xi

T BoXi 4 B Xs

Pr(Y, = 1) =

As a result, we can simplify matters, and restore identi-
fiability, by picking an arbitrary value for one of the two
vectors. We choose to set 3, = 0. Then,

eBoXi — 0Xi _ 1

and so

ePrXi 1

Pr(Yl = 1) = 1 T eﬁl'Xi = 1 + e_,Bl'Xi

= Di

which shows that this formulation is indeed equivalent to
the previous formulation. (As in the two-way latent vari-
able formulation, any settings where 8 = 3, — B, will
produce equivalent results.)

Note that most treatments of the multinomial logit model
start out either by extending the “log-linear” formulation
presented here or the two-way latent variable formulation
presented above, since both clearly show the way that the
model could be extended to multi-way outcomes. In gen-
eral, the presentation with latent variables is more com-
mon in econometrics and political science, where discrete
choice models and utility theory reign, while the “log-
linear” formulation here is more common in computer
science, e.g. machine learning and natural language pro-
cessing.

6.6.6 As a single-layer perceptron

The model has an equivalent formulation

1
pi = 1+ e—(BotBrz1it - +BrTr,i)

This functional form is commonly called a single-layer
perceptron or single-layer artificial neural network. A
single-layer neural network computes a continuous out-
put instead of a step function. The derivative of pi with
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respect to X = (x1, ..., xk) is computed from the general
form:

1

Vo1 e 1™

where f(X) is an analytic function in X. With this choice,
the single-layer neural network is identical to the logistic
regression model. This function has a continuous deriva-
tive, which allows it to be used in backpropagation. This
function is also preferred because its derivative is easily
calculated:

df

dy
— =y(1— .
y(l=y) dx

dx
6.6.7 In terms of binomial data

A closely related model assumes that each i is associated
not with a single Bernoulli trial but with ni independent
identically distributed trials, where the observation Yi is
the number of successes observed (the sum of the individ-
ual Bernoulli-distributed random variables), and hence
follows a binomial distribution:

Y; ~ Bin(n;,p;), fori=1,...,n
An example of this distribution is the fraction of seeds
(pi) that germinate after ni are planted.

In terms of expected values, this model is expressed as
follows:

so that

Y;
logit (IE [z
n;

Or equivalently:

XJ) = logit(p;) = In <1 ﬁipi> = B-Xi,
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Comparison of logistic function with a scaled inverse probit func-
tion (i.e. the CDF of the normal distribution), comparing o (x)
VS. @(\/g x) , which makes the slopes the same at the origin.
This shows the heavier tails of the logistic distribution.

the form of Gaussian distributions. Unfortunately, the
Gaussian distribution is not the conjugate prior of the
likelihood function in logistic regression. As a result, the
posterior distribution is difficult to calculate, even using
standard simulation algorithms (e.g. Gibbs sampling).

There are various possibilities:

e Don't do a proper Bayesian analysis, but simply
compute a maximum a posteriori point estimate of
the parameters. This is common, for example, in
“maximum entropy” classifiers in machine learning.

e Use a more general approximation method such as
the Metropolis—Hastings algorithm.

e Draw a Markov chain Monte Carlo sample from
the exact posterior by using the Independent
Metropolis—Hastings algorithm with heavy-tailed
multivariate candidate distribution found by match-
ing the mode and curvature at the mode of the
normal approximation to the posterior and then
using the Student’s t shape with low degrees of
freedom.[??! This is shown to have excellent conver-

1 ge wpcoperties. 1

N, N Vi —Yi
e = %0 = (ot om0 = () (g ) L e )
Yi Yi lLte .6 Usé a 1dtent viriaBie '?n(f 1 and approximate the lo-

This model can be fit using the same sorts of methods as
the above more basic model.

6.7 Bayesian logistic regression

In a Bayesian statistics context, prior distributions are
normally placed on the regression coefficients, usually in

gistic distribution using a more tractable distribu-
tion, e.g. a Student’s t-distribution or a mixture of
normal distributions.

e Do probit regression instead of logistic regression.
This is actually a special case of the previous situ-
ation, using a normal distribution in place of a Stu-
dent’s t, mixture of normals, etc. This will be less
accurate but has the advantage that probit regression
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is extremely common, and a ready-made Bayesian
implementation may already be available.

e Use the Laplace approximation of the posterior
distribution.!>3! This approximates the posterior
with a Gaussian distribution. This is not a terribly
good approximation, but it suffices if all that is de-
sired is an estimate of the posterior mean and vari-
ance. In such a case, an approximation scheme such
as variational Bayes can be used.(*

6.7.1 Gibbs sampling with an approximat-
ing distribution

As shown above, logistic regression is equivalent to a
latent variable model with an error variable distributed
according to a standard logistic distribution. The over-
all distribution of the latent variable Y;* is also a logistic
distribution, with the mean equal to 3 - X; (i.e. the fixed
quantity added to the error variable). This model con-
siderably simplifies the application of techniques such as
Gibbs sampling. However, sampling the regression coef-
ficients is still difficult, because of the lack of conjugacy
between the normal and logistic distributions. Changing
the prior distribution over the regression coefficients is
of no help, because the logistic distribution is not in the
exponential family and thus has no conjugate prior.

One possibility is to use a more general Markov chain
Monte Carlo technique, such as the Metropolis—Hastings
algorithm, which can sample arbitrary distributions. An-
other possibility, however, is to replace the logistic dis-
tribution with a similar-shaped distribution that is easier
to work with using Gibbs sampling. In fact, the logistic
and normal distributions have a similar shape, and thus
one possibility is simply to have normally distributed er-
rors. Because the normal distribution is conjugate to it-
self, sampling the regression coefficients becomes easy.
In fact, this model is exactly the model used in probit re-
gression.

However, the normal and logistic distributions differ in
that the logistic has heavier tails. As a result, it is more
robust to inaccuracies in the underlying model (which are
inevitable, in that the model is essentially always an ap-
proximation) or to errors in the data. Probit regression
loses some of this robustness.

Another alternative is to use errors distributed as a
Student’s t-distribution. The Student’s t-distribution has
heavy tails, and is easy to sample from because it is the
compound distribution of a normal distribution with vari-
ance distributed as an inverse gamma distribution. In
other words, if a normal distribution is used for the er-
ror variable, and another latent variable, following an in-
verse gamma distribution, is added corresponding to the
variance of this error variable, the marginal distribution
of the error variable will follow a Student’s t distribution.
Because of the various conjugacy relationships, all vari-
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ables in this model are easy to sample from.

The Student’s t distribution that best approximates a stan-
dard logistic distribution can be determined by matching
the moments of the two distributions. The Student’s t dis-
tribution has three parameters, and since the skewness of
both distributions is always 0, the first four moments can
all be matched, using the following equations:

nw=20

2

v 3221
v—2 3
6__¢6
v—4 5

This yields the following values:

p=0
I i
Vo3
vr=9

The following graphs compare the standard logistic dis-
tribution with the Student’s t distribution that matches the
first four moments using the above-determined values, as
well as the normal distribution that matches the first two
moments. Note how much closer the Student’s t distri-
bution agrees, especially in the tails. Beyond about two
standard deviations from the mean, the logistic and nor-
mal distributions diverge rapidly, but the logistic and Stu-
dent’s t distributions don't start diverging significantly un-
til more than 5 standard deviations away.

(Another possibility, also amenable to Gibbs sampling, is
to approximate the logistic distribution using a mixture
density of normal distributions.)

6.8 Extensions

There are large numbers of extensions:

e Multinomial logistic regression (or multinomial
logit) handles the case of a multi-way categorical de-
pendent variable (with unordered values, also called
“classification”). Note that the general case of hav-
ing dependent variables with more than two values
is termed polytomous regression.

e Ordered logistic regression (or ordered logit) han-
dles ordinal dependent variables (ordered values).

e Mixed logit is an extension of multinomial logit that
allows for correlations among the choices of the de-
pendent variable.

e An extension of the logistic model to sets of inter-
dependent variables is the conditional random field.


https://en.wikipedia.org/wiki/Laplace_approximation
https://en.wikipedia.org/wiki/Variational_Bayes
https://en.wikipedia.org/wiki/Latent_variable_model
https://en.wikipedia.org/wiki/Error_variable
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Heavy-tailed_distribution
https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Student%2527s_t-distribution
https://en.wikipedia.org/wiki/Compound_distribution
https://en.wikipedia.org/wiki/Inverse_gamma_distribution
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Method_of_moments_(statistics)
https://en.wikipedia.org/wiki/Method_of_moments_(statistics)
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Mixture_density
https://en.wikipedia.org/wiki/Mixture_density
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Categorical_variable
https://en.wikipedia.org/wiki/Ordered_logistic_regression
https://en.wikipedia.org/wiki/Levels_of_measurement#Ordinal_measurement
https://en.wikipedia.org/wiki/Mixed_logit
https://en.wikipedia.org/wiki/Conditional_random_field

6.11. REFERENCES

6.9 Model suitability

A way to measure a model’s suitability is to assess the
model against a set of data that was not used to create
the model.”>>! The class of techniques is called cross-
validation. This holdout model assessment method is par-
ticularly valuable when data are collected in different set-
tings (e.g., at different times or places) or when models
are assumed to be generalizable.

To measure the suitability of a binary regression model,
one can classify both the actual value and the predicted
value of each observation as either 0 or 1.12%/ The pre-
dicted value of an observation can be set equal to 1 if
the estimated probability that the observation equals 1 is
above % , and set equal to O if the estimated probability
is below % . Here logistic regression is being used as a
binary classification model. There are four possible com-
bined classifications:

1. prediction of 0 when the holdout sample has a 0
(True Negatives, the number of which is TN)

2. prediction of 0 when the holdout sample has a 1
(False Negatives, the number of which is FN)

3. prediction of 1 when the holdout sample has a 0
(False Positives, the number of which is FP)

4. prediction of 1 when the holdout sample has a 1
(True Positives, the number of which is TP)

These classifications are used to calculate accuracy, pre-
cision (also called positive predictive value), recall (also
called sensitivity), specificity and negative predictive
value:

TP+ TN

A =
UMY = Py FP+ FN + TN

. . . TP
Precision = value predictive Positive = TPIFP
TN
TN+ FN
TP

TP+ FN

value predictive Negative =

Recall = Sensitivity =

TN

6.10 See also

e Logistic function
e Discrete choice
e Jarrow—Turnbull model

e Limited dependent variable
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Multinomial logit model

Ordered logit

Hosmer—Lemeshow test

e Brier score

MLPACK - contains a C++ implementation of lo-
gistic regression
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Chapter 7

Support vector machine

Not to be confused with Secure Virtual Machine.

In machine learning, support vector machines (SVMs,
also support vector networks!'!) are supervised learn-
ing models with associated learning algorithms that an-
alyze data and recognize patterns, used for classification
and regression analysis. Given a set of training examples,
each marked as belonging to one of two categories, an
SVM training algorithm builds a model that assigns new
examples into one category or the other, making it a non-
probabilistic binary linear classifier. An SVM model is a
representation of the examples as points in space, mapped
so that the examples of the separate categories are divided
by a clear gap that is as wide as possible. New examples
are then mapped into that same space and predicted to
belong to a category based on which side of the gap they
fall on.

In addition to performing linear classification, SVMs can
efficiently perform a non-linear classification using what
is called the kernel trick, implicitly mapping their inputs
into high-dimensional feature spaces.

7.1 Definition

More formally, a support vector machine constructs a
hyperplane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classification,
regression, or other tasks. Intuitively, a good separation
is achieved by the hyperplane that has the largest distance
to the nearest training-data point of any class (so-called
functional margin), since in general the larger the margin
the lower the generalization error of the classifier.

Whereas the original problem may be stated in a finite di-
mensional space, it often happens that the sets to discrim-
inate are not linearly separable in that space. For this rea-
son, it was proposed that the original finite-dimensional
space be mapped into a much higher-dimensional space,
presumably making the separation easier in that space.
To keep the computational load reasonable, the mappings
used by SVM schemes are designed to ensure that dot
products may be computed easily in terms of the vari-
ables in the original space, by defining them in terms of
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a kernel function k(x,y) selected to suit the problem.!?!
The hyperplanes in the higher-dimensional space are de-
fined as the set of points whose dot product with a vector
in that space is constant. The vectors defining the hyper-
planes can be chosen to be linear combinations with pa-
rameters «; of images of feature vectors that occur in the
data base. With this choice of a hyperplane, the points x
in the feature space that are mapped into the hyperplane
are defined by the relation: ), a;k(x;, ) = constant.
Note that if k(z,y) becomes small as y grows further
away from z , each term in the sum measures the degree
of closeness of the test point x to the corresponding data
base point z; . In this way, the sum of kernels above can
be used to measure the relative nearness of each test point
to the data points originating in one or the other of the sets
to be discriminated. Note the fact that the set of points
x mapped into any hyperplane can be quite convoluted
as a result, allowing much more complex discrimination
between sets which are not convex at all in the original
space.

7.2 History

The original SVM algorithm was invented by Vladimir N.
Vapnik and Alexey Ya. Chervonenkis in 1963. In 1992,
Bernhard E. Boser, Isabelle M. Guyon and Vladimir
N. Vapnik suggested a way to create nonlinear classi-
fiers by applying the kernel trick to maximum-margin
hyperplanes.®] The current standard incarnation (soft
margin) was proposed by Corinna Cortes and Vapnik in
1993 and published in 1995.1!]

7.3 Motivation

Classifying data is a common task in machine learning.
Suppose some given data points each belong to one of two
classes, and the goal is to decide which class a new data
point will be in. In the case of support vector machines, a
data point is viewed as a p -dimensional vector (a list of p
numbers), and we want to know whether we can separate
such points with a (p — 1) -dimensional hyperplane. This
is called a linear classifier. There are many hyperplanes
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Hi does not separate the classes. Ha does, but only with a small
margin. Hs separates them with the maximum margin.

that might classify the data. One reasonable choice as the
best hyperplane is the one that represents the largest sepa-
ration, or margin, between the two classes. So we choose
the hyperplane so that the distance from it to the nearest
data point on each side is maximized. If such a hyper-
plane exists, it is known as the maximum-margin hyper-
plane and the linear classifier it defines is known as a max-
imum margin classifier; or equivalently, the perceptron of
optimal stability.

7.4 Linear SVM

Given some training data D , a set of n points of the form

D ={(x;,y:) | x;, ERP, y; € {-1,1}}]",

where the y; is either 1 or —1, indicating the class to which
the point x; belongs. Each x; is a p -dimensional real
vector. We want to find the maximum-margin hyperplane
that divides the points having y; = 1 from those having
y; = —1 . Any hyperplane can be written as the set of
points x satisfying

w-x—b=0,

where - denotes the dot product and w the (not neces-
sarily normalized) normal vector to the hyperplane. The
parameter ﬁ determines the offset of the hyperplane
from the origin along the normal vector w .

If the training data are linearly separable, we can select
two hyperplanes in a way that they separate the data and
there are no points between them, and then try to maxi-
mize their distance. The region bounded by them is called
“the margin”. These hyperplanes can be described by the
equations
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Maximum-margin hyperplane and margins for an SVM trained
with samples from two classes. Samples on the margin are called
the support vectors.

w-x—b=1

and

w-x—b=-1.

By using geometry, we find the distance between these
two hyperplanes is ﬁ , SO we want to minimize ||w]|| .
As we also have to prevent data points from falling into
the margin, we add the following constraint: for each ¢

either

w-x;,—b>1 for x;
or
w-x,—b< -1 for x;

This can be rewritten as:

yi(w-x; —b) > 1, allforl <i<n. (1)

We can put this together to get the optimization problem:

Minimize (in w, b )

[[wll

subject to (forany i =1,...,n)

yi(w'xi 7b) Z 1.
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7.5. SOFT MARGIN

7.4.1 Primal form

The optimization problem presented in the preceding sec-
tion is difficult to solve because it depends on ||w|| , the
norm of w , which involves a square root. Fortunately it
is possible to alter the equation by substituting ||w|| with
£|/w||? (the factor of  being used for mathematical con-
venience) without changing the solution (the minimum of
the original and the modified equation have the same w
and b ). This is a quadratic programming optimization
problem. More clearly:

in < ||w|2
arg min —|(|w
g(w,b)Q

subject to (forany i =1,...,n)

yi(w-xi —b) > 1.

By introducing Lagrange multipliers « , the previous
constrained problem can be expressed as

. Lo+
argfg}glgg’g{ﬂw Zai[yi(w'xib)l]}

i=1

that is we look for a saddle point. In doing so all the points
which can be separated as y;(w - x; — b) — 1 > 0 do not
matter since we must set the corresponding «; to zero.

This problem can now be solved by standard quadratic
programming techniques and programs. The “stationary”
Karush—Kuhn—Tucker condition implies that the solution
can be expressed as a linear combination of the training
vectors

n
W = E ;Y Xj.
i=1

Only a few a; will be greater than zero. The correspond-
ing x; are exactly the support vectors, which lie on the
margin and satisfy y;(w - x; —b) = 1. From this one can
derive that the support vectors also satisfy

1
W-Xi—b=—=y <= b=w-Xj—y

Yi
which allows one to define the offset b . The b depends
on y; and x; , so it will vary for each data point in the
sample. In practice, it is more robust to average over all
Ngy support vectors, since the average over the sample
is an unbiased estimator of the population mean:
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7.4.2 Dual form

Writing the classification rule in its unconstrained dual
form reveals that the maximum-margin hyperplane and
therefore the classification task is only a function of the
support vectors, the subset of the training data that lie on
the margin.

Using the fact that ||w||? = w’ - w and substituting w =

Z?:l ;Y;X; , one can show that the dual of the SVM
reduces to the following optimization problem:

Maximize (in «; )

.Z/(Ck) = ZO@—% Zaiajyiij;fpxj = Zai—% Zaiajyiyjk(x“xj
i=1 1=1

1,7 2

subject to (forany i =1,...,n)

ai207

and to the constraint from the minimization in b

n
> aiyi =0.
i—1

Here the kernel is defined by k(x;,X;) = X; - X; .

W can be computed thanks to the « terms:

W= E YiXg.
i

7.4.3 Biased and unbiased hyperplanes

For simplicity reasons, sometimes it is required that the
hyperplane pass through the origin of the coordinate sys-
tem. Such hyperplanes are called unbiased, whereas gen-
eral hyperplanes not necessarily passing through the ori-
gin are called biased. An unbiased hyperplane can be en-
forced by setting b = 0 in the primal optimization prob-
lem. The corresponding dual is identical to the dual given
above without the equality constraint

n
> aiyi =0
i—1

7.5 Soft margin

In 1995, Corinna Cortes and Vladimir N. Vapnik sug-
gested a modified maximum margin idea that allows for
mislabeled examples.[!! If there exists no hyperplane that
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can split the “yes” and “no” examples, the Soft Margin
method will choose a hyperplane that splits the examples
as cleanly as possible, while still maximizing the distance
to the nearest cleanly split examples. The method intro-
duces non-negative slack variables, &; , which measure
the degree of misclassification of the data z;

yi(W~Xi—b)21—fi 1§Z§n

(2)

The objective function is then increased by a function
which penalizes non-zero &; , and the optimization be-
comes a trade off between a large margin and a small error
penalty. If the penalty function is linear, the optimization
problem becomes:

N I R -
arg‘rvr}glg{QIIWII +CZ&}

i=1

subject to (forany ¢ =1,...n)

yi(w-xi—b)>1-¢&, & >0

Using the hinge function notation like that in MARS, this
optimization problem can be rewritten as ), [1 — y;(w -
xi + b))+ + Allw||?, wherein let [1 — y; (w - x; + b)]+ =
&le =&, A=1/2C.

This constraint in (2) along with the objective of mini-
mizing ||w]|| can be solved using Lagrange multipliers as
done above. One then has to solve the following problem:

afgf&}s%%?é{2“wllz+02&Zaz«wi(w-mw

i=1

i=1

with O[i,ﬁi 2 0.

An example for a result of soft-margin SVM

7.5.1 Dual form

Maximize (in «; )
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n

~ 1
L(Oé) = ZOLI' — 5 Z OéiOéjyiyjk(Xi,Xj)

i=1 i,
subject to (forany ¢ =1,...,n)
0 S Q; S Ca

and

n
Z a;y; = 0.
i=1

The key advantage of a linear penalty function is that
the slack variables vanish from the dual problem, with
the constant C appearing only as an additional constraint
on the Lagrange multipliers. For the above formula-
tion and its huge impact in practice, Cortes and Vap-
nik received the 2008 ACM Paris Kanellakis Award.*!
Nonlinear penalty functions have been used, particularly
to reduce the effect of outliers on the classifier, but unless
care is taken the problem becomes non-convex, and thus
it is considerably more difficult to find a global solution.

7.6 Nonlinear classification

Kernel machine

The original optimal hyperplane algorithm proposed by
Vapnik in 1963 was a linear classifier. However, in 1992,
Bernhard E. Boser, Isabelle M. Guyon and Vladimir N.
Vapnik suggested a way to create nonlinear classifiers by
applying the kernel trick (originally proposed by Aizer-
man et al.l’’) to maximum-margin hyperplanes.!®! The re-
sulting algorithm is formally similar, except that every dot
product is replaced by a nonlinear kernel function. This
allows the algorithm to fit the maximum-margin hyper-
plane in a transformed feature space. The transformation
may be nonlinear and the transformed space high dimen-
sional; thus though the classifier is a hyperplane in the
high-dimensional feature space, it may be nonlinear in the
original input space.

If the kernel used is a Gaussian radial basis function, the
corresponding feature space is a Hilbert space of infi-
nite dimensions. Maximum margin classifiers are well
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7.8. EXTENSIONS

regularized, and previously it was widely believed that the
infinite dimensions do not spoil the results. However, it
has been shown that higher dimensions do increase the
generalization error, although the amount is bounded.!”!

Some common kernels include:

e Polynomial (homogeneous): k(xi, xj) = (x; - x;)¢

¢ Polynomial (inhomogeneous): k(x;, X;) = (Xi - Xj+
1)4

e Gaussian radial basis function: k(x;,x;) =
exp(—|lxi — x;[|?) , for v > 0. Sometimes
parametrized using 7 = 1/202

e Hyperbolic tangent: k(x;, X;) = tanh(kX; - Xj+c¢) ,
for some (not every) x > 0 and ¢ < 0

The kernel is related to the transform o(x;) by the equa-
tion k(xi,X;) = ¢(xXi) - ¢(x;) . The value w is also in
the transformed space, with w = > a;y;00(x;) . Dot
products with w for classification can again be computed
by the kernel trick, i.e. w- ¢(x) = Y. yik(x;,X) .
However, there does not in general exist a value w' such
that w - o(x) = k(W,x) .

7.7 Properties

SVMs belong to a family of generalized linear classifiers
and can be interpreted as an extension of the perceptron.
They can also be considered a special case of Tikhonov
regularization. A special property is that they simulta-
neously minimize the empirical classification error and
maximize the geometric margin; hence they are also
known as maximum margin classifiers.

A comparison of the SVM to other classifiers has been
made by Meyer, Leisch and Hornik.®!

7.7.1 Parameter selection

The effectiveness of SVM depends on the selection of
kernel, the kernel’s parameters, and soft margin pa-
rameter C. A common choice is a Gaussian Kernel,
which has a single parameter y. The best combina-
tion of C and y is often selected by a grid search
with exponentially growing sequences of C and Yy,
for example, C € {275,273 ... 213 215} . 4 ¢
{2715 2713 21 23} | Typically, each combination
of parameter choices is checked using cross validation,
and the parameters with best cross-validation accuracy
are picked. Alternatively, recent work in Bayesian op-
timization can be used to select C and y, often requiring
the evaluation of far fewer parameter combinations than
grid search. The final model, which is used for testing
and for classifying new data, is then trained on the whole
training set using the selected parameters.”’
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7.7.2 Issues

Potential drawbacks of the SVM are the following three
aspects:

e Uncalibrated class membership probabilities

e The SVM is only directly applicable for two-class
tasks. Therefore, algorithms that reduce the multi-
class task to several binary problems have to be ap-
plied; see the multi-class SVM section.

e Parameters of a solved model are difficult to inter-
pret.

7.8 Extensions

7.8.1 Multiclass SVM

Multiclass SVM aims to assign labels to instances by using
support vector machines, where the labels are drawn from
a finite set of several elements.

The dominant approach for doing so is to reduce the
single multiclass problem into multiple binary classifica-
tion problems.!'” Common methods for such reduction
include:!'%! (111

e Building binary classifiers which distinguish be-
tween (i) one of the labels and the rest (one-versus-
all) or (ii) between every pair of classes (one-versus-
one). Classification of new instances for the one-
versus-all case is done by a winner-takes-all strat-
egy, in which the classifier with the highest output
function assigns the class (it is important that the
output functions be calibrated to produce compara-
ble scores). For the one-versus-one approach, clas-
sification is done by a max-wins voting strategy, in
which every classifier assigns the instance to one of
the two classes, then the vote for the assigned class is
increased by one vote, and finally the class with the
most votes determines the instance classification.

e Directed acyclic graph SVM (DAGSVM)!!?]

e Error-correcting output codes!'3!

Crammer and Singer proposed a multiclass SVM method
which casts the multiclass classification problem into a
single optimization problem, rather than decomposing it
into multiple binary classification problems.!'*! See also
Lee, Lin and Wahba.!'21[16]

7.8.2 Transductive support vector ma-
chines

Transductive support vector machines extend SVMs
in that they could also treat partially labeled data in
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semi-supervised learning by following the principles of
transduction. Here, in addition to the training set D , the
learner is also given a set

D* = {xj[x; € R"}},

of test examples to be classified. Formally, a transductive
support vector machine is defined by the following primal
optimization problem:!!”!

Minimize (in w, b, y* )

1 2
Slwl

subject to (forany¢=1,...,nandanyj =1,...,k)

yi(w’xi *b) 2 ]-7

yi(w-xj —b) > 1,

and

y; € {_17 1}

Transductive support vector machines were introduced by
Vladimir N. Vapnik in 1998.

7.8.3 Structured SVM

SVMs have been generalized to structured SVMs, where
the label space is structured and of possibly infinite size.

7.8.4 Regression

A version of SVM for regression was proposed in 1996
by Vladimir N. Vapnik, Harris Drucker, Christopher J.
C. Burges, Linda Kaufman and Alexander J. Smola.[!8!
This method is called support vector regression (SVR).
The model produced by support vector classification (as
described above) depends only on a subset of the train-
ing data, because the cost function for building the model
does not care about training points that lie beyond the
margin. Analogously, the model produced by SVR de-
pends only on a subset of the training data, because the
cost function for building the model ignores any training
data close to the model prediction. Another SVM ver-
sion known as least squares support vector machine (LS-
SVM) has been proposed by Suykens and Vandewalle.[!"!

Training the original SVR means solving!°!

Lol
— [|w
2 2
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{yi— (w, ;) —b<e

(w,z;) +b—1y; <e

where x; is a training sample with target value y; . The
inner product plus intercept (w, x;) + b is the prediction
for that sample, and e is a free parameter that serves as
a threshold: all predictions have to be within an e range
of the true predictions. Slack variables are usually added
into the above to allow for errors and to allow approxima-
tion in the case the above problem is infeasible.

7.9 Interpreting SVM models

The SVM algorithm has been widely applied in the bi-
ological and other sciences. Permutation tests based on
SVM weights have been suggested as a mechanism for
interpretation of SVM models.!>!1??! Support vector ma-
chine weights have also been used to interpret SVM mod-
els in the past./>3! Posthoc interpretation of support vector
machine models in order to identify features used by the
model to make predictions is a relatively new area of re-
search with special significance in the biological sciences.

7.10 Implementation

The parameters of the maximum-margin hyperplane
are derived by solving the optimization. There ex-
ist several specialized algorithms for quickly solving
the QP problem that arises from SVMs, mostly re-
lying on heuristics for breaking the problem down
into smaller, more-manageable chunks. A common
method is Platt’s sequential minimal optimization (SMO)
algorithm, which breaks the problem down into 2-
dimensional sub-problems that may be solved analyti-
cally, eliminating the need for a numerical optimization
algorithm. 4

Another approach is to use an interior point method
that uses Newton-like iterations to find a solution of the
Karush—Kuhn—Tucker conditions of the primal and dual
problems.>! Instead of solving a sequence of broken
down problems, this approach directly solves the prob-
lem as a whole. To avoid solving a linear system involv-
ing the large kernel matrix, a low rank approximation to
the matrix is often used in the kernel trick.

The special case of linear support vector machines can
be solved more efficiently by the same kind of algo-
rithms used to optimize its close cousin, logistic regres-
sion; this class of algorithms includes sub-gradient de-
scent (e.g., PEGASOS®%!) and coordinate descent (e.g.,
LIBLINEAR?"!). The general kernel SVMs can also be
solved more efficiently using sub-gradient descent (e.g.
P-packSVMI23]), especially when parallelization is al-
lowed.

