
Conditional Random Fields as Recurrent Neural Networks

Shuai Zheng1 Sadeep Jayasumana1 Bernardino Romera-Paredes1 Vibhav Vineet2

Zizhong Su3 Dalong Du3 Chang Huang3 Philip H. S. Torr1
1University of Oxford 2Stanford University 3Baidu Research

Abstract

Pixel-level labelling tasks, such as semantic segmenta-
tion and depth estimation, play a central role in image un-
derstanding. Recent approaches have attempted to har-
ness the capabilities of deep learning techniques for image
recognition to tackle pixel-level labelling tasks. One cen-
tral issue in this approach is the limited capacity of deep
learning techniques to delineate visual objects. To solve
this problem, we introduce a new form of convolutional
neural network, called CRF-RNN, which expresses a Con-
ditional Random Field (CRF) as a Recurrent Neural Net-
work (RNN). Our short network can be plugged in as a part
of a deep Convolutional Neural Network (CNN) to obtain
an end-to-end system that has desirable properties of both
CNNs and CRFs. Importantly, our system fully integrates
CRF modelling with CNNs, making it possible to train the
whole system end-to-end with the usual back-propagation
algorithm.

We apply this framework to the problem of semantic im-
age segmentation, obtaining competitive results with the
state-of-the-art without the need of introducing any post-
processing method for object delineation.

1. Introduction
Low-level computer vision problems such as semantic

image segmentation or depth estimation often involve as-
signing labels to each pixel in an image. While the feature
representation used to classify individual pixels plays an im-
portant role in this task, it is equally important to consider
factors such as image edges, appearance consistency and
spatial consistency while assigning labels in order to obtain
accurate and precise results.

Designing a strong feature representation is a key chal-
lenge in pixel-level labelling problems. Works on this topic
include: TextonBoost [28], TextonForest [27], and Random
Forest-based human body pose estimation for Kinect [26].
Recently, supervised deep learning approaches such as
large-scale deep Convolutional Neural Networks (CNNs)
have been immensely successful in many high-level com-

puter vision tasks such as image recognition [13] and ob-
ject detection [8]. This motivates the successive explo-
rations in employing CNNs for pixel-level labelling prob-
lems. The key insight is to learn a strong feature represen-
tation end-to-end for the pixel-level labelling task instead
of hand-crafting features with heuristic parameter tuning.
In fact, a number of approaches including Farabet et al. [7],
FCN [19], and Zoom-out [20] have shown a significant ac-
curacy boost by adapting state-of-the-art CNN based image
classifiers to the semantic segmentation problem.

However, there are significant challenges in adapting
CNNs designed for high level computer vision tasks such
as object recognition to pixel-level labelling tasks. Firstly,
traditional CNNs have convolutional filters with large re-
ceptive fields and hence produce coarse outputs when re-
structured to produce pixel-level labels [19, 4]. Presence of
max-pooling layers further increases the coarseness of the
output. This, for instance, can result in non-sharp bound-
aries and blob-like shapes in semantic segmentation tasks.
Secondly, CNNs lack smoothness constraints that encour-
age label agreement between similar pixels and spatial and
appearance consistency of the labelling output. Lack of
such smoothness constraints can result in poor object delin-
eation and small spurious regions in the segmentation out-
put [31, 30, 14, 21].

On a separate track to the progress of deep learning
techniques, probabilistic graphical models have been devel-
oped as effective methods to enhance the accuracy of pixel-
level labelling tasks. Conditional Random Fields (CRFs),
in particular, have observed widespread success in this
area [17, 14, 12] and have become one of the most suc-
cessful graphical models used in computer vision. CRF in-
ference is able to refine weak and coarse pixel-level label
predictions to produce sharp boundaries and fine-grained
segmentations. Therefore, intuitively, CRF refinement can
be used to overcome the drawbacks in utilizing CNNs for
pixel-level labelling tasks.

In this paper, we propose an end-to-end deep learning
solution for pixel-level semantic image segmentation prob-
lem, that combines the strengths of both CNNs and CRFs.
More specifically, we formulate fully-connected dense CRF

1

ar
X

iv
:1

50
2.

03
24

0v
1 

 [
cs

.C
V

] 
 1

1 
Fe

b 
20

15



inference as a Recurrent Neural Network (RNN) which can
refine coarse outputs from a traditional CNN in the for-
ward pass, while passing error differentials back to the
CNN during training. Importantly, with our formulation,
the whole network, which comprises a traditional CNN and
an RNN for CRF inference, can be trained end-to-end utiliz-
ing the usual back propagation algorithm. We show that our
method is able to achieve competitive results on challenging
datasets.

Our contribution is based on the observation that filter-
based approximate mean-field inference approach for fully-
connected CRFs [12] relies on applying Gaussian and bilat-
eral filters on the mean-field approximates in each iteration.
We unroll an iteration of the algorithm as a stack of layers in
a CNN. Unlike the standard convolutional layer in which fil-
ters are fixed after the training stage, this new layer involves
an edge-preserving filter [29, 23] that depends on the origi-
nal spatial and appearance information of the image. These
filters have the additional advantages of requiring a small
set of learning parameters, despite the filter size being po-
tentially as big as the image. The parameters of the final
combined CNN-CRF deep network are learned end-to-end,
using back-propagation [18] to minimise the structured loss
which captures the contextual information of the pixel-level
labelling.

2. Related Work
In this section we review approaches that make use of

CNN for low-level computer vision tasks, with a special fo-
cus on semantic image segmentation. In order to address
the pixel-wise semantic image segmentation, a wide variety
of approaches have been proposed. These approaches can
be categorized into two main strategies.

The first strategy is based on utilizing separated mecha-
nisms for both feature extraction, and image segmentation
exploiting the edges of the image [2, 20]. One representa-
tive instance of this scheme is the application of an CNN for
the extraction of meaningful features, and using superpixels
to account for the structural pattern of the image. One such
example is given in [20], where the authors first apply su-
perpixels and then use a feature extraction process on each
of them. Another example is described in Farabet et al [7],
where the authors propose a parallel scheme in which the
combination of both contributions, superpixels and features,
is made at a latter stage. The main disadvantage of this strat-
egy is that errors in the initial proposals (e.g: super-pixels)
may lead to poor predictions, no matter how good the fea-
ture extraction process is.

The second strategy is to directly learn a nonlinear model
from the images to the label map. This has been shown in
Eigen & Fergus et al. [6], where the authors replaced the
last fully connected layers of a CNN by convolutional layers
in order to keep the spatial information. Other works, like

Hariharan et al. [9], and Long et al [19], build on the notion
that top layers obtain meaningful features for object recog-
nition, whereas low layers keep information about the struc-
ture of the image, such as edges. These works include some
form of upsampling of the feature representation of the high
layers so that they can be combined with the low layers fea-
tures. The combination of features at different layers is done
by summation. Chen et al. [4] combined a CNN with a fully
connected conditional random fields (CRF). In contrast to
Chen et al, which employs CRF inference as a standalone
post-processing step disconnected from the CNN, our ap-
proach is an end-to-end learning system that could jointly
learn the parameters for the pixel-wise CNN regression, de-
convolution layers and fully-connected layers together.

In addition to the previous strategies, other works have
exploited the commonalities between semantic image seg-
mentation and other low-level computer vision tasks, such
as depth and surface normals estimation. Ladicky et al. [15]
recently showed that it is possible to employ a discrimina-
tive supervised approach to simultaneously predict pixel-
wise labels with semantic image segmentation, depth esti-
mation, and surface normal [16]. However, the handcrafted
features, the use of superpixels, and the shallow classifiers
limit the performance of their approach. Eigen et al. [6] pro-
pose a coarse-to-fine approach to achieve depth prediction
from single images. It is based on refining the prediction of
a first CNN by using another CNN. The latter takes as input
both the original image, and the coarse output of the for-
mer CNN. They later extended this work, and developed a
joint approach [5] that simultaneously pixel-wisely predict
the depth, surface normal and semantic labels.

3. Conditional Random Fields

In this section we provide a brief overview of Condi-
tional Random Fields (CRF) for pixel-wise labelling and
introduce the notation used in the paper. A CRF, used in the
context of pixel-wise label prediction, models pixels labels
as random variables conditioned upon a global observation,
namely, the image.

Let Xi be the random variable of the pixel i, which can
take any value from a set of labels L = {l1, l2, . . . , lL}. Let
X be the vector formed by the variables X1, X2, . . . , XN ,
where N is the number of pixels in the image. Given a
graph G = (V,E), where V = {X1, X2, . . . , XN}, and a
global observation (image) I, the pair (I,X) can be mod-
elled as a CRF characterized by a Gibbs distribution of the
form P (X = x|I) = 1

Z(I) exp(−E(x|I)). Here E(x) is
called the energy of the configuration x ∈ LN and Z(I)
is the partition function [17]. From now on, we drop the
conditioning on I in the notation for convenience.

