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Abstract A number of 3D local feature descriptors have
been proposed in the literature. It is however, unclear which
descriptors are more appropriate for a particular application.
A good descriptor should be descriptive, compact, and robust
to a set of nuisances. This paper compares ten popular local
feature descriptors in the contexts of 3D object recognition,
3D shape retrieval, and 3D modeling. We first evaluate the
descriptiveness of these descriptors on eight popular datasets
which were acquired using different techniques. We then
analyze their compactness using the recall of feature match-
ing per each float value in the descriptor. We also test the
robustness of the selected descriptors with respect to support
radius variations, Gaussian noise, shot noise, varying mesh
resolution, distance to the mesh boundary, keypoint local-
ization error, occlusion, clutter, and dataset size. Moreover,
we present the performance results of these descriptors when
combined with different 3D keypoint detection methods. We
finally analyze the computational efficiency for generating
each descriptor.
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1 Introduction

Local features have proven to be very successful in many
vision tasks such as 3D object categorization and recognition
(Matei et al. 2006; Mian et al. 2006a; Shang and Greenspan
2010; Lai et al. 2011; Guo et al. 2013b), 3D modeling and
scene reconstruction (Mian et al. 2006b; Guo et al. 2014c¢),
3D model retrieval and shape analysis (Bronstein et al. 2011;
Gao and Dai 2014), and 3D biometrics (Lei et al. 2014;
Bennamoun et al. 2015). Local features have been exten-
sively investigated over the last few decades with the aim
of designing descriptors which are distinctive and robust to
occlusions and clutter (Mian et al. 2006a). A local feature
based algorithm typically involves two major phases: key-
point detection and feature description (Tombari et al. 2013).
In the keypoint detection phase, keypoints with rich infor-
mation content are first identified and their associated scales
(spatial extents) are determined (Mian et al. 2010; Tombari
et al. 2013). In the feature description phase, the local geo-
metric information around a keypoint is extracted and stored
in a high-dimensional vector (i.e., feature descriptor) (Guo
et al. 2013b). Finally, the feature descriptors of one surface
are matched against the feature descriptors of other surfaces
of interest to yield point-to-point feature correspondences
(Tombuari et al. 2010b, 2013; Guo et al. 2014a).

A large variety of 3D keypoint detectors and local feature
descriptors have been proposed in the literature (Bronstein
et al. 2010; Tombari et al. 2013). It is widely agreed that
the evaluation of 3D keypoint detectors and local feature
descriptors is very important (Tombari et al. 2013). Sev-
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eral 3D keypoint detector evaluations can be found in the
literature, e.g., Bronstein et al. (2010), Salti et al. (2011),
Boyer et al. (2011), Tombari et al. (2013). Descriptiveness
and robustness are considered to be two of the most impor-
tant attributes for a 3D local feature descriptor (see more in
Sect. 4.3) (Restrepo and Mundy 2012). A feature descriptor is
descriptive if it is capable of encapsulating the predominant
information of the underlying surface. That is, it should pro-
vide sufficient descriptive richness to distinguish one local
surface from another. A feature is robust if it is insensitive to
anumber of disturbances which can affect the data, e.g., noise
and variations in the mesh resolution (Tombari et al. 2013).

Although a large number of feature descriptors have been
proposed, they were exclusively designed for a specific appli-
cation scenario (e.g., object recognition, and shape retrieval)
and they have only been tested on a limited number of
datasets (collected specifically for that particular applica-
tion). It is therefore, very challenging for developers to
choose an appropriate descriptor for their particular appli-
cation. When compared to the performance evaluations of
2D keypoint detectors (Schmid et al. 2000; Mikolajczyk and
Schmid 2004; Mikolajczyk et al. 2005; Moreels and Per-
ona 2007), 2D local feature descriptors (Mikolajczyk and
Schmid 2005; Moreels and Perona 2005, 2007; Burghouts
and Geusebroek 2009), and 3D keypoint detectors (Bron-
stein et al. 2010; Boyer et al. 2011; Salti et al. 2011, 2012;
Tombari et al. 2013; Filipe and Alexandre 2014), only a very
limited number of performance evaluations were conducted
on 3D local feature descriptors (Guo et al. 2014b). Most
of these evaluation articles tested only a small number of
3D local feature descriptors and for a specific application
domain. Moreover, their datasets were limited in size and
did not cover a sufficient variety of 3D objects and scanners.

In this paper, we present a comprehensive comparison and
analysis of the state-of-the-art 3D local feature descriptors
by extensively testing their performance on eight popular
datasets. Our comparison is grounded on an established
methodology that was previously adopted in the evaluation
of 2D local feature descriptors in Mikolajczyk and Schmid
(2005). Our datasets contain a large variety of scene types
acquired with different imaging techniques (e.g., Minolta
Vivid, Stereo, Space-time, and Microsoft Kinect). The per-
formances of these descriptors on these different datasets are
analyzed and discussed. We also evaluate these descriptors
in three different application contexts (namely, 3D object
recognition, 3D shape retrieval, and 3D modeling), with a
particular focus on 3D object recognition under occlusion
and clutter. Moreover, we test the robustness of these descrip-
tors with respect to a set of disturbances including support
radius, Gaussian noise, shot noise, varying mesh resolutions,
distance to the mesh boundary, keypoint localization error,
occlusion and clutter. In addition, the combined performance
of these feature descriptors with different keypoint detectors
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is also presented and analyzed. Finally, the computational
complexity of these descriptors is also compared and dis-
cussed.

2 Related Work

This section presents a brief overview of existing work on
the performance evaluation of 3D local feature descriptors.

Bronstein et al. (2010) tested Heat Kernel Signatures
(HKS) (Sun et al. 2009) and spin image (SI) (Johnson and
Hebert 1999) in the context of 3D shape retrieval. Their
results show that HKS performs better than SI. Boyer et al.
(2011) evaluated four local feature descriptors including
Mesh-HoG (Zaharescu et al. 2009), Scale-Invariant Spin
Image (SISI) (Darom and Keller 2012), local depth SIFT
(Darom and Keller 2012), and generalized HKS (GHKS)
in the context of 3D shape retrieval. Alexandre (2012)
evaluated both local and global feature descriptors on a
clutter-free dataset for 3D object and category recognition.
They concluded that the features which combined color and
shape information achieved the best performance compared
to the features which only used shape information. Kim and
Hilton (2013) proposed a framework for 2D/3D multi-modal
data registration. They also evaluated four 3D local fea-
ture descriptors ( i.e., SI (Johnson and Hebert 1999), 3D
shape context (3DSC) (Frome et al. 2004), fast point feature
histogram (FPFH) (Rusu et al. 2009)), and signature of his-
togram of orientations (SHOT) (Tombari et al. 2010b; Salti
et al. 2014) for the registration of 3D data from different
sources. For indoor scenes, FPFH works slightly better com-
pared to the others. For outdoor scenes, SHOT and FPFH
achieved the best performance. Restrepo and Mundy (2012)
presented a performance evaluation of four 3D local feature
descriptors (i.e., SI, 3DSC, SHOT, and FPFH) on probabilis-
tic volumetric models of large-scale urban scenