
Large-Scale Deep Learning for
Intelligent Computer Systems

Jeff Dean

Google Brain team in collaboration with many other teams

Growing Use of Deep Learning at Google

Android
Apps
GMail
Image Understanding
Maps
NLP
Photos
Robotics
Speech
Translation
many research uses..
YouTube
… many others ...

Across many
products/areas:# of directories containing model description files

Outline

Two generations of deep learning software systems:

● 1st generation: DistBelief [Dean et al., NIPS 2012]
● 2nd generation: TensorFlow (unpublished)

An overview of how we use these in research and products

Plus, ...a new approach for training (people, not models)

Google Brain project started in 2011, with a focus on
pushing state-of-the-art in neural networks. Initial
emphasis:

● use large datasets, and
● large amounts of computation

to push boundaries of what is possible in perception and
language understanding

Plenty of raw data

● Text: trillions of words of English + other languages
● Visual data: billions of images and videos
● Audio: tens of thousands of hours of speech per day
● User activity: queries, marking messages spam, etc.
● Knowledge graph: billions of labelled relation triples
● ...

How can we build systems that truly understand this data?

Text Understanding

“This movie should have NEVER been made. From the poorly
done animation, to the beyond bad acting. I am not sure at what
point the people behind this movie said "Ok, looks good! Lets
do it!" I was in awe of how truly horrid this movie was.”

Turnaround Time and Effect on Research
● Minutes, Hours:

○ Interactive research! Instant gratification!

● 1-4 days
○ Tolerable
○ Interactivity replaced by running many experiments in parallel

● 1-4 weeks:
○ High value experiments only
○ Progress stalls

● >1 month
○ Don’t even try

Important Property of Neural Networks

Results get better with

more data +
bigger models +

more computation

(Better algorithms, new insights and improved
techniques always help, too!)

How Can We Train Large, Powerful Models Quickly?
● Exploit many kinds of parallelism

○ Model parallelism
○ Data parallelism

Model Parallelism

Model Parallelism

Model Parallelism

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p∆p

p’ = p + ∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’

p’ = p + ∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’∆p’

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’∆p’

p’’ = p’ + ∆p

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’∆p’

p’’ = p’ + ∆p

Data Parallelism Choices
Can do this synchronously:

● N replicas eqivalent to an N times larger batch size
● Pro: No noise
● Con: Less fault tolerant (requires recovery if any single machine fails)

Can do this asynchronously:

● Con: Noise in gradients
● Pro: Relatively fault tolerant (failure in model replica doesn’t block other

replicas)

(Or hybrid: M asynchronous groups of N synchronous replicas)

Data Parallelism Considerations
Want model computation time to be large relative to time to send/receive
parameters over network

Models with fewer parameters, that reuse each parameter multiple times in the
computation

● Mini-batches of size B reuse parameters B times

Certain model structures reuse parameter many times within each example:

● Convolutional models tend to reuse hundreds or thousands of times per
example (for different spatial positions)

● Recurrent models (LSTMs, RNNs) tend to reuse tens to hundreds of times
(for unrolling through T time steps during training)

What are some ways that
deep learning is having

a significant impact at Google?

Sequence to Sequence Models

Oriol Vinyals, Ilya Sutskever & Quoc Le started looking at how to map one
sequence to another sequence:

The lazy brown fox jumped over the ...

0.1

0.5

1.0

0.0

2.4

Sequence to Sequence Model

Deep LSTM

The lazy brown fox jumped over the ...

0.1

0.5

1.0

0.0

2.4

High dimensional
representation of a

sequence

Connect two, you get a machine translation
system

The quick brown fox jumped over the ...

Le renard brun rapide saute par dessus ...

It works well

Sequence to Sequence Learning with Neural Networks
Ilya Sutskever, Oriol Vinyals, Quoc V. Le (NIPS 2014)

Addressing Rare Word Problems in Neural Translation Models (arxiv.org/abs/1410.8206)
Thang Luong, Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Wojciech Zaremba

WMT’14 BLEU

State-of-the-art 37.0

Neural Translation Model 37.3

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215

… or a chatbot.