In the fully connected pairwise CRF model of [12], the

2



energy of a label assignment x is given by:

E(x) =
∑

i

ψu(xi) +
∑

i<j

ψp(xi, xj),

where the unary potentials ψu(xi) measure the inverse like-
lihood (and therefore, the cost) of the pixel i taking the label
xi, and pairwise potentials ψp(xi, xj) measure the cost of
assigning labels xi, xj to pixels i, j simultaneously. In our
model, unary potentials are obtained from a CNN, which,
roughly speaking, predicts labels for pixels without consid-
ering the smoothness and the consistency of the label as-
signments. The pairwise potential provides an image data-
dependent smoothing term that encourages assigning simi-
lar labels to similar pixels. As done in [12], we model pair-
wise potentials as weighted Gaussians:

ψp(xi, xj) = µ(xi, xj)
M∑

m=1

w(m)k(m)(fi, fj),

where each k(m) for m = 1, . . . ,M , is a Gaussian kernel
applied on feature vectors. The feature vector of pixel i, fi,
is derived from image features such as spatial location and
RGB values [12].

Inference of the above CRF yields the most probable la-
bel assignment x for the given image. Since the direct infer-
ence is intractable, a mean-field approximation to the CRF
distribution is used. It consists in approximating the CRF
distribution P (X) by a simpler distribution Q, which is the
product of marginals, i.e., Q(X) =

∏
Qi(Xi). The steps

of the exact iterative algorithm for mean-field inference and
its reformulation as an RNN are discussed next.

4. A Mean-field Iteration as a Stack of CNN
Layers

We now present the main contribution of this paper. In
particular, we show that the mean-field CRF inference algo-
rithm proposed in [12] can be reformulated as a Recurrent
Neural Network (RNN). To this end, we first consider indi-
vidual steps of the algorithm summarized in Algorithm 3,
and describe them as CNN layers. In that and in the re-
mainder of this paper we use Ui(l) to denote the negative
of the unary potentials introduced in the previous section,
Ui(l) = −ψu(Xi = l), for the sake of brevity.

In order to reformulate the steps of the inference algo-
rithm as CNN layers, it is essential to be able to calculate
error differentials in each layer w.r.t. its inputs in order to
be able to back propagate the error differentials to previous
layers during training. We also discuss how to calculate er-
ror differentials w.r.t. the parameters in each layer, enabling
their optimization through the back-propagation algorithm.
Therefore, in our formulation, CRF parameters such as the
weights of the Gaussian kernels can also be optimized au-
tomatically during the training phase of the full network.

Once the individual steps of the algorithm are broken
down as CNN layers, the full algorithm can then be for-
mulated as an RNN by arranging the layers in such a way
that each iteration takes inputs from the previous iteration.
We come back to this in Section 5 after discussing the steps
of Algorithm 3 in detail below.

4.1. Initialization

In the initialization step of the algorithm, the operation
Qi(l) ← 1

Zi
exp (Ui(l)), where Zi =

∑
l exp(Ui(l)), is

performed. Note that this is equivalent to applying a soft-
max function over the unary log-likelihood values U across
all the labels at each pixel. The softmax function has been
extensively used in CNN architectures before and is there-
fore well known in the deep learning community.

This step does not include any parameters and the error
differentials received at the output of the step during back-
propagation could be passed down to the unary inputs after
performing usual backward pass calculations of the softmax
transformation.

4.2. Message Passing

In the fully connected CRF formulation, message pass-
ing is implemented by applying M Gaussian filters on Q
values. Gaussian filter coefficients are derived based on im-
age features such as the pixel locations and RGB values,
that reflect how strongly a pixel is related to other pixels.
Since the CRF is fully connected, each filter’s receptive
field spans the whole image, making it infeasible to use a
brute-force implementation of the filters. Fortunately, sev-
eral approximation techniques exist to make computation
of high dimensional Gaussian filtering significantly faster.
We use the Permutohedral lattice implementation [1], which
can compute the filter response in O(N) time, where N is
the number of pixels of the image [1].