Kernel SVMs are available in many machine learn-
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7.13. REFERENCES

ing toolkits, including LIBSVM, MATLAB, SVM-
light, kernlab, scikit-learn, Shogun, Weka, Shark,
JKernelMachines and others.

7.11 Applications
SVMs can be used to solve various real world problems:

e SVMs are helpful in text and hypertext categoriza-
tion as their application can significantly reduce the
need for labeled training instances in both the stan-
dard inductive and transductive settings.

e (Classification of images can also be performed us-
ing SVMs. Experimental results show that SVMs
achieve significantly higher search accuracy than
traditional query refinement schemes after just three
to four rounds of relevance feedback.

e SVMs are also useful in medical science to classify
proteins with up to 90% of the compounds classified
correctly.

e Hand-written characters can be recognized using
SVM

7.12 See also

e In situ adaptive tabulation
e Kernel machines

o Fisher kernel

e Platt scaling

e Polynomial kernel

e Predictive analytics

e Regularization perspectives on support vector ma-
chines

e Relevance vector machine, a probabilistic sparse
kernel model identical in functional form to SVM

e Sequential minimal optimization

e Winnow (algorithm)
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CHAPTER 7. SUPPORT VECTOR MACHINE

7.14 External links

e www.support-vector.net The key book about the
method, “An Introduction to Support Vector Ma-
chines” with online software

e Burges, Christopher J. C.; A Tutorial on Sup-
port Vector Machines for Pattern Recognition, Data
Mining and Knowledge Discovery 2:121-167, 1998

o www.kernel-machines.org (general information and
collection of research papers)

e www.support-vector-machines.org (Literature, Re-
view, Software, Links related to Support Vector Ma-
chines — Academic Site)

e videolectures.net (SVM-related video lectures)

e Karatzoglou, Alexandros et al.; Support Vector Ma-
chines in R, Journal of Statistical Software April
2006, Volume 15, Issue 9.

e libsvm LIBSVM is a popular library of SVM learn-
ers

e liblinear liblinear is a library for large linear classi-
fication including some SVMs

e Shark Shark is a C++ machine learning library im-
plementing various types of SVMs

e dlib dlib is a C++ library for working with kernel
methods and SVMs

e SVM light is a collection of software tools for learn-
ing and classification using SVM.

e SVMIS live demo is a GUI demo for Javascript im-
plementation of SVMs

e Gesture Recognition Toolkit contains an easy to use
wrapper for libsvim
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Chapter 8

Naive Bayes classifier

In machine learning, naive Bayes classifiers are a fam-
ily of simple probabilistic classifiers based on apply-
ing Bayes’ theorem with strong (naive) independence as-
sumptions between the features.

Naive Bayes has been studied extensively since the 1950s.
It was introduced under a different name into the text re-
trieval community in the early 1960s,!"# and remains
a popular (baseline) method for text categorization, the
problem of judging documents as belonging to one cat-
egory or the other (such as spam or legitimate, sports
or politics, etc.) with word frequencies as the features.
With appropriate preprocessing, it is competitive in this
domain with more advanced methods including support
vector machines.!?! It also finds application in automatic
medical diagnosis."*!

Naive Bayes classifiers are highly scalable, requiring a
number of parameters linear in the number of variables
(features/predictors) in a learning problem. Maximum-
likelihood training can be done by evaluating a closed-
form expression,/'17!8 which takes linear time, rather
than by expensive iterative approximation as used for
many other types of classifiers.

In the statistics and computer science literature, Naive
Bayes models are known under a variety of names, in-
cluding simple Bayes and independence Bayes.[*! All
these names reference the use of Bayes’ theorem in the
classifier’s decision rule, but naive Bayes is not (necessar-
ily) a Bayesian method;*! Russell and Norvig note that
"[naive Bayes] is sometimes called a Bayesian classi-
fier, a somewhat careless usage that has prompted true
Bayesians to call it the idiot Bayes model.”!1:482

8.1 Introduction

Naive Bayes is a simple technique for constructing classi-
fiers: models that assign class labels to problem instances,
represented as vectors of feature values, where the class
labels are drawn from some finite set. It is not a single
algorithm for training such classifiers, but a family of al-
gorithms based on a common principle: all naive Bayes
classifiers assume that the value of a particular feature is
independent of the value of any other feature, given the

class variable. For example, a fruit may be considered to
be an apple if it is red, round, and about 3” in diameter.
A naive Bayes classifier considers each of these features
to contribute independently to the probability that this
fruit is an apple, regardless of any possible correlations
between the color, roundness and diameter features.

For some types of probability models, naive Bayes classi-
fiers can be trained very efficiently in a supervised learn-
ing setting. In many practical applications, parameter
estimation for naive Bayes models uses the method of
maximum likelihood; in other words, one can work with
the naive Bayes model without accepting Bayesian prob-
ability or using any Bayesian methods.

Despite their naive design and apparently oversimplified
assumptions, naive Bayes classifiers have worked quite
well in many complex real-world situations. In 2004, an
analysis of the Bayesian classification problem showed
that there are sound theoretical reasons for the apparently
implausible efficacy of naive Bayes classifiers.[’! Still, a
comprehensive comparison with other classification al-
gorithms in 2006 showed that Bayes classification is out-
performed by other approaches, such as boosted trees or
random forests.®!

An advantage of naive Bayes is that it only requires a small
amount of training data to estimate the parameters nec-
essary for classification.

8.2 Probabilistic model

Abstractly, naive Bayes is a conditional probability
model: given a problem instance to be classified, repre-
sented by a vector x = (z1, .. ., z, ) representing some n
features (dependent variables), it assigns to this instance
probabilities

p(Crlxy, ..., zp)

for each of k possible outcomes or classes.!”!

The problem with the above formulation is that if the
number of features n is large or if a feature can take on
a large number of values, then basing such a model on
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8.3. PARAMETER ESTIMATION AND EVENT MODELS

probability tables is infeasible. We therefore reformulate
the model to make it more tractable. Using Bayes’ theo-
rem, the conditional probability can be decomposed as

p(Cr) p(x|Cy)

P(Cilx) = p(x)

In plain English, using Bayesian probability terminology,
the above equation can be written as

. prior X likelihood
posterior = ——————
evidence

In practice, there is interest only in the numerator of that
fraction, because the denominator does not depend on C'
and the values of the features F; are given, so that the
denominator is effectively constant. The numerator is
equivalent to the joint probability model

p(ckyxla e ,.’,Un)

which can be rewritten as follows, using the chain rule
for repeated applications of the definition of conditional
probability:

p(Cr, 1, . .. ey Zn|C)

Now the “naive” conditional independence assumptions
come into play: assume that each feature F; is condition-
ally independent of every other feature F}; for j # 1,
given the category C' . This means that

p(2i|Cy, ;) = p(zi|Cy)
p(xi|Cr, w5, 1) = p(;|Cy)

(x| Cr, xj, 1, 21) = p(;|Ch)

and so on, for ¢ # j, k,l . Thus, the joint model can be
expressed as

. 7xn) o8 p(ckdxla s 7xn)
o p(Ck) p(21|Ck) p(22|Ck) p(a3|C,

p(Ck|I1, ..

=

o p(Cr) | | p(:]Cr) -

i=1

This means that under the above independence assump-
tions, the conditional distribution over the class variable
Cis:
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n

= p(C) [T plailcn)

i=1

p(Cklz1, ..., xy)

where the evidence Z = p(x) is a scaling factor depen-
dent only on x4, ..., x, , thatis, a constant if the values
of the feature variables are known.

8.2.1 Constructing a classifier from the
probability model

The discussion so far has derived the independent feature
model, that is, the naive Bayes probability model. The
naive Bayes classifier combines this model with a decision
rule. One common rule is to pick the hypothesis that is
most probable; this is known as the maximum a posteri-
ori or MAP decision rule. The corresponding classifier, a
Bayes classifier, is the function that assigns a class label
1 = C, for some k as follows:

n

y = argmax p(Ck)Hp(xi|Ck).

ke{l,...,K} i=1

8.3 Parameter estimation and

event models

(
(21]Ck) p(z2, ..., 2n|Cl, z1)

(71|Ck) p(22|Ck, 71) p(*3,A-class: [§riormaybe calculated by assuming equiproba-
(21|C) p(@2|C, 1) ... pPlS, pesses (s apriors =, / {pumber of classes)), or by

calculating an estimate for the class probability from the
training set (i.e., (prior for a given class) = (number of
samples in the class) / (total number of samples)). To esti-
mate the parameters for a feature’s distribution, one must
assume a distribution or generate nonparametric models
for the features from the training set.(®!

The assumptions on distributions of features are called
the event model of the Naive Bayes classifier. For discrete
features like the ones encountered in document classifica-
tion (include spam filtering), multinomial and Bernoulli
distributions are popular. These assumptions lead to two
distinct models, which are often confused.111%

8.3.1 Gaussian naive Bayes

When dealing with continuous data, a typical assumption

| k)is_ that the continuous values associated with each class
are distributed according to a Gaussian distribution. For

example, suppose the training data contain a continuous
attribute, « . We first segment the data by the class, and
then compute the mean and variance of x in each class.
Let p. be the mean of the values in x associated with
class ¢, and let o2 be the variance of the values in z asso-
ciated with class c. Then, the probability distribution of


https://en.wikipedia.org/wiki/Bayes%2527_theorem
https://en.wikipedia.org/wiki/Bayes%2527_theorem
https://en.wikipedia.org/wiki/Bayesian_probability
https://en.wikipedia.org/wiki/Joint_probability
https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Conditional_probability
https://en.wikipedia.org/wiki/Conditional_independence
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Probability_model
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Decision_rule
https://en.wikipedia.org/wiki/Decision_rule
https://en.wikipedia.org/wiki/Maximum_a_posteriori
https://en.wikipedia.org/wiki/Maximum_a_posteriori
https://en.wikipedia.org/wiki/Bayes_classifier
https://en.wikipedia.org/wiki/Nonparametric
https://en.wikipedia.org/wiki/Multinomial_distribution
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Variance#Estimating_the_variance

60

some value given a class, p(z = v|c) , can be computed
by plugging v into the equation for a Normal distribution
parameterized by ji. and o2 . That is,

1 _(w—ne)?
p(z =vlc) = e 22

\/2mo?

Another common technique for handling continuous val-
ues is to use binning to discretize the feature values, to
obtain a new set of Bernoulli-distributed features; some
literature in fact suggests that this is necessary to apply
naive Bayes, but it is not, and the discretization may throw
away discriminative information.™

8.3.2 Multinomial naive Bayes

With a multinomial event model, samples (feature vec-
tors) represent the frequencies with which certain events
have been generated by a multinomial (py, . . . , p,, ) Where
p; is the probability that event i occurs (or K such multi-
nomials in the multiclass case). A feature vector X =
(z1,...,2y) is then a histogram, with x; counting the
number of times event i was observed in a particular in-
stance. This is the event model typically used for doc-
ument classification, with events representing the occur-
rence of a word in a single document (see bag of words
assumption). The likelihood of observing a histogram x
is given by

p(x|Cy) = (12_[:1;2')' Hpki”

The multinomial naive Bayes classifier becomes a linear
classifier when expressed in log-space:!?!

logp(Ckx) ot log <p(0k) Hmﬁi)
i=1

= logp(Cr) + Y _ i - log pi

i=1
=b+w.x

where b = log p(C},) and wy; = log pg; -

If a given class and feature value never occur together
in the training data, then the frequency-based probability
estimate will be zero. This is problematic because it will
wipe out all information in the other probabilities when
they are multiplied. Therefore, it is often desirable to in-
corporate a small-sample correction, called pseudocount,
in all probability estimates such that no probability is ever
set to be exactly zero. This way of regularizing naive
Bayes is called Laplace smoothing when the pseudocount
is one, and Lidstone smoothing in the general case.
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Rennie ef al. discuss problems with the multinomial as-
sumption in the context of document classification and
possible ways to alleviate those problems, including the
use of tf—idf weights instead of raw term frequencies
and document length normalization, to produce a naive
Bayes classifier that is competitive with support vector
machines.?!

8.3.3 Bernoulli naive Bayes

In the multivariate Bernoulli event model, features are in-
dependent booleans (binary variables) describing inputs.
Like the multinomial model, this model is popular for
document classification tasks,””! where binary term oc-
currence features are used rather than term frequencies.
If z; is a boolean expressing the occurrence or absence
of the i'th term from the vocabulary, then the likelihood
of a document given a class Cy, is given by®!

n

p(x|Cx) = [ [ pki(1 = pri) =)

i=1
where py; is the probability of class C}, generating the
term w; . This event model is especially popular for clas-
sifying short texts. It has the benefit of explicitly mod-
elling the absence of terms. Note that a naive Bayes clas-
sifier with a Bernoulli event model is not the same as
a multinomial NB classifier with frequency counts trun-
cated to one.

8.3.4 Semi-supervised parameter estima-
tion

Given a way to train a naive Bayes classifier from labeled
data, it’s possible to construct a semi-supervised training
algorithm that can learn from a combination of labeled
and unlabeled data by running the supervised learning al-
gorithm in a loop:"'!!

Given a collection D = LW U of labeled sam-
ples L and unlabeled samples U, start by train-
ing a naive Bayes classifier on L.

Until convergence, do:

Predict class probabilities P(C'|z)
for all examples x in D .

Re-train the model based on the
probabilities (not the labels) pre-
dicted in the previous step.

Convergence is determined based on improvement to the
model likelihood P(D|#) , where 6 denotes the parame-
ters of the naive Bayes model.

This training algorithm is an instance of the more gen-
eral expectation—maximization algorithm (EM): the pre-
diction step inside the loop is the E-step of EM, while the
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re-training of naive Bayes is the M-step. The algorithm is
formally justified by the assumption that the data are gen-
erated by a mixture model, and the components of this
mixture model are exactly the classes of the classification
problem.[!!]

8.4 Discussion

Despite the fact that the far-reaching independence as-
sumptions are often inaccurate, the naive Bayes classifier
has several properties that make it surprisingly useful in
practice. In particular, the decoupling of the class con-
ditional feature distributions means that each distribution
can be independently estimated as a one-dimensional dis-
tribution. This helps alleviate problems stemming from
the curse of dimensionality, such as the need for data
sets that scale exponentially with the number of features.
While naive Bayes often fails to produce a good estimate
for the correct class probabilities,!'?! this may not be a re-
quirement for many applications. For example, the naive
Bayes classifier will make the correct MAP decision rule
classification so long as the correct class is more probable
than any other class. This is true regardless of whether the
probability estimate is slightly, or even grossly inaccurate.
In this manner, the overall classifier can be robust enough
to ignore serious deficiencies in its underlying naive prob-
ability model.®) Other reasons for the observed success
of the naive Bayes classifier are discussed in the litera-
ture cited below.