Hi Shiva, how are you?

I'm fine, thank you!

User> hello , i have a problem with my machine
BrainStop> hi
BrainStop> this is shiva .
BrainStop> how are you doing today ?
User> hi shiva , how are you ?
BrainStop> i ' m fine , thank you !
BrainStop> how may i assist you today ?
User> i want to access using vpn
BrainStop> currently the computer is connected to corp network ?
User> no
BrainStop> check this solution :
BrainStop> https : / / INTERNAL_HOSTNAME_REDACTED / articles / connecting - to -
disconnecting - from - ssl - vpn # heading - 4
User> thanks , bye !
BrainStop> thank you .

It produces sensible conversations.

… or a parser.

Allen is locked in, regardless of his situ...

n:(S.17 n:(S.17 n:(NP.11 p:NNP.53 n:) ...

It works well

Completely learned parser with no parsing-specific code

State of the art results on WSJ 23 parsing task

Grammar as a Foreign Language, Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav
Petrov, Ilya Sutskever, and Geoffrey Hinton (to appear in NIPS 2015)
http://arxiv.org/abs/1412.7449

… or something that can learn graph algorithms
output:
Convex Hull

(or Delauney
Triangulation)

(or Travelling
Salesman tour)

input:
collection
of points

Pointer Networks, Oriol Vinyals, Meire Fortunato, &
Navdeep Jaitly (to appear in NIPS 2015)

Object Recognition Improvement Over Time

Predicted Human Performance

ImageNet Challenge Winners

“cat”

Image Models

Module with 6
separate

convolutional
layers

=

24 layers deep

Going Deeper with Convolutions
Szegedy et al. CVPR 2015

“cat”

Good Fine-Grained Classification

Good Generalization

Both recognized as “meal”

Sensible Errors

Works in practice… for real users

Works in practice… for real users

Connect sequence and image models, you get a
captioning system

“A close up of a child holding a stuffed animal”

It works well (BLEU scores)

Dataset Previous SOTA Show & Tell Human

MS COCO N/A 67 69

FLICKR 49 63 68

PASCAL (xfer learning) 25 59 68

SBU (weak label) 11 27 N/A

Show and Tell: A Neural Image Caption Generator,
Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan (CVPR
2015)

TensorFlow:
Second Generation Deep Learning System

Motivations

DistBelief (1st system) was great for scalability

Not as flexible as we wanted for research purposes

Better understanding of problem space allowed us to
make some dramatic simplifications

TensorFlow: Expressing High-Level ML Computations

● Core in C++
○ Very low overhead

● Different front ends for specifying/driving the computation
○ Python and C++ today, easy to add more

Core TensorFlow Execution System

CPU GPU Android iOS ...

C++ front end Python front end ...

graph = tf.Graph() # Create new computation graph
with graph.AsDefault():
 examples = tf.constant(train_dataset) # Training data/labels
 labels = tf.constant(train_labels)

 W = tf.Variable(tf.truncated_normal([image_size * image_size, num_labels])) # Variables
 b = tf.Variable(tf.zeros([num_labels]))

 logits = tf.mat_mul(examples, W) + b # Training computation
 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels))

 optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Optimizer to use
 prediction = tf.nn.softmax(logits) # Predictions for training data

TensorFlow Example (Batch Logistic Regression)

graph = tf.Graph() # Create new computation graph
with graph.AsDefault():
 examples = tf.constant(train_dataset) # Training data/labels
 labels = tf.constant(train_labels)

 W = tf.Variable(tf.truncated_normal([image_size * image_size, num_labels])) # Variables
 b = tf.Variable(tf.zeros([num_labels]))

 logits = tf.mat_mul(examples, W) + b # Training computation
 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels))

 optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # Optimizer to use
 prediction = tf.nn.softmax(logits) # Predictions for training data

TensorFlow Example (Batch Logistic Regression)

with tf.Session(graph=graph) as session:
 tf.InitializeAllVariables().Run()
 for step in xrange(num_steps):
 _, l, predictions = session.Run([optimizer, loss, prediction]) # Run & return 3 values
 if (step % 100 == 0):
 print 'Loss at step', step, ':', l
 print 'Training accuracy: %.1f%%' % accuracy(predictions, labels)

MatMul

Add Relu

biases

weights

examples

labels

Xent

Graph of Nodes, also called Operations or ops.