During back propagation, error derivatives with respect
to the filter inputs are calculated by applying the M Gaus-
sian filters in reverse on the error derivatives w.r.t. the filter
outputs. Therefore, back-propagation through this filtering
stage can also be performed inO(N) time. In this work, for
simplicity, we keep the bandwidth values of the filters fixed.

4.3. Linear Combination of Filter Outputs

The next step of the mean-field iteration is taking a
weighted sum of theM filter outputs from the previous step.
This can be viewed as usual convolution with a 1×1×M fil-
ter. Since both inputs and the outputs to this step are known
during back-propagation, the error derivative w.r.t. the filter
weights can be computed, making it possible to automat-
ically learn the filter weights (relative contributions from
each Gaussian filter output from the previous stage). Error
derivative w.r.t. the inputs can also be computed in the usual

3



Algorithm 1 Mean-field in fully CRFs, broken down as CNN layers.
Qi ← 1

Zi
exp (Ui(l)) for all i . Initialization

while not converged do
Q̃

(m)
i (l)←∑

j 6=i k
(m)(fi, fj)Qj(l) for all m . Message passing

Q̌i(l)←
∑

m w(m)Q̃
(m)
i (l) . Linear combination of message passing outputs

Q̂i(l)←
∑

l′∈L µ(l, l′)Q̌i(l) . Compatibility transform
Qi(l)← Ui(l)− Q̂i(l) . Adding unary values
Exponentiate and normalize Qi for all i . Normalizing

end while

Message
Passing

Weightening Compatibility
Transform

Unary
Addition

Normalization

U

Qin

Qout =
fθ(U,Qin)

fθ

1

Figure 1. A mean-field iteration as a CNN. A single iteration of the mean-field CRF inference algorithm can be modelled as a stack of
common CNN layers.

manner to pass the error derivatives down to the previous
stage.

4.4. Compatibility Transform

In the compatibility transform step, outputs from the pre-
vious step (denoted by Q̌ in Algorithm 3) are shared be-
tween the labels to a varied extent, depending on the com-
patibility between these labels. Compatibility between the
two labels l and l′ is parameterized by the function µ(l, l′).
The Potts model, given by µ(l, l′) = [l 6= l′], assigns a
penalty if different labels are assigned to pixels with simi-
lar properties. A limitation of this model is that it assigns
the same penalty for all different pairs of labels. Intuitively,
better results can be obtained by taking the compatibility
between different label pairs into account and penalizing
the assignments accordingly. For example, assigning labels
“person” and “bicycle” to nearby pixels should have a lesser
penalty than assigning labels “sky” and “bicycle”. There-
fore, learning the function µ from data is preferred to fixing
it in advance with Potts model.

Compatibility transform step can be viewed as another
convolution layer where the spatial receptive field of the fil-
ter is 1 × 1, and the number of input and output channels
are both L. Learning the weights of this filter is equivalent
to learning the label compatibility function µ. Transferring
error differentials from the output of this step to the input

could also be done trivially.

4.5. Adding Unary Values

In this step, the output from the compatibility transform
stage is subtracted element-wise from the unary inputs U .
While no parameters are involved in this step, transferring
error differentials can be done trivially by copying the dif-
ferentials at the output of this step to both inputs with the
appropriate sign.

4.6. Normalization

Finally, the normalization step of the iteration can be
considered as another softmax layer with no tunable param-
eters. Differentials at the output of this step can be passed
on to the input using the softmax layer’s backward pass.

5. The CRF-RNN Network
In the previous section, it was shown that one iteration

of the algorithm can be formulated as a stack of common
CNN layers (see Fig. 1). We use the function fθ to denote
the transformation done by one mean-field iteration: given
unary log-likelihood values U and an estimation Qin, the
next estimation after one mean-field iteration is given by
fθ(U,Qin). The vector θ represents the CRF parameters
described in Section 4.

4



Meanfield
Iteration

h2 = fθ(U, h1)

G1

Softmax
Normalization

G2

U

YH2

H1

1

Figure 2. The CRF-RNN Network. We formulate the mean-field
CRF inference algorithm as a Recurrent Neural Network (RNN).
Gating functions G1 and G2 are fixed as described in the text.