8.4.1 Relation to logistic regression

In the case of discrete inputs (indicator or frequency fea-
tures for discrete events), naive Bayes classifiers form a
generative-discriminative pair with (multinomial) logistic
regression classifiers: each naive Bayes classifier can be
considered a way of fitting a probability model that op-
timizes the joint likelihood p(C,x) , while logistic re-
gression fits the same probability model to optimize the
conditional p(C|x) .13

The link between the two can be seen by observing that
the decision function for naive Bayes (in the binary case)
can be rewritten as “predict class C if the odds of
p(C1|x) exceed those of p(Csy|x) ". Expressing this in
log-space gives:

p(C1[x)
8 p(Calx)

The left-hand side of this equation is the log-odds, or
logit, the quantity predicted by the linear model that un-
derlies logistic regression. Since naive Bayes is also a lin-
ear model for the two “discrete” event models, it can be
reparametrised as a linear function b +w'z > 0. Ob-
taining the probabilities is then a matter of applying the

= logp(C1|x) — logp(C2[x) >0
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logistic function to b + w 'z, or in the multiclass case,
the softmax function.

Discriminative classifiers have lower asymptotic error
than generative ones; however, research by Ng and Jordan
has shown that in some practical cases naive Bayes
can outperform logistic regression because it reaches its
asymptotic error faster.[!%!

8.5 Examples

8.5.1 Gender classification

Problem: classify whether a given person is a male or a
female based on the measured features. The features in-
clude height, weight, and foot size.

Training

Example training set below.

The classifier created from the training set using a Gaus-
sian distribution assumption would be (given variances
are unbiased sample variances):

Let’s say we have equiprobable classes so P(male)=
P(female) = 0.5. This prior probability distribution might
be based on our knowledge of frequencies in the larger
population, or on frequency in the training set.

Testing

Below is a sample to be classified as a male or female.

We wish to determine which posterior is greater, male
or female. For the classification as male the posterior is
given by

posterior(male) =

P(male) p(height|male) p(weight|male) p( foots

evidence

For the classification as female the posterior is given by

P(female) p(height| female) p(weight| femal

posterior(female) =

The evidence (also termed normalizing constant) may be
calculated:

evidence = P(male) p(height|male) p(weight|male) p( footsize|mal

+P(female) p(height| female) p(weight| female) p(footsize| femals

However, given the sample the evidence is a constant and
thus scales both posteriors equally. It therefore does not

evidence
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affect classification and can be ignored. We now deter-
mine the probability distribution for the sex of the sam-
ple.

P(male) = 0.5

2
L o > (—(6 — 1)

V2mro? 202
where ;1 = 5.855 and 02 = 3.5033 - 10~ 2 are the pa-
rameters of normal distribution which have been previ-
ously determined from the training set. Note that a value
greater than 1 is OK here — it is a probability density
rather than a probability, because height is a continuous
variable.

p(height|male) = ) ~ 1.5789

p(weight|male) = 5.9881 - 1076

p(foot size|male) = 1.3112 - 103
posterior numerator (male)
P(female) = 0.5
p(height|female) = 2.2346 - 10~*
p(weight|female) = 1.6789 - 1072
p(foot size|female) = 2.8669 - 10~
posterior numerator (female)

Since posterior numerator is greater in the female case,
we predict the sample is female.

8.5.2 Document classification

Here is a worked example of naive Bayesian classifica-
tion to the document classification problem. Consider
the problem of classifying documents by their content,
for example into spam and non-spam e-mails. Imagine
that documents are drawn from a number of classes of
documents which can be modelled as sets of words where
the (independent) probability that the i-th word of a given
document occurs in a document from class C can be writ-
ten as

p(w;|C)

(For this treatment, we simplify things further by assum-
ing that words are randomly distributed in the document
- that is, words are not dependent on the length of the
document, position within the document with relation to
other words, or other document-context.)

Then the probability that a given document D contains all
of the words w; , given a class C, is

p(D|C) =

Hp w;|C)

= their product = 6.1984-10_

. p(D|S
= their product = 5.3778-10
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The question that we desire to answer is: “what is the
probability that a given document D belongs to a given
class C?" In other words, what is p(C|D) ?

Now by definition
_p(DNC)
and
_p(DNC)

Bayes’ theorem manipulates these into a statement of
probability in terms of likelihood.

p(C)

p(D|C)

Assume for the moment that there are only two mutually
exclusive classes, S and =S (e.g. spam and not spam), such
that every element (email) is in either one or the other;

) = Ipwils)

and

p(D]|~S) =

Hp wz|_‘S

Using the Bayesian result above, we can write:

p(9)

p(S|D) = (D)

Hp(w¢|5)

p(~8|D) = )

Dividing one by the other gives:

p(S|D) _  p(S) I1; p(wilS)
p(=S|D)  p(=5) I1; p(wi|=S)

‘Which can be re-factored as:

p(S|D)
p(=S|D) ~

_ p(S p(w;]9)
ﬂS H p(w;|~S)

Thus, the probability ratio p(S | D) / p(=S | D) can be
expressed in terms of a series of likelihood ratios. The
actual probability p(S | D) can be easily computed from
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log (p(S | D) / p(=S | D)) based on the observation that
pS1ID)+p(=SID)=1.

Taking the logarithm of all these ratios, we have:

In

p(S|D)
p(=SID) ~ " p(=

p(wilS)

wl\—\S

+Z

(This technique of "log-likelihood ratios" is a common
technique in statistics. In the case of two mutually exclu-
sive alternatives (such as this example), the conversion of
a log-likelihood ratio to a probability takes the form of a
sigmoid curve: see logit for details.)

Finally, the document can be classified as follows. It is

spam if p(S|D) > p(=S|D) (.e., In L

p(S|D)
p(—S|D)

> 0),

otherwise it is not spam.

8.6 See also

AODE

Bayesian spam filtering
Bayesian network
Random naive Bayes
Linear classifier
Logistic regression
Perceptron

Take-the-best heuristic
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e Benchmark results of Naive Bayes implementations

e Hierarchical Naive Bayes Classifiers for uncertain
data (an extension of the Naive Bayes classifier).

Software

e Naive Bayes classifiers are available in many
general-purpose machine learning and NLP pack-
ages, including Apache Mahout, Mallet, NLTK,
Orange, scikit-learn and Weka.

e IMSL Numerical Libraries Collections of math and
statistical algorithms available in C/C++, Fortran,
Java and C#/.NET. Data mining routines in the
IMSL Libraries include a Naive Bayes classifier.

e Winnow content recommendation Open source
Naive Bayes text classifier works with very small
training and unbalanced training sets. High perfor-
mance, C, any Unix.

e An interactive Microsoft Excel spreadsheet Naive
Bayes implementation using VBA (requires enabled
macros) with viewable source code.

e jBNC - Bayesian Network Classifier Toolbox
o Statistical Pattern Recognition Toolbox for Matlab.

o ifile - the first freely available (Naive) Bayesian
mail/spam filter

e NClassifier - NClassifier is a .NET library that sup-
ports text classification and text summarization. It is
a port of Classifier4].

e C(lassifier4] - Classifier4] is a Java library designed
to do text classification. It comes with an implemen-
tation of a Bayesian classifier.


http://tunedit.org/results?d=UCI/&a=bayes
http://www.biomedcentral.com/1471-2105/7/514
http://www.biomedcentral.com/1471-2105/7/514
https://en.wikipedia.org/wiki/Apache_Mahout
http://mallet.cs.umass.edu/
https://en.wikipedia.org/wiki/NLTK
https://en.wikipedia.org/wiki/Orange_(software)
https://en.wikipedia.org/wiki/Scikit-learn
https://en.wikipedia.org/wiki/Weka_(machine_learning)
https://en.wikipedia.org/wiki/IMSL_Numerical_Libraries
http://doc.winnowtag.org/open-source
https://en.wikipedia.org/wiki/Microsoft_Excel
http://downloads.sourceforge.net/naivebayesclass/NaiveBayesDemo.xls?use_mirror=osdn
http://downloads.sourceforge.net/naivebayesclass/NaiveBayesDemo.xls?use_mirror=osdn
https://en.wikipedia.org/wiki/Visual_Basic_for_Applications
http://jbnc.sourceforge.net/
http://cmp.felk.cvut.cz/cmp/software/stprtool/
http://people.csail.mit.edu/jrennie/ifile/
http://nclassifier.sourceforge.net/
http://classifier4j.sourceforge.net/

Chapter 9

Decision tree learning

This article is about decision trees in machine learning.
For the use of the term in decision analysis, see Decision
tree.

Decision tree learning uses a decision tree as a
predictive model which maps observations about an item
to conclusions about the item’s target value. It is one
of the predictive modelling approaches used in statistics,
data mining and machine learning. Tree models where
the target variable can take a finite set of values are called
classification trees. In these tree structures, leaves rep-
resent class labels and branches represent conjunctions
of features that lead to those class labels. Decision trees
where the target variable can take continuous values (typ-
ically real numbers) are called regression trees.

In decision analysis, a decision tree can be used to visu-
ally and explicitly represent decisions and decision mak-
ing. In data mining, a decision tree describes data but not
decisions; rather the resulting classification tree can be an
input for decision making. This page deals with decision
trees in data mining.

9.1 General

Decision tree learning is a method commonly used in data
mining.!!! The goal is to create a model that predicts the
value of a target variable based on several input variables.
An example is shown on the right. Each interior node cor-
responds to one of the input variables; there are edges to
children for each of the possible values of that input vari-
able. Each leaf represents a value of the target variable
given the values of the input variables represented by the
path from the root to the leaf.

A decision tree is a simple representation for classifying
examples. Decision tree learning is one of the most suc-
cessful techniques for supervised classification learning.
For this section, assume that all of the features have fi-
nite discrete domains, and there is a single target feature
called the classification. Each element of the domain of
the classification is called a class. A decision tree or a
classification tree is a tree in which each internal (non-
leaf) node is labeled with an input feature. The arcs com-
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is sex male?

is age > 9.57

\ 0.73 36%

is sibsp = 2.57
017 61%
0.05 2% 0.89 2%

A tree showing survival of passengers on the Titanic (“sibsp” is
the number of spouses or siblings aboard). The figures under
the leaves show the probability of survival and the percentage of
observations in the leaf.

ing from a node labeled with a feature are labeled with
each of the possible values of the feature. Each leaf of
the tree is labeled with a class or a probability distribu-
tion over the classes.

A tree can be “learned” by splitting the source set into
subsets based on an attribute value test. This process is
repeated on each derived subset in a recursive manner
called recursive partitioning. The recursion is completed
when the subset at a node has all the same value of the
target variable, or when splitting no longer adds value to
the predictions. This process of fop-down induction of
decision trees (TDIDT) 12! is an example of a greedy al-
gorithm, and it is by far the most common strategy for
learning decision trees from data.

In data mining, decision trees can be described also as the
combination of mathematical and computational tech-
niques to aid the description, categorisation and gener-
alisation of a given set of data.

Data comes in records of the form:
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(X7Y) = (wla Z2,X3, ...,.’L’k,Y)

The dependent variable, Y, is the target variable that we
are trying to understand, classify or generalize. The vec-
tor x is composed of the input variables, X1, X2, X3 etc.,
that are used for that task.

9.2 Types
Decision trees used in data mining are of two main types:

o Classification tree analysis is when the predicted
outcome is the class to which the data belongs.

e Regression tree analysis is when the predicted out-
come can be considered a real number (e.g. the price
of a house, or a patient’s length of stay in a hospital).

The term Classification And Regression Tree (CART)
analysis is an umbrella term used to refer to both of the
above procedures, first introduced by Breiman et al.l®!
Trees used for regression and trees used for classification
have some similarities - but also some differences, such
as the procedure used to determine where to split."!

Some techniques, often called ensemble methods, con-
struct more than one decision tree:

e Bagging decision trees, an early ensemble method,
builds multiple decision trees by repeatedly resam-
pling training data with replacement, and voting the
trees for a consensus prediction.*!

o A Random Forest classifier uses a number of deci-
sion trees, in order to improve the classification rate.

e Boosted Trees can be used for regression-type and
classification-type problems.>![°!

o Rotation forest - in which every decision tree
is trained by first applying principal component
analysis (PCA) on a random subset of the input
features.”!

Decision tree learning is the construction of a decision
tree from class-labeled training tuples. A decision tree is
a flow-chart-like structure, where each internal (non-leaf)
node denotes a test on an attribute, each branch represents
the outcome of a test, and each leaf (or terminal) node
holds a class label. The topmost node in a tree is the root
node.

There are many specific decision-tree algorithms. No-
table ones include:

e D3 (Iterative Dichotomiser 3)
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e C4.5 (successor of ID3)
e CART (Classification And Regression Tree)

e CHAID (CHi-squared Automatic Interaction De-
tector). Performs multi-level splits when computing
classification trees.!®!

e MARS: extends decision trees to handle numerical
data better.

e Conditional Inference Trees. Statistics-based ap-
proach that uses non-parametric tests as splitting cri-
teria, corrected for multiple testing to avoid over-
fitting. This approach results in unbiased predictor
selection and does not require pruning.[®/!!]

ID3 and CART were invented independently at around
the same time (between 1970 and 1980), yet follow a
similar approach for learning decision tree from training
tuples.

9.3 Metrics

Algorithms for constructing decision trees usually work
top-down, by choosing a variable at each step that best
splits the set of items.!'!! Different algorithms use differ-
ent metrics for measuring “best”. These generally mea-
sure the homogeneity of the target variable within the
subsets. Some examples are given below. These metrics
are applied to each candidate subset, and the resulting val-
ues are combined (e.g., averaged) to provide a measure of
the quality of the split.

9.3.1 Gini impurity

Not to be confused with Gini coeflicient.

Used by the CART (classification and regression tree) al-
gorithm, Gini impurity is a measure of how often a ran-
domly chosen element from the set would be incorrectly
labeled if it were randomly labeled according to the dis-
tribution of labels in the subset. Gini impurity can be
computed by summing the probability of each item being
chosen times the probability of a mistake in categorizing
that item. It reaches its minimum (zero) when all cases
in the node fall into a single target category.

To compute Gini impurity for a set of items, suppose ¢ €
{1,2,...,m} , and let f; be the fraction of items labeled
with value ¢ in the set.