Computation is a dataflow graph

with tensors

MatMul

Add Relu

biases

weights

examples

labels

Xent

Edges are N-dimensional arrays: Tensors

Computation is a dataflow graph

with state

Add Mul

biases

...

learning rate

−=...

'Biases' is a variable −= updates biasesSome ops compute gradients

Computation is a dataflow graph

Device A Device B

distributed

Add Mul

biases

...

learning rate

−=...

Devices: Processes, Machines, GPUs, etc

Computation is a dataflow graph

Automatically runs models on range of platforms:

from phones ...

to single machines (CPU and/or GPUs) …

to distributed systems of many 100s of GPU cards

TensorFlow: Expressing High-Level ML Computations

What is in a name?

● Tensor: N-dimensional array
○ 1-dimension: Vector
○ 2-dimension: Matrix
○ Represent many dimensional data flowing through the graph

■ e.g. Image represented as 3-d tensor rows, cols, color

● Flow: Computation based on data flow graphs
○ Lots of operations (nodes in the graph) applied to data flowing through

● Tensors flow through the graph → “TensorFlow”
○ Edges represent the tensors (data)
○ Nodes represent the processing

Flexible

● General computational infrastructure

○ Deep Learning support is a set of libraries on top of the core

○ Also useful for other machine learning algorithms

○ Possibly even for high performance computing (HPC) work

○ Abstracts away the underlying devices/computational hardware

Extensible

● Core system defines a number of standard operations

and kernels (device-specific implementations of

operations)

● Easy to define new operators and/or kernels

Deep Learning in TensorFlow

● Typical neural net “layer” maps to one or more tensor operations
○ e.g. Hidden Layer: activations = Relu(weights * inputs + biases)

● Library of operations specialized for Deep Learning
○ Dozens of high-level operations: 2D and 3D convolutions, Pooling, Softmax, ...

○ Standard losses e.g. CrossEntropy, L1, L2

○ Various optimizers e.g. Gradient Descent, AdaGrad, L-BFGS, ...

● Auto Differentiation

● Easy to experiment with (or combine!) a wide variety of different models:

LSTMs, convolutional models, attention models, reinforcement learning,

embedding models, Neural Turing Machine-like models, ...

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf

No distinct Parameter Server subsystem
● Parameters are now just stateful nodes in the graph
● Data parallel training just a more complex graph

parameters

model
computation

update

model
computation

model
computation

update update

Synchronous Variant

parameters

model
computation

gradient

model
computation

model
computation

gradient gradient

update

add

Nurturing Great Researchers

● We’re always looking for people with the potential to become excellent
machine learning researchers

● The resurgence of deep learning in the last few years has caused a surge of
interest of people who want to learn more and conduct research in this area

Google Brain Residency Program

New one year immersion program in deep learning research

Learn to conduct deep learning research w/experts in our team
● Fixed one-year employment with salary, benefits, ...

● Goal after one year is to have conducted several research projects

● Interesting problems, TensorFlow, and access to computational resources

Google Brain Residency Program

Who should apply?
● people with BSc or MSc, ideally in computer science, mathematics or statistics

● completed coursework in calculus, linear algebra, and probability, or equiv.

● programming experience

● motivated, hard working, and have a strong interest in Deep Learning

Google Brain Residency Program

 Program Application & Timeline

Google Brain Residency Program

For more information:
g.co/brainresidency

Contact us:
brain-residency@google.com

http://g.co/brainresidency
http://g.co/brainresidency

Questions?