Multiple mean-field iterations can be implemented by re-
peating the above stack of layers in such a way that each
iteration takes Q value estimations from the previous iter-
ation and the unary values in their original form. This is
equivalent to treating the iterative mean-field inference as a
Recurrent Neural Network (RNN) as shown in Fig. 2. Us-
ing the notation in the figure, the behaviour of the network
is given by the following equations where T is the number
of iterations:

H1(t) =

{
softmax(U), t = 0

H2(t− 1), 0 < t ≤ T,
H2(t) = fθ(H1(t), U), 0 ≤ t ≤ T,

Y (t) =

{
0, 0 ≤ t < T

H2(t), t = T.

We name this RNN structure CRF-RNN. Parameters of
the CRF-RNN are same as the mean-field parameters de-
scribed in Section 4 and denoted by θ here. Since the calcu-
lation of error differentials w.r.t. these parameters in a single
iteration was described in Section 4, they can be learnt in the
RNN setting using the standard back-propagation through
time algorithm [25, 22]. It was shown in [12] that the itera-
tive algorithm for fully connected CRF converges very fast
in less than 10 iterations. Furthermore, in practice, after 3
to 5 iterations, increasing the number of iterations usually
does not significantly improve results [12]. We used 3 itera-
tions in all our experiments. This means that our CRF-RNN
does not learn way back through time. Therefore, it does not
suffer from the infamous vanishing and exploding gradient
problem inherent to temporarily deep RNNs [3, 24].

Let us now consider the case where the CRF-RNN is
plugged in as part of a deeper neural network. For instance,
this will be the case when the proposed CRF-RNN is used

to refine unary log-likelihood values U provided by a CNN.
In the forward pass, once the computation enters the CRF-
RNN, it takes T iterations for the data to leave the carousel
created by the RNN. Neither the CNN that provides unary
values nor the other layers after the CRF-RNN need to per-
form any computations during this time since the refinement
happens only inside the RNN’s carousel. Once the output
Y leaves the carousel, next stages of the deep network after
the CRF-RNN can continue the forward pass. In our ex-
periments, we use a traditional feed-forward CNN to obtain
unary values and use the CRF-RNN as the last stage of the
deep network.

During the backward pass, once the error differentials
reach the CRF-RNN’s output Y , they similarly spend T iter-
ations within the carousel before reaching the RNN input U
in order to propagate to the CNN which provides the unary
input. In each iteration inside the carousel, error differen-
tials are computed inside each component of the mean-field
iterations as described in Section 4. We note that unnec-
essarily increasing the number of mean-field iterations T
could result in the vanishing and exploding gradient prob-
lems in the CRF-RNN.

6. Experiments
In this section, we present some preliminary experimen-

tal results with the proposed CRF-RNN framework, where
we optimize the parameters of the RNN stage.

Our approach has been implemented using the Caffe [11]
deep learning library. Our deep network is formed by using
the FCN-8s network of [19] to provide unary potentials to
the CRF-RNN. We initialize this first part of the network,
which computes unary potentials, using the publicly avail-
able models of [19]. Initial values for the CRF parameters
are obtained from a validation process using the validation
set. These are then optimized within the network using the
back-propagation algorithm. In all our experiments we set
the number of mean-field iterations T in the CRF-RNN to
3. It was observed that increasing the number of iterations
beyond this did not significantly improve the results.

We evaluated our approach CRF-RNN on PASCAL
VOC Segmentation datasets. In the VOC-2011 Segmenta-
tion dataset, there are 1,112 images in the training set, 1,111
in the validation set, and 1,111 in the test set. The ground
truth labels of the latter are not publicly available. We aug-
mented this training set with the additional data provided by
Hariharan et al. [10], which consists of 9,800 images.

We trained our system using this augmented VOC-2011
train set and use the PASCAL VOC evaluation server to ob-
tain the results on VOC-2011 and 2012 test sets. As shown
in Table 1 and Table 2, our CRF-RNN obtains the best per-
formance on the VOC-2011 test set and the second place
in the VOC-2012 test set. The CRF-RNN significantly im-
proves the segmentation accuracy over the FCN-8s network,

5



which is used to obtain unary potentials (by 2.7 percentage
points on VOC-2011 and 3.0 on VOC-2012). The best per-
former on VOC-2012 uses a different CNN, trained weights
of which have not been made publicly available yet.

Our approach also produces qualitatively better results
in PASCAL VOC 2011. For example, as evidenced by
Fig. 3, the segmentation outputs of our approach have better
boundaries and fewer spurious regions.