Ia(f) = Y, figl - fi) = Zg;(fi
Y fim i it =10

- %) =
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9.3.2 Information gain

Main article: Information gain in decision trees

Used by the ID3, C4.5 and C5.0 tree-generation algo-
rithms. Information gain is based on the concept of
entropy from information theory.

Ip(f)=— Zgl filog, fi

9.3.3 Variance reduction

Introduced in CART,! variance reduction is often em-
ployed in cases where the target variable is continuous
(regression tree), meaning that use of many other metrics
would first require discretization before being applied.
The variance reduction of a node NV is defined as the total
reduction of the variance of the target variable = due to
the split at this node:

Iy (N) ﬁzz'es >jes 3 (@ z;)? -
1 1. 2 1

(W Dies, 2jes, 3@ —x5)" + =D Ziesf Zjesf

where S, S; , and S are the set of presplit sample in-

dices, set of sample indices for which the split test is true,

and set of sample indices for which the split test is false,
respectively.

9.4 Decision tree advantages

Amongst other data mining methods, decision trees have
various advantages:

e Simple to understand and interpret. People are
able to understand decision tree models after a brief

explanation.

Requires little data preparation. Other tech-
niques often require data normalisation, dummy
variables need to be created and blank values to be
removed.

Able to handle both numerical and categorical
data. Other techniques are usually specialised in
analysing datasets that have only one type of vari-
able. (For example, relation rules can be used only
with nominal variables while neural networks can be
used only with numerical variables.)

Uses a white box model. If a given situation is ob-
servable in a model the explanation for the condition
is easily explained by boolean logic. (An example
of a black box model is an artificial neural network
since the explanation for the results is difficult to un-
derstand.)

Possible to validate a model using statistical
tests. That makes it possible to account for the reli-
ability of the model.

1
2
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e Robust. Performs well even if its assumptions are
somewhat violated by the true model from which the
data were generated.

o Performs well with large datasets. Large amounts
of data can be analysed using standard computing
resources in reasonable time.

9.5 Limitations

e The problem of learning an optimal decision tree
is known to be NP-complete under several aspects
of optimality and even for simple concepts.!'?I[13!
Consequently, practical decision-tree learning algo-
rithms are based on heuristics such as the greedy al-
gorithm where locally-optimal decisions are made at
each node. Such algorithms cannot guarantee to re-
turn the globally-optimal decision tree. To reduce
the greedy effect of local-optimality some methods
such as the dual information distance (DID) tree

[14]
(z; TS oposed.

e Decision-tree learners can create over-complex
trees that do not generalise well from the training
data. (This is known as overfitting.!!>!) Mechanisms
such as pruning are necessary to avoid this problem
(with the exception of some algorithms such as the
Conditional Inference approach, that does not re-
quire pruning 11107,

There are concepts that are hard to learn because
decision trees do not express them easily, such
as XOR, parity or multiplexer problems. In such
cases, the decision tree becomes prohibitively large.
Approaches to solve the problem involve either
changing the representation of the problem domain
(known as propositionalisation)'®! or using learn-
ing algorithms based on more expressive repre-
sentations (such as statistical relational learning or
inductive logic programming).

For data including categorical variables with dif-
ferent numbers of levels, information gain in deci-
sion trees is biased in favor of those attributes with
more levels.['”] However, the issue of biased predic-
tor selection is avoided by the Conditional Inference
approach.’!

9.6 Extensions

9.6.1 Decision graphs

In a decision tree, all paths from the root node to the leaf
node proceed by way of conjunction, or AND. In a de-
cision graph, it is possible to use disjunctions (ORs) to
join two more paths together using Minimum message
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length (MML).!"8] Decision graphs have been further ex-
tended to allow for previously unstated new attributes to
be learnt dynamically and used at different places within
the graph.!'”! The more general coding scheme results in
better predictive accuracy and log-loss probabilistic scor-
ing. In general, decision graphs infer models with fewer
leaves than decision trees.

9.6.2 Alternative search methods

Evolutionary algorithms have been used to avoid local op-
timal decisions and search the decision tree space with
little a priori bias.[20121]

It is also possible for a tree to be sampled using
MCMC.22

The tree can be searched for in a bottom-up fashion.?3!

9.7 See also

e Decision tree pruning

e Binary decision diagram
e CHAID

e CART

e ID3 algorithm

e (4.5 algorithm

e Decision stump

e Incremental decision tree
e Alternating decision tree

e Structured data analysis (statistics)

9.8 Implementations

Many data mining software packages provide implemen-
tations of one or more decision tree algorithms. Several
examples include Salford Systems CART (which licensed
the proprietary code of the original CART authors'!),
IBM SPSS Modeler, RapidMiner, SAS Enterprise Miner,
Matlab, R (an open source software environment for sta-
tistical computing which includes several CART imple-
mentations such as rpart, party and randomForest pack-
ages), Weka (a free and open-source data mining suite,
contains many decision tree algorithms), Orange (a free
data mining software suite, which includes the tree mod-
ule orngTree), KNIME, Microsoft SQL Server , and
scikit-learn (a free and open-source machine learning li-
brary for the Python programming language).
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9.10 External links

Building Decision Trees in Python From O'Reilly.
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A very explicit explanation of information gain as
splitting criterion
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Chapter 10

Artificial neural network

“Neural network” redirects here. For networks of living
neurons, see Biological neural network. For the journal,
see Neural Networks (journal). For the evolutionary con-
cept, see Neutral network (evolution).

In machine learning and cognitive science, artificial
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An artificial neural network is an interconnected group of nodes,
akin to the vast network of neurons in a brain. Here, each circu-
lar node represents an artificial neuron and an arrow represents
a connection from the output of one neuron to the input of an-
other.

neural networks (ANNs) are a family of statistical learn-
ing models inspired by biological neural networks (the
central nervous systems of animals, in particular the
brain) and are used to estimate or approximate functions
that can depend on a large number of inputs and are
generally unknown. Aurtificial neural networks are gen-
erally presented as systems of interconnected "neurons”
which send messages to each other. The connections
have numeric weights that can be tuned based on expe-
rience, making neural nets adaptive to inputs and capable
of learning.

70

For example, a neural network for handwriting recogni-
tion is defined by a set of input neurons which may be
activated by the pixels of an input image. After being
weighted and transformed by a function (determined by
the network’s designer), the activations of these neurons
are then passed on to other neurons. This process is re-
peated until finally, an output neuron is activated. This
determines which character was read.

Like other machine learning methods - systems that learn
from data - neural networks have been used to solve a
wide variety of tasks that are hard to solve using ordinary
rule-based programming, including computer vision and
speech recognition.

10.1 Background

Examinations of the human’s central nervous system in-
spired the concept of neural networks. In an Artifi-
cial Neural Network, simple artificial nodes, known as

"neurons", “neurodes”, “processing elements” or “units”,
are connected together to form a network which mimics

a biological neural network.

”

There is no single formal definition of what an artificial
neural network is. However, a class of statistical mod-
els may commonly be called “Neural” if they possess the
following characteristics:

1. consist of sets of adaptive weights, i.e. numerical
parameters that are tuned by a learning algorithm,
and

2. are capable of approximating non-linear functions
of their inputs.

The adaptive weights are conceptually connection
strengths between neurons, which are activated during
training and prediction.

Neural networks are similar to biological neural networks
in performing functions collectively and in parallel by
the units, rather than there being a clear delineation of
subtasks to which various units are assigned. The term
“neural network” usually refers to models employed in
statistics, cognitive psychology and artificial intelligence.
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Neural network models which emulate the central ner-
vous system are part of theoretical neuroscience and
computational neuroscience.

In modern software implementations of artificial neu-
ral networks, the approach inspired by biology has been
largely abandoned for a more practical approach based
on statistics and signal processing. In some of these sys-
tems, neural networks or parts of neural networks (like
artificial neurons) form components in larger systems that
combine both adaptive and non-adaptive elements. While
the more general approach of such systems is more suit-
able for real-world problem solving, it has little to do with
the traditional artificial intelligence connectionist models.
What they do have in common, however, is the princi-
ple of non-linear, distributed, parallel and local process-
ing and adaptation. Historically, the use of neural net-
works models marked a paradigm shift in the late eight-
ies from high-level (symbolic) Al characterized by expert
systems with knowledge embodied in if-then rules, to low-
level (sub-symbolic) machine learning, characterized by
knowledge embodied in the parameters of a dynamical
system.

10.2 History

Warren McCulloch and Walter Pitts!!! (1943) created
a computational model for neural networks based on
mathematics and algorithms called threshold logic. This
model paved the way for neural network research to split
into two distinct approaches. One approach focused on
biological processes in the brain and the other focused
on the application of neural networks to artificial intelli-
gence.

In the late 1940s psychologist Donald Hebb!?! created a
hypothesis of learning based on the mechanism of neural
plasticity that is now known as Hebbian learning. Heb-
bian learning is considered to be a 'typical' unsupervised
learning rule and its later variants were early models for
long term potentiation. These ideas started being applied
to computational models in 1948 with Turing’s B-type
machines.

Farley and Wesley A. Clark[®! (1954) first used compu-
tational machines, then called calculators, to simulate a
Hebbian network at MIT. Other neural network compu-
tational machines were created by Rochester, Holland,
Habit, and Duda!*! (1956).

Frank Rosenblatt!® (1958) created the perceptron, an
algorithm for pattern recognition based on a two-layer
learning computer network using simple addition and
subtraction. With mathematical notation, Rosenblatt
also described circuitry not in the basic perceptron, such
as the exclusive-or circuit, a circuit whose mathemati-
cal computation could not be processed until after the
backpropagation algorithm was created by Paul Wer-
bos!®! (1975).
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Neural network research stagnated after the publication
of machine learning research by Marvin Minsky and
Seymour Papert!”! (1969), who discovered two key is-
sues with the computational machines that processed neu-
ral networks. The first was that single-layer neural net-
works were incapable of processing the exclusive-or cir-
cuit. The second significant issue was that computers
were not sophisticated enough to effectively handle the
long run time required by large neural networks. Neu-
ral network research slowed until computers achieved
greater processing power. Also key later advances was
the backpropagation algorithm which effectively solved
the exclusive-or problem (Werbos 1975).[6]

The parallel distributed processing of the mid-1980s be-
came popular under the name connectionism. The text
by David E. Rumelhart and James McClelland'®' (1986)
provided a full exposition on the use of connectionism in
computers to simulate neural processes.

Neural networks, as used in artificial intelligence, have
traditionally been viewed as simplified models of neural
processing in the brain, even though the relation between
this model and brain biological architecture is debated,
as it is not clear to what degree artificial neural networks
mirror brain function.”!

Neural networks were gradually overtaken in popular-
ity in machine learning by support vector machines and
other, much simpler methods such as linear classifiers.
Renewed interest in neural nets was sparked in the late
2000s by the advent of deep learning.

10.2.1 Improvements since 2006

Computational devices have been created in CMOS, for
both biophysical simulation and neuromorphic comput-
ing. More recent efforts show promise for creating
nanodevices!'”! for very large scale principal components
analyses and convolution. If successful, these efforts
could usher in a new era of neural computing''!! that is
a step beyond digital computing, because it depends on
learning rather than programming and because it is fun-
damentally analog rather than digital even though the first
instantiations may in fact be with CMOS digital devices.

Between 2009 and 2012, the recurrent neural networks
and deep feedforward neural networks developed in the
research group of Jiirgen Schmidhuber at the Swiss Al
Lab IDSIA have won eight international competitions
in pattern recognition and machine learning."'?!!!3' For
example, the bi-directional and multi-dimensional long
short term memory (LSTM)!4IISIIOIITI of Alex Graves
et al. won three competitions in connected handwriting
recognition at the 2009 International Conference on Doc-
ument Analysis and Recognition (ICDAR), without any
prior knowledge about the three different languages to be
learned.

Fast GPU-based implementations of this approach by
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Dan Ciresan and colleagues at IDSIA have won several
pattern recognition contests, including the IJCNN 2011
Traffic Sign Recognition Competition,!'819 the ISBI
2012 Segmentation of Neuronal Structures in Electron
Microscopy Stacks challenge,*”! and others. Their neu-
ral networks also were the first artificial pattern recog-
nizers to achieve human-competitive or even superhuman
performance!?!! on important benchmarks such as traffic
sign recognition (IJCNN 2012), or the MNIST handwrit-
ten digits problem of Yann LeCun at NYU.

Deep, highly nonlinear neural architectures similar to the
1980 neocognitron by Kunihiko Fukushima®?! and the
“standard architecture of vision”,!>3! inspired by the sim-
ple and complex cells identified by David H. Hubel and
Torsten Wiesel in the primary visual cortex, can also be
pre-trained by unsupervised methods>*?>! of Geoff Hin-
ton's lab at University of Toronto.[?%127] A team from this
lab won a 2012 contest sponsored by Merck to design
software to help find molecules that might lead to new
drugs.?8

10.3 Models

Neural network models in artificial intelligence are usu-
ally referred to as artificial neural networks (ANNSs);
these are essentially simple mathematical models defin-
ing a function f : X — Y or a distribution over X or
both X and Y, but sometimes models are also intimately
associated with a particular learning algorithm or learn-
ing rule. A common use of the phrase ANN model really
means the definition of a class of such functions (where
members of the class are obtained by varying parameters,
connection weights, or specifics of the architecture such
as the number of neurons or their connectivity).

10.3.1 Network function

See also: Graphical models

The word network in the term 'artificial neural network'
refers to the inter—connections between the neurons in
the different layers of each system. An example system
has three layers. The first layer has input neurons which
send data via synapses to the second layer of neurons, and
then via more synapses to the third layer of output neu-
rons. More complex systems will have more layers of
neurons with some having increased layers of input neu-
rons and output neurons. The synapses store parameters
called “weights” that manipulate the data in the calcula-
tions.

An ANN is typically defined by three types of parameters:

1. The interconnection pattern between the different
layers of neurons
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2. The learning process for updating the weights of the
interconnections

3. The activation function that converts a neuron’s
weighted input to its output activation.

Mathematically, a neuron’s network function f(z) is de-
fined as a composition of other functions g;(z) , which
can further be defined as a composition of other func-
tions. This can be conveniently represented as a net-
work structure, with arrows depicting the dependen-
cies between variables. A widely used type of com-
position is the nonlinear weighted sum, where f(x) =
K (>, wigi(x)) , where KK (commonly referred to as the
activation functiont’!) is some predefined function, such
as the hyperbolic tangent. It will be convenient for the
following to refer to a collection of functions g; as simply

avector g = (91,92, -, 9n) -

ANN dependency graph

This figure depicts such a decomposition of f , with de-
pendencies between variables indicated by arrows. These
can be interpreted in two ways.

The first view is the functional view: the input x is trans-
formed into a 3-dimensional vector h , which is then
transformed into a 2-dimensional vector g , which is fi-
nally transformed into f . This view is most commonly
encountered in the context of optimization.

The second view is the probabilistic view: the random
variable F' = f(G) depends upon the random variable
G = g(H) , which depends upon H = h(X) , which
depends upon the random variable X . This view is most
commonly encountered in the context of graphical mod-
els.

The two views are largely equivalent. In either case, for
this particular network architecture, the components of
individual layers are independent of each other (e.g., the
components of g are independent of each other given their
input & ). This naturally enables a degree of parallelism
in the implementation.

Networks such as the previous one are commonly called
feedforward, because their graph is a directed acyclic
graph. Networks with cycles are commonly called
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Two separate depictions of the recurrent ANN dependency graph
recurrent. Such networks are commonly depicted in the
manner shown at the top of the figure, where f is shown as

being dependent upon itself. However, an implied tem-
poral dependence is not shown.

10.3.2 Learning

What has attracted the most interest in neural networks is
the possibility of learning. Given a specific task to solve,
and a class of functions F' , learning means using a set
of observations to find f* € F which solves the task in
some optimal sense.

This entails defining a cost function C' : F' — R such that,
for the optimal solution f*, C(f*) < C(f)Vf € F -
i.e., no solution has a cost less than the cost of the optimal
solution (see Mathematical optimization).

The cost function C' is an important concept in learning,
as it is a measure of how far away a particular solution
is from an optimal solution to the problem to be solved.
Learning algorithms search through the solution space to
find a function that has the smallest possible cost.

For applications where the solution is dependent on some
data, the cost must necessarily be a function of the obser-
vations, otherwise we would not be modelling anything
related to the data. It is frequently defined as a statistic
to which only approximations can be made. As a sim-
ple example, consider the problem of finding the model
f . which minimizes C = E [(f(z) — y)?] , for data
pairs (z,y) drawn from some distribution D . In prac-
tical situations we would only have N samples from D
and thus, for the above example, we would only minimize
C= + Zf\il(f(xi)—yi)Q . Thus, the cost is minimized
over a sample of the data rather than the entire data set.
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When N — oo some form of online machine learning
must be used, where the cost is partially minimized as
each new example is seen. While online machine learning
is often used when D is fixed, it is most useful in the case
where the distribution changes slowly over time. In neural
network methods, some form of online machine learning
is frequently used for finite datasets.

See also: Mathematical optimization, Estimation theory
and Machine learning

Choosing a cost function

While it is possible to define some arbitrary ad hoc cost
function, frequently a particular cost will be used, either
because it has desirable properties (such as convexity) or
because it arises naturally from a particular formulation
of the problem (e.g., in a probabilistic formulation the
posterior probability of the model can be used as an in-
verse cost). Ultimately, the cost function will depend on
the desired task. An overview of the three main cate-
gories of learning tasks is provided below:

10.3.3 Learning paradigms

There are three major learning paradigms, each corre-
sponding to a particular abstract learning task. These
are supervised learning, unsupervised learning and
reinforcement learning.

Supervised learning

In supervised learning, we are given a set of example pairs
(z,y),z € X,y € Y and the aim is to find a function
f : X — Y inthe allowed class of functions that matches
the examples. In other words, we wish to infer the map-
ping implied by the data; the cost function is related to the
mismatch between our mapping and the data and it im-
plicitly contains prior knowledge about the problem do-
main.

A commonly used cost is the mean-squared error, which
tries to minimize the average squared error between the
network’s output, f(z) , and the target value y over all
the example pairs. When one tries to minimize this cost
using gradient descent for the class of neural networks
called multilayer perceptrons, one obtains the common
and well-known backpropagation algorithm for training
neural networks.

Tasks that fall within the paradigm of supervised learn-
ing are pattern recognition (also known as classification)
and regression (also known as function approximation).
The supervised learning paradigm is also applicable to
sequential data (e.g., for speech and gesture recognition).
This can be thought of as learning with a “teacher”, in the
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form of a function that provides continuous feedback on
the quality of solutions obtained thus far.

Unsupervised learning

In unsupervised learning, some data = is given and the
cost function to be minimized, that can be any function
of the data = and the network’s output, f .

The cost function is dependent on the task (what we are
trying to model) and our a priori assumptions (the implicit
properties of our model, its parameters and the observed
variables).

As a trivial example, consider the model f(z) = a where
a is a constant and the cost C' = E[(x — f(z))?] . Mini-
mizing this cost will give us a value of a that is equal to the
mean of the data. The cost function can be much more
complicated. Its form depends on the application: for ex-
ample, in compression it could be related to the mutual
information between x and f(x) , whereas in statistical
modeling, it could be related to the posterior probability
of the model given the data (note that in both of those ex-
amples those quantities would be maximized rather than
minimized).

Tasks that fall within the paradigm of unsupervised learn-
ing are in general estimation problems; the applications
include clustering, the estimation of statistical distribu-
tions, compression and filtering.

Reinforcement learning

In reinforcement learning, data x are usually not given,
but generated by an agent’s interactions with the environ-
ment. At each point in time ¢ , the agent performs an
action y; and the environment generates an observation
x4 and an instantaneous cost ¢; , according to some (usu-
ally unknown) dynamics. The aim is to discover a policy
for selecting actions that minimizes some measure of a
long-term cost; i.e., the expected cumulative cost. The
environment’s dynamics and the long-term cost for each
policy are usually unknown, but can be estimated.

More formally the environment is modelled as a Markov
decision process (MDP) with states s1, ..., s, € S and
actions a1, ..., a,, € A with the following probability dis-
tributions: the instantaneous cost distribution P(c¢|s;) ,
the observation distribution P(z;|s;) and the transition
P(st41]8¢,a¢) , while a policy is defined as conditional
distribution over actions given the observations. Taken
together, the two then define a Markov chain (MC). The
aim is to discover the policy that minimizes the cost; i.e.,
the MC for which the cost is minimal.

ANNSs are frequently used in reinforcement learning as
part of the overall algorithm.[*%B3! Dynamic program-
ming has been coupled with ANNs (Neuro dynamic pro-
gramming) by Bertsekas and Tsitsiklis'*?! and applied
to multi-dimensional nonlinear problems such as those
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involved in vehicle routing,**! natural resources man-
agement**1351 or medicine!*®! because of the ability of
ANNSs to mitigate losses of accuracy even when reduc-
ing the discretization grid density for numerically approx-
imating the solution of the original control problems.

Tasks that fall within the paradigm of reinforcement
learning are control problems, games and other sequential
decision making tasks.

See also: dynamic programming and stochastic control

10.3.4 Learning algorithms

Training a neural network model essentially means se-
lecting one model from the set of allowed models (or,
in a Bayesian framework, determining a distribution over
the set of allowed models) that minimizes the cost crite-
rion. There are numerous algorithms available for train-
ing neural network models; most of them can be viewed
as a straightforward application of optimization theory
and statistical estimation.

Most of the algorithms used in training artificial neural
networks employ some form of gradient descent, using
backpropagation to compute the actual gradients. This is
done by simply taking the derivative of the cost function
with respect to the network parameters and then changing
those parameters in a gradient-related direction.

Evolutionary —methods,®”)  gene expression pro-

gramming,38!  simulated annealing,*°! expectation-
maximization, non-parametric methods and particle
swarm optimization®”! are some commonly used
methods for training neural networks.

See also: machine learning

10.4 Employing artificial neural
networks

Perhaps the greatest advantage of ANNS is their ability
to be used as an arbitrary function approximation mech-
anism that 'learns’ from observed data. However, using
them is not so straightforward, and a relatively good un-
derstanding of the underlying theory is essential.

e Choice of model: This will depend on the data rep-
resentation and the application. Overly complex
models tend to lead to problems with learning.

e Learning algorithm: There are numerous trade-offs
between learning algorithms. Almost any algorithm
will work well with the correct hyperparameters for
training on a particular fixed data set. However, se-
lecting and tuning an algorithm for training on un-
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seen data requires a significant amount of experi-
mentation.

e Robustness: If the model, cost function and learn-
ing algorithm are selected appropriately the result-
ing ANN can be extremely robust.

With the correct implementation, ANNs can be used nat-
urally in online learning and large data set applications.
Their simple implementation and the existence of mostly
local dependencies exhibited in the structure allows for
fast, parallel implementations in hardware.

10.5 Applications

The utility of artificial neural network models lies in the
fact that they can be used to infer a function from obser-
vations. This is particularly useful in applications where
the complexity of the data or task makes the design of
such a function by hand impractical.

10.5.1 Real-life applications

The tasks artificial neural networks are applied to tend to
fall within the following broad categories:

e Function approximation, or regression analysis, in-
cluding time series prediction, fitness approximation
and modeling.

e (lassification, including pattern and sequence
recognition, novelty detection and sequential deci-
sion making.

e Data processing, including filtering, clustering, blind
source separation and compression.

e Robotics,
prosthesis.

including directing manipulators,

e Control, including Computer numerical control.

Application areas include the system identification and
control (vehicle control, process control, natural re-
sources management), quantum chemistry,!! game-
playing and decision making (backgammon, chess,
poker), pattern recognition (radar systems, face identi-
fication, object recognition and more), sequence recog-
nition (gesture, speech, handwritten text recognition),
medical diagnosis, financial applications (e.g. automated
trading systems), data mining (or knowledge discovery in
databases, “KDD”), visualization and e-mail spam filter-
ing.

Artificial neural networks have also been used to diag-
nose several cancers. An ANN based hybrid lung cancer
detection system named HLND improves the accuracy
of diagnosis and the speed of lung cancer radiology.[**!
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These networks have also been used to diagnose prostate
cancer. The diagnoses can be used to make specific mod-
els taken from a large group of patients compared to in-
formation of one given patient. The models do not de-
pend on assumptions about correlations of different vari-
ables. Colorectal cancer has also been predicted using
the neural networks. Neural networks could predict the
outcome for a patient with colorectal cancer with more
accuracy than the current clinical methods. After train-
ing, the networks could predict multiple patient outcomes
from unrelated institutions.**!

10.5.2 Neural networks and neuroscience

Theoretical and computational neuroscience is the field
concerned with the theoretical analysis and the computa-
tional modeling of biological neural systems. Since neu-
ral systems are intimately related to cognitive processes
and behavior, the field is closely related to cognitive and
behavioral modeling.

The aim of the field is to create models of biological neu-
ral systems in order to understand how biological systems
work. To gain this understanding, neuroscientists strive
to make a link between observed biological processes
(data), biologically plausible mechanisms for neural pro-
cessing and learning (biological neural network models)
and theory (statistical learning theory and information
theory).

Types of models

Many models are used in the field, defined at different lev-
els of abstraction and modeling different aspects of neural
systems. They range from models of the short-term be-
havior of individual neurons, models of how the dynamics
of neural circuitry arise from interactions between indi-
vidual neurons and finally to models of how behavior can
arise from abstract neural modules that represent com-
plete subsystems. These include models of the long-term,
and short-term plasticity, of neural systems and their rela-
tions to learning and memory from the individual neuron
to the system level.

10.6 Neural network software
Main article: Neural network software

Neural network software is used to simulate, research,
develop and apply artificial neural networks, biological
neural networks and, in some cases, a wider array of
adaptive systems.
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10.7 Types of artificial neural net-
works

Main article: Types of artificial neural networks

Artificial neural network types vary from those with only
one or two layers of single direction logic, to compli-
cated multi—input many directional feedback loops and
layers. On the whole, these systems use algorithms in
their programming to determine control and organization
of their functions. Most systems use “weights” to change
the parameters of the throughput and the varying con-
nections to the neurons. Artificial neural networks can be
autonomous and learn by input from outside “teachers” or
even self-teaching from written-in rules.

10.8 Theoretical properties

10.8.1 Computational power

The multi-layer perceptron (MLP) is a universal function
approximator, as proven by the universal approximation
theorem. However, the proof is not constructive regard-
ing the number of neurons required or the settings of the
weights.

Work by Hava Siegelmann and Eduardo D. Sontag has
provided a proof that a specific recurrent architecture
with rational valued weights (as opposed to full preci-
sion real number-valued weights) has the full power of
a Universal Turing Machine!**! using a finite number of
neurons and standard linear connections. Further, it has
been shown that the use of irrational values for weights
results in a machine with super-Turing power.[+]

10.8.2 Capacity

Artificial neural network models have a property called
‘capacity', which roughly corresponds to their ability to
model any given function. It is related to the amount of
information that can be stored in the network and to the
notion of complexity.

10.8.3 Convergence

Nothing can be said in general about convergence since it
depends on a number of factors. Firstly, there may exist
many local minima. This depends on the cost function
and the model. Secondly, the optimization method used
might not be guaranteed to converge when far away from
a local minimum. Thirdly, for a very large amount of
data or parameters, some methods become impractical.
In general, it has been found that theoretical guarantees
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regarding convergence are an unreliable guide to practical
application.

10.8.4 Generalization and statistics

In applications where the goal is to create a system that
generalizes well in unseen examples, the problem of over-
training has emerged. This arises in convoluted or over-
specified systems when the capacity of the network sig-
nificantly exceeds the needed free parameters. There
are two schools of thought for avoiding this problem:
The first is to use cross-validation and similar techniques
to check for the presence of overtraining and optimally
select hyperparameters such as to minimize the gener-
alization error. The second is to use some form of
regularization. This is a concept that emerges naturally in
a probabilistic (Bayesian) framework, where the regular-
ization can be performed by selecting a larger prior prob-
ability over simpler models; but also in statistical learning
theory, where the goal is to minimize over two quantities:
the 'empirical risk' and the 'structural risk', which roughly
corresponds to the error over the training set and the pre-
dicted error in unseen data due to overfitting.
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Confidence analysis of a neural network

Supervised neural networks that use a mean squared error
(MSE) cost function can use formal statistical methods to
determine the confidence of the trained model. The MSE
on a validation set can be used as an estimate for variance.
This value can then be used to calculate the confidence
interval of the output of the network, assuming a normal
distribution. A confidence analysis made this way is sta-
tistically valid as long as the output probability distribu-
tion stays the same and the network is not modified.