Method Test Set Validation Set
R-CNN [8] 47.9 -
SDS [10] 52.6 53.9

FCN-8s [19] 62.7 67.5
Zoom-out [20] 64.1 -

CRF-RNN 65.3 69.0
Table 1. Mean IU accuracy of our approach, CRF-RNN, compared
to the other state-of-the-art approaches on the Pascal VOC-2011
dataset.

Method Test Set
R-CNN [8] 47.9
SDS [10] 52.6

FCN-8s [19] 62.7
Zoom-out [20] 64.1
DeepLab [4] 67.1
CRF-RNN 65.2

Table 2. Mean IU accuracy of our approach, CRF-RNN, compared
to the other state-of-the-art approaches on the Pascal VOC-2012
dataset.

7. Conclusion

We presented CRF-RNN, an interpretation of dense
CRFs as Recurrent Neural Networks. Our formulation
fully integrates CRF inference with emerging deep learn-
ing techniques. In particular, the proposed CRF-RNN can
be plugged in as a part of a traditional deep neural network:
It is capable of passing on error differentials from its out-
puts to inputs during back-propagation based training of the
deep network while learning CRF parameters. We demon-
strate the use of the proposed CRF-RNN by utilizing it for
the semantic segmentation task, where it is used to perform
CRF inference on unary potentials obtained from a tradi-
tional deep CNN. Introducing CRF inference to end-to-end
deep learning approaches significantly improves semantic
segmentation outputs. This improvement can be attributed
to the uniting of the strengths of CNNs and CRFs using the
proposed CRF-RNN network.

References
[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. Computer Graphics
Forum, 29(2):753–762, 2010.

[2] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and
J. Malik. Semantic segmentation using regions and parts. In
IEEE CVPR, 2012.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE Trans-
actions on Neural Networks, 1994.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. In arXiv:1412.7062,
2014.

[5] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In arXiv:1411.4734, 2014.

[6] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
NIPS, 2014.

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. IEEE TPAMI, 2013.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In IEEE CVPR, 2014.

[9] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In arXiv:1411.5752, 2014.

[10] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In ECCV, 2014.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[12] P. Krähenbühl and V. Koltun. Efficient inference in fully
connected crfs with gaussian edge potentials. In NIPS, 2011.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[14] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Associa-
tive hierarchical crfs for object class image segmentation. In
IEEE ICCV, 2009.

[15] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of
perspective. In IEEE CVPR, 2014.

[16] L. Ladicky, B. Zeisl, and M. Poolefeys. Discriminatively
trained dense surface normal estimation. In ECCV, 2014.

[17] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML, 2001.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recognition.
86(11):2278–2324, 1998.

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In arXiv:1411.4038,
2014.

6



In
pu

tI
m

ag
e

FC
N

R
es

ul
ts

O
ur

R
es

ul
ts

G
ro

un
d

Tr
ut

h
In

pu
tI

m
ag

e
FC

N
-8

s
O

ut
pu

t
O

ur
M

et
ho

d
G

ro
un

d
Tr

ut
h

Figure 3. Segmentation results. Illustration of sample results on the validation set of the Pascal VOC-2011 dataset.

[20] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-
forward semantic segmentation with zoom-out features. In
arXiv:1412.0774, 2014.

[21] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fi-
dler, R. Urtasun, and A. Yuille. The role of context for object

detection and semantic segmentation in the wild. In IEEE
CVPR, 2014.

[22] M. C. Mozer. Backpropagation. chapter A Focused Back-
propagation Algorithm for Temporal Pattern Recognition. L.
Erlbaum Associates Inc., 1995.

7



[23] S. Paris and F. Durand. A fast approximation of the bilateral
filter using a signal processing approach. 81(1):24–52, 2013.

[24] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. On the
difficulty of training recurrent neural networks. In ICML,
2013.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neuro-
computing: Foundations of research. chapter Learning Inter-
nal Representations by Error Propagation. MIT Press, 1988.

[26] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. 2011.

[27] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. 2008.

[28] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost
for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and con-
text. IJCV, 81(1):2–23, 2009.

[29] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In IEEE CVPR, 1998.

[30] Z. Tu. Auto-context and its application to high-level vision
tasks. In IEEE CVPR, 2008.

[31] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image
parsing: Unifying segmentation, detection, and recognition.
63(2):113–140, 2005.

8