By assigning a softmax activation function, a generaliza-
tion of the logistic function, on the output layer of the
neural network (or a softmax component in a component-
based neural network) for categorical target variables, the
outputs can be interpreted as posterior probabilities. This
is very useful in classification as it gives a certainty mea-
sure on classifications.
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The softmax activation function is:
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10.9 Controversies

10.9.1 Training issues

A common criticism of neural networks, particularly in
robotics, is that they require a large diversity of training
for real-world operation . This is not surprising, since
any learning machine needs sufficient representative ex-
amples in order to capture the underlying structure that
allows it to generalize to new cases. Dean Pomerleau,
in his research presented in the paper “Knowledge-based
Training of Artificial Neural Networks for Autonomous
Robot Driving,” uses a neural network to train a robotic
vehicle to drive on multiple types of roads (single lane,
multi-lane, dirt, etc.). A large amount of his research
is devoted to (1) extrapolating multiple training scenar-
ios from a single training experience, and (2) preserving
past training diversity so that the system does not become
overtrained (if, for example, it is presented with a series
of right turns — it should not learn to always turn right).
These issues are common in neural networks that must de-
cide from amongst a wide variety of responses, but can be
dealt with in several ways, for example by randomly shuf-
fling the training examples, by using a numerical opti-
mization algorithm that does not take too large steps when
changing the network connections following an example,
or by grouping examples in so-called mini-batches.

A. K. Dewdney, a former Scientific American columnist,
wrote in 1997, “Although neural nets do solve a few toy
problems, their powers of computation are so limited that
I am surprised anyone takes them seriously as a general
problem-solving tool.” (Dewdney, p. 82)

10.9.2 Hardware issues

To implement large and effective software neural net-
works, considerable processing and storage resources
need to be committed . While the brain has hardware
tailored to the task of processing signals through a graph
of neurons, simulating even a most simplified form on
Von Neumann technology may compel a neural network
designer to fill many millions of database rows for its con-
nections — which can consume vast amounts of computer
memory and hard disk space. Furthermore, the designer
of neural network systems will often need to simulate
the transmission of signals through many of these con-
nections and their associated neurons — which must often
be matched with incredible amounts of CPU processing
power and time. While neural networks often yield effec-
tive programs, they too often do so at the cost of efficiency
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(they tend to consume considerable amounts of time and
money).

Computing power continues to grow roughly according
to Moore’s Law, which may provide sufficient resources
to accomplish new tasks. Neuromorphic engineering ad-
dresses the hardware difficulty directly, by constructing
non-Von-Neumann chips with circuits designed to imple-
ment neural nets from the ground up.

10.9.3 Practical counterexamples to criti-
cisms

Arguments against Dewdney’s position are that neural
networks have been successfully used to solve many com-
plex and diverse tasks, ranging from autonomously flying
aircraft“®! to detecting credit card fraud .

Technology writer Roger Bridgman commented on
Dewdney’s statements about neural nets:

Neural networks, for instance, are in the
dock not only because they have been hyped
to high heaven, (what hasn't?) but also be-
cause you could create a successful net with-
out understanding how it worked: the bunch
of numbers that captures its behaviour would
in all probability be “an opaque, unreadable ta-
ble...valueless as a scientific resource”.

In spite of his emphatic declaration that
science is not technology, Dewdney seems here
to pillory neural nets as bad science when most
of those devising them are just trying to be
good engineers. An unreadable table that a
useful machine could read would still be well
worth having [}

Although it is true that analyzing what has been learned
by an artificial neural network is difficult, it is much eas-
ier to do so than to analyze what has been learned by a
biological neural network. Furthermore, researchers in-
volved in exploring learning algorithms for neural net-
works are gradually uncovering generic principles which
allow a learning machine to be successful. For exam-
ple, Bengio and LeCun (2007) wrote an article regard-
ing local vs non-local learning, as well as shallow vs deep
architecture. 3!

10.9.4 Hybrid approaches

Some other criticisms come from advocates of hybrid
models (combining neural networks and symbolic ap-
proaches), who believe that the intermix of these two ap-
proaches can better capture the mechanisms of the human
mind.[#91650]
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10.10 Gallery

A single-layer feedforward artificial neural network.
Arrows originating from are omitted for clarity.
There are p inputs to this network and q outputs.
In this system, the value of the qth output, would be
calculated as

A two-layer feedforward artificial neural network.
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Chapter 11

Ensemble learning

For an alternative meaning, see variational Bayesian
methods.

In statistics and machine learning, ensemble meth-
ods use multiple learning algorithms to obtain better
predictive performance than could be obtained from any
of the constituent learning algorithms.!!'"?/3] Unlike a
statistical ensemble in statistical mechanics, which is usu-
ally infinite, a machine learning ensemble refers only to
a concrete finite set of alternative models, but typically
allows for much more flexible structure to exist among
those alternatives.

11.1 Overview

Supervised learning algorithms are commonly described
as performing the task of searching through a hypoth-
esis space to find a suitable hypothesis that will make
good predictions with a particular problem. Even if the
hypothesis space contains hypotheses that are very well-
suited for a particular problem, it may be very difficult to
find a good one. Ensembles combine multiple hypotheses
to form a (hopefully) better hypothesis. In other words,
an ensemble is a technique for combining many weak
learners in an attempt to produce a strong learner. The
term ensemble is usually reserved for methods that gener-
ate multiple hypotheses using the same base learner. The
broader term of multiple classifier systems also covers hy-
bridization of hypotheses that are not induced by the same
base learner.

Evaluating the prediction of an ensemble typically re-
quires more computation than evaluating the prediction
of a single model, so ensembles may be thought of as a
way to compensate for poor learning algorithms by per-
forming a lot of extra computation. Fast algorithms such
as decision trees are commonly used with ensembles (for
example Random Forest), although slower algorithms can
benefit from ensemble techniques as well.
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11.2 Ensemble theory

An ensemble is itself a supervised learning algorithm, be-
cause it can be trained and then used to make predic-
tions. The trained ensemble, therefore, represents a sin-
gle hypothesis. This hypothesis, however, is not necessar-
ily contained within the hypothesis space of the models
from which it is built. Thus, ensembles can be shown to
have more flexibility in the functions they can represent.
This flexibility can, in theory, enable them to over-fit the
training data more than a single model would, but in prac-
tice, some ensemble techniques (especially bagging) tend
to reduce problems related to over-fitting of the training
data.

Empirically, ensembles tend to yield better results when
there is a significant diversity among the models.[*]
Many ensemble methods, therefore, seek to promote di-
versity among the models they combine.[%17! Although
perhaps non-intuitive, more random algorithms (like ran-
dom decision trees) can be used to produce a stronger
ensemble than very deliberate algorithms (like entropy-
reducing decision trees).[®! Using a variety of strong
learning algorithms, however, has been shown to be more
effective than using techniques that attempt to dumb-
down the models in order to promote diversity.!

11.3 Common types of ensembles

11.3.1 Bayes optimal classifier

The Bayes Optimal Classifier is a classification technique.
It is an ensemble of all the hypotheses in the hypothe-
sis space. On average, no other ensemble can outper-
form it.!'”! Each hypothesis is given a vote proportional to
the likelihood that the training dataset would be sampled
from a system if that hypothesis were true. To facilitate
training data of finite size, the vote of each hypothesis is
also multiplied by the prior probability of that hypothesis.
The Bayes Optimal Classifier can be expressed with the
following equation:
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11.3. COMMON TYPES OF ENSEMBLES

y=argmax, . »_ P(cj|hi)P(T|h:)P(hs)
h,€EH

where y is the predicted class, C'is the set of all possible
classes, H is the hypothesis space, P refers to a probabil-
ity, and T is the training data. As an ensemble, the Bayes
Optimal Classifier represents a hypothesis that is not nec-
essarily in H . The hypothesis represented by the Bayes
Optimal Classifier, however, is the optimal hypothesis in
ensemble space (the space of all possible ensembles con-
sisting only of hypotheses in H ).

Unfortunately, Bayes Optimal Classifier cannot be prac-
tically implemented for any but the most simple of prob-
lems. There are several reasons why the Bayes Optimal
Classifier cannot be practically implemented:

1. Most interesting hypothesis spaces are too large to
iterate over, as required by the argmax .

2. Many hypotheses yield only a predicted class, rather
than a probability for each class as required by the
term P(c;|h;) .

3. Computing an unbiased estimate of the probability
of the training set given a hypothesis ( P(T'|h;) ) is
non-trivial.

4. Estimating the prior probability for each hypothesis
( P(h;) ) is rarely feasible.

11.3.2 Bootstrap aggregating (bagging)

Main article: Bootstrap aggregating

Bootstrap aggregating, often abbreviated as bagging, in-
volves having each model in the ensemble vote with
equal weight. In order to promote model variance, bag-
ging trains each model in the ensemble using a ran-
domly drawn subset of the training set. As an exam-
ple, the random forest algorithm combines random de-
cision trees with bagging to achieve very high classifica-
tion accuracy.!'!! An interesting application of bagging in
unsupervised learning is provided here.!'?![13!

11.3.3 Boosting

Main article: Boosting (meta-algorithm)

Boosting involves incrementally building an ensemble by
training each new model instance to emphasize the train-
ing instances that previous models mis-classified. In some
cases, boosting has been shown to yield better accuracy
than bagging, but it also tends to be more likely to over-fit
the training data. By far, the most common implementa-
tion of Boosting is Adaboost, although some newer algo-
rithms are reported to achieve better results .
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11.3.4 Bayesian model averaging

Bayesian model averaging (BMA) is an ensemble tech-
nique that seeks to approximate the Bayes Optimal Clas-
sifier by sampling hypotheses from the hypothesis space,
and combining them using Bayes’ law.['*! Unlike the
Bayes optimal classifier, Bayesian model averaging can be
practically implemented. Hypotheses are typically sam-
pled using a Monte Carlo sampling technique such as
MCMC. For example, Gibbs sampling may be used to
draw hypotheses that are representative of the distribu-
tion P(T|H) . It has been shown that under certain cir-
cumstances, when hypotheses are drawn in this manner
and averaged according to Bayes’ law, this technique has
an expected error that is bounded to be at most twice the
expected error of the Bayes optimal classifier.!'>! Despite
the theoretical correctness of this technique, it has been
found to promote over-fitting and to perform worse, em-
pirically, compared to simpler ensemble techniques such
as bagging;!'%! however, these conclusions appear to be
based on a misunderstanding of the purpose of Bayesian
model averaging vs. model combination.!!”!

Pseudo-code

function train_bayesian_model_averaging(T) z = -infinity
For each model, m, in the ensemble: Train m, typi-
cally using a random subset of the training data, T. Let
prior[m] be the prior probability that m is the generat-
ing hypothesis. Typically, uniform priors are used, so
priorfm] = 1. Let x be the predictive accuracy (from
0 to 1) of m for predicting the labels in T. Use x to
estimate log_likelihood[m]. Often, this is computed as
log_likelihood[m] = ITI * (x * log(x) + (1 - x) * log(1 -
x)), where IT! is the number of training patterns in T. z =
max(z, log_likelihood[m]) For each model, m, in the en-
semble: weight[m] = prior[m] * exp(log_likelihood[m] -
z) Normalize all the model weights to sum to 1.

11.3.5 Bayesian model combination

Bayesian model combination (BMC) is an algorithmic
correction to BMA. Instead of sampling each model in
the ensemble individually, it samples from the space of
possible ensembles (with model weightings drawn ran-
domly from a Dirichlet distribution having uniform pa-
rameters). This modification overcomes the tendency of
BMA to converge toward giving all of the weight to a
single model. Although BMC is somewhat more compu-
tationally expensive than BMA, it tends to yield dramat-
ically better results. The results from BMC have been
shown to be better on average (with statistical signifi-
cance) than BMA, and bagging.['®!

The use of Bayes’ law to compute model weights neces-
sitates computing the probability of the data given each
model. Typically, none of the models in the ensemble are
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exactly the distribution from which the training data were
generated, so all of them correctly receive a value close
to zero for this term. This would work well if the ensem-
ble were big enough to sample the entire model-space,
but such is rarely possible. Consequently, each pattern in
the training data will cause the ensemble weight to shift
toward the model in the ensemble that is closest to the
distribution of the training data. It essentially reduces to
an unnecessarily complex method for doing model selec-
tion.

The possible weightings for an ensemble can be visualized
as lying on a simplex. At each vertex of the simplex, all
of the weight is given to a single model in the ensemble.
BMA converges toward the vertex that is closest to the
distribution of the training data. By contrast, BMC con-
verges toward the point where this distribution projects
onto the simplex. In other words, instead of selecting the
one model that is closest to the generating distribution,
it seeks the combination of models that is closest to the
generating distribution.

The results from BMA can often be approximated by us-
ing cross-validation to select the best model from a bucket
of models. Likewise, the results from BMC may be ap-
proximated by using cross-validation to select the best en-
semble combination from a random sampling of possible
weightings.

Pseudo-code

function train_bayesian_model_combination(T) For each
model, m, in the ensemble: weight[m] = 0 sum_weight
= 0 z = -infinity Let n be some number of weightings
to sample. (100 might be a reasonable value. Smaller
is faster. Bigger leads to more precise results.) for i
from O to n - 1: For each model, m, in the ensemble:
// draw from a uniform Dirichlet distribution v[m] = -
log(random_uniform(0,1)) Normalize v to sum to 1 Let
x be the predictive accuracy (from O to 1) of the entire
ensemble, weighted according to v, for predicting the la-
bels in T. Use x to estimate log_likelihood[i]. Often, this
is computed as log_likelihood[i] = ITI * (x * log(x) + (1 -
x) * log(1 - x)), where ITI is the number of training pat-
terns in T. If log_likelihood[i] > z: // z is used to main-
tain numerical stability For each model, m, in the ensem-
ble: weight[m] = weight[m] * exp(z - log_likelihood[i])
z = log_likelihood[i] w = exp(log_likelihood[i] - z) For
each model, m, in the ensemble: weight[m] = weight[m]
* sum_weight / (sum_weight + w) + w * v[m] sum_weight
= sum_weight + w Normalize the model weights to sum
to 1.

11.3.6 Bucket of models

A “bucket of models” is an ensemble in which a model
selection algorithm is used to choose the best model for
each problem. When tested with only one problem, a
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bucket of models can produce no better results than the
best model in the set, but when evaluated across many
problems, it will typically produce much better results,
on average, than any model in the set.

The most common approach used for model-selection is
cross-validation selection (sometimes called a “bake-off
contest”). It is described with the following pseudo-code:

For each model m in the bucket: Do c times: (where 'c' is
some constant) Randomly divide the training dataset into
two datasets: A, and B. Train m with A Test m with B
Select the model that obtains the highest average score

Cross-Validation Selection can be summed up as: “try
them all with the training set, and pick the one that works
best”.[19]

Gating is a generalization of Cross-Validation Selection.
It involves training another learning model to decide
which of the models in the bucket is best-suited to solve
the problem. Often, a perceptron is used for the gating
model. It can be used to pick the “best” model, or it can
be used to give a linear weight to the predictions from
each model in the bucket.

When a bucket of models is used with a large set of prob-
lems, it may be desirable to avoid training some of the
models that take a long time to train. Landmark learn-
ing is a meta-learning approach that seeks to solve this
problem. It involves training only the fast (but imprecise)
algorithms in the bucket, and then using the performance
of these algorithms to help determine which slow (but ac-
curate) algorithm is most likely to do best.?’!

11.3.7 Stacking

Stacking (sometimes called stacked generalization) in-
volves training a learning algorithm to combine the pre-
dictions of several other learning algorithms. First, all of
the other algorithms are trained using the available data,
then a combiner algorithm is trained to make a final pre-
diction using all the predictions of the other algorithms as
additional inputs. If an arbitrary combiner algorithm is
used, then stacking can theoretically represent any of the
ensemble techniques described in this article, although in
practice, a single-layer logistic regression model is often
used as the combiner.

Stacking typically yields performance better than any sin-
gle one of the trained models.!?!! It has been successfully
used on both supervised learning tasks (regression,?”!
classification and distance learning [>*) and unsupervised
learning (density estimation).!>*! It has also been used to
estimate bagging’s error rate.31(2! It has been reported to
out-perform Bayesian model-averaging.!?%! The two top-
performers in the Netflix competition utilized blending,
which may be considered to be a form of stacking.!*”!
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Chapter 12

k-nearest neighbors algorithm

In pattern recognition, the k-Nearest Neighbors algo-
rithm (or k-NN for short) is a non-parametric method
used for classification and regression.[!! In both cases, the
input consists of the k closest training examples in the
feature space. The output depends on whether k-NN is
used for classification or regression:

e In k-NN classification, the output is a
class membership. An object is clas-
sified by a majority vote of its neigh-
bors, with the object being assigned to
the class most common among its k near-
est neighbors (k is a positive integer, typ-
ically small). If k = 1, then the object is
simply assigned to the class of that single
nearest neighbor.

In k- NN regression, the output is the prop-
erty value for the object. This value is
the average of the values of its k nearest
neighbors.

k-NN is a type of instance-based learning, or lazy learn-
ing, where the function is only approximated locally and
all computation is deferred until classification. The k-NN
algorithm is among the simplest of all machine learning
algorithms.

Both for classification and regression, it can be useful to
assign weight to the contributions of the neighbors, so that
the nearer neighbors contribute more to the average than
the more distant ones. For example, a common weighting
scheme consists in giving each neighbor a weight of 1/d,
where d is the distance to the neighbor.?!

The neighbors are taken from a set of objects for which
the class (for k-NN classification) or the object prop-
erty value (for k-NN regression) is known. This can be
thought of as the training set for the algorithm, though no
explicit training step is required.

A shortcoming of the k-NN algorithm is that it is sensi-
tive to the local structure of the data. The algorithm has
nothing to do with and is not to be confused with k-means,
another popular machine learning technique.
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12.1 Algorithm
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Example of k-NN classification. The test sample (green circle)
should be classified either to the first class of blue squares or to
the second class of red triangles. If k = 3 (solid line circle) it
is assigned to the second class because there are 2 triangles and
only I square inside the inner circle. If k =5 (dashed line circle)
it is assigned to the first class (3 squares vs. 2 triangles inside the
outer circle).

The training examples are vectors in a multidimensional
feature space, each with a class label. The training phase
of the algorithm consists only of storing the feature vec-
tors and class labels of the training samples.

In the classification phase, k is a user-defined constant,
and an unlabeled vector (a query or test point) is classified
by assigning the label which is most frequent among the
k training samples nearest to that query point.

A commonly used distance metric for continuous vari-
ables is Euclidean distance. For discrete variables, such
as for text classification, another metric can be used, such
as the overlap metric (or Hamming distance). In the
context of gene expression microarray data, for exam-
ple, k-NN has also been employed with correlation co-
efficients such as Pearson and Spearman.’’! Often, the
classification accuracy of k-NN can be improved signifi-
cantly if the distance metric is learned with specialized
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algorithms such as Large Margin Nearest Neighbor or
Neighbourhood components analysis.

A drawback of the basic “majority voting” classification
occurs when the class distribution is skewed. That is,
examples of a more frequent class tend to dominate the
prediction of the new example, because they tend to be
common among the k nearest neighbors due to their large
number.[*! One way to overcome this problem is to weight
the classification, taking into account the distance from
the test point to each of its k nearest neighbors. The class
(or value, in regression problems) of each of the k nearest
points is multiplied by a weight proportional to the inverse
of the distance from that point to the test point. Another
way to overcome skew is by abstraction in data repre-
sentation. For example in a self-organizing map (SOM),
each node is a representative (a center) of a cluster of
similar points, regardless of their density in the original
training data. K-NN can then be applied to the SOM.

12.2 Parameter selection

The best choice of k depends upon the data; gener-
ally, larger values of k reduce the effect of noise on the
classification,®! but make boundaries between classes less
distinct. A good k can be selected by various heuristic
techniques (see hyperparameter optimization). The spe-
cial case where the class is predicted to be the class of
the closest training sample (i.e. when k = 1) is called the
nearest neighbor algorithm.

The accuracy of the k-NN algorithm can be severely de-
graded by the presence of noisy or irrelevant features, or
if the feature scales are not consistent with their impor-
tance. Much research effort has been put into selecting or
scaling features to improve classification. A particularly
popular approach is the use of evolutionary algorithms to
optimize feature scaling.!®’ Another popular approach is
to scale features by the mutual information of the training
data with the training classes.

In binary (two class) classification problems, it is helpful
to choose k to be an odd number as this avoids tied votes.
One popular way of choosing the empirically optimal & in
this setting is via bootstrap method.[”!

12.3 Properties

k-NN is a special case of a variable-bandwidth, kernel
density “balloon” estimator with a uniform kernel.!®! [°]

The naive version of the algorithm is easy to implement
by computing the distances from the test example to all
stored examples, but it is computationally intensive for
large training sets. Using an appropriate nearest neighbor
search algorithm makes k-NN computationally tractable
even for large data sets. Many nearest neighbor search
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algorithms have been proposed over the years; these gen-
erally seek to reduce the number of distance evaluations
actually performed.

k-NN has some strong consistency results. As the amount
of data approaches infinity, the algorithm is guaranteed to
yield an error rate no worse than twice the Bayes error rate
(the minimum achievable error rate given the distribution
of the data).['% k-NN is guaranteed to approach the Bayes
error rate for some value of k (where k increases as a
function of the number of data points). Various improve-
ments to k-NN are possible by using proximity graphs.[!!!

12.4 Metric Learning

The K-nearest neighbor classification performance can
often be significantly improved through (supervised)
metric learning. Popular algorithms are Neighbourhood
components analysis and Large margin nearest neighbor.
Supervised metric learning algorithms use the label infor-
mation to learn a new metric or pseudo-metric.

12.5 Feature extraction

When the input data to an algorithm is too large to be
processed and it is suspected to be notoriously redundant
(e.g. the same measurement in both feet and meters)
then the input data will be transformed into a reduced
representation set of features (also named features vec-
tor). Transforming the input data into the set of features
is called feature extraction. If the features extracted are
carefully chosen it is expected that the features set will ex-
tract the relevant information from the input data in order
to perform the desired task using this reduced represen-
tation instead of the full size input. Feature extraction is
performed on raw data prior to applying k-NN algorithm
on the transformed data in feature space.

An example of a typical computer vision computation
pipeline for face recognition using k-NN including fea-
ture extraction and dimension reduction pre-processing
steps (usually implemented with OpenCV):

1. Haar face detection
2. Mean-shift tracking analysis

3. PCA or Fisher LDA projection into feature space,
followed by k-NN classification

12.6 Dimension reduction

For high-dimensional data (e.g., with number of dimen-
sions more than 10) dimension reduction is usually per-
formed prior to applying the k-NN algorithm in order to
avoid the effects of the curse of dimensionality. [}
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The curse of dimensionality in the k-NN context basically
means that Euclidean distance is unhelpful in high di-
mensions because all vectors are almost equidistant to the
search query vector (imagine multiple points lying more
or less on a circle with the query point at the center; the
distance from the query to all data points in the search
space is almost the same).

Feature extraction and dimension reduction can be com-
bined in one step using principal component anal-
ysis (PCA), linear discriminant analysis (LDA), or
canonical correlation analysis (CCA) techniques as a
pre-processing step, followed by clustering by k-NN on
feature vectors in reduced-dimension space. In machine
learning this process is also called low-dimensional
embedding.3!

For very-high-dimensional datasets (e.g. when perform-
ing a similarity search on live video streams, DNA
data or high-dimensional time series) running a fast ap-
proximate k-NN search using locality sensitive hashing,
“random projections”,!'* “sketches” !5 or other high-
dimensional similarity search techniques from VLDB
toolbox might be the only feasible option.

12.7 Decision boundary

Nearest neighbor rules in effect implicitly compute the
decision boundary. It is also possible to compute the de-
cision boundary explicitly, and to do so efficiently, so that
the computational complexity is a function of the bound-
ary complexity.['6]

12.8 Data reduction

Data reduction is one of the most important problems for
work with huge data sets. Usually, only some of the data
points are needed for accurate classification. Those data
are called the prototypes and can be found as follows:

1. Select the class-outliers, that is, training data that are
classified incorrectly by k-NN (for a given k)

2. Separate the rest of the data into two sets: (i) the
prototypes that are used for the classification deci-
sions and (ii) the absorbed points that can be cor-
rectly classified by k-NN using prototypes. The ab-
sorbed points can then be removed from the training
set.

12.8.1 Selection of class-outliers

A training example surrounded by examples of other
classes is called a class outlier. Causes of class outliers
include:
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e random error

o insufficient training examples of this class (an iso-
lated example appears instead of a cluster)

e missing important features (the classes are separated
in other dimensions which we do not know)

e too many training examples of other classes (unbal-
anced classes) that create a “hostile” background for
the given small class

Class outliers with k-NN produce noise. They can be
detected and separated for future analysis. Given two
natural numbers, k>r>0, a training example is called a
(k,r)NN class-outlier if its k nearest neighbors include
more than r examples of other classes.

12.8.2 CNN for data reduction

Condensed nearest neighbor (CNN, the Hart algorithm)
is an algorithm designed to reduce the data set for k-
NN classification.!'”) Tt selects the set of prototypes U
from the training data, such that INN with U can clas-
sify the examples almost as accurately as INN does with
the whole data set.
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Calculation of the border ratio.
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Three types of points: prototypes, class-outliers, and absorbed
points.

Given a training set X, CNN works iteratively:
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1. Scan all elements of X, looking for an element x
whose nearest prototype from U has a different label
than x.

2. Remove x from X and add it to U

3. Repeat the scan until no more prototypes are added
to U.

Use U instead of X for classification. The examples that
are not prototypes are called “absorbed” points.

It is efficient to scan the training examples in order of
decreasing border ratio.!'8! The border ratio of a training
example x is defined as

a(x) = llx'-yll / llx-yll

where |lx-yll is the distance to the closest example y having
a different color than x, and llx"-yll is the distance from y
to its closest example x’ with the same label as x.

The border ratio is in the interval [0,1] because llx"-yll
never exceeds |lx-yll. This ordering gives preference to
the borders of the classes for inclusion in the set of proto-
typesU. A point of a different label than x is called exter-
nal to x. The calculation of the border ratio is illustrated
by the figure on the right. The data points are labeled by
colors: the initial point is x and its label is red. External
points are blue and green. The closest to x external point
is y. The closest to y red point is x'. The border ratio
a(x)=llx"yll/llx-yll is the attribute of the initial point x.

Below is an illustration of CNN in a series of figures.
There are three classes (red, green and blue). Fig. 1:
initially there are 60 points in each class. Fig. 2 shows
the 1NN classification map: each pixel is classified by
INN using all the data. Fig. 3 shows the 5NN classifi-
cation map. White areas correspond to the unclassified
regions, where SNN voting is tied (for example, if there
are two green, two red and one blue points among 5 near-
est neighbors). Fig. 4 shows the reduced data set. The
crosses are the class-outliers selected by the (3,2)NN rule
(all the three nearest neighbors of these instances belong
to other classes); the squares are the prototypes, and the
empty circles are the absorbed points. The left bottom
corner shows the numbers of the class-outliers, proto-
types and absorbed points for all three classes. The num-
ber of prototypes varies from 15% to 20% for different
classes in this example. Fig. 5 shows that the 1NN clas-
sification map with the prototypes is very similar to that
with the initial data set. The figures were produced using
the Mirkes applet.!'8!

CNN model reduction for k-NN classifiers

Fig. 1. The dataset.

e Fig. 2. The 1NN classification map.

Fig. 3. The 5NN classification map.
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e Fig. 4. The CNN reduced dataset.

e Fig. 5. The INN classification map based on the
CNN extracted prototypes.

12.9 k-NN regression

In k-NN regression, the k-NN algorithm is used for es-
timating continuous variables. One such algorithm uses
a weighted average of the k nearest neighbors, weighted
by the inverse of their distance. This algorithm works as
follows:

1. Compute the Euclidean or Mahalanobis distance
from the query example to the labeled examples.

2. Order the labeled examples by increasing distance.

3. Find a heuristically optimal number k of nearest
neighbors, based on RMSE. This is done using cross
validation.

4. Calculate an inverse distance weighted average with
the k-nearest multivariate neighbors.

12.10 Validation of results

A confusion matrix or “matching matrix” is often used
as a tool to validate the accuracy of k-NN classification.
More robust statistical methods such as likelihood-ratio
test can also be applied.

12.11 See also

e Instance-based learning

e Nearest neighbor search

o Statistical classification

o Cluster analysis

e Data mining

e Nearest centroid classifier
e Pattern recognition

e Curse of dimensionality

e Dimension reduction

e Principal Component Analysis
e Locality Sensitive Hashing
e MinHash

e Cluster hypothesis

e Closest pair of points problem


https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/RMSE
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Likelihood-ratio_test
https://en.wikipedia.org/wiki/Likelihood-ratio_test
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Nearest_centroid_classifier
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Dimension_reduction
https://en.wikipedia.org/wiki/Principal_Component_Analysis
https://en.wikipedia.org/wiki/Locality_Sensitive_Hashing
https://en.wikipedia.org/wiki/MinHash
https://en.wikipedia.org/wiki/Cluster_hypothesis
https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
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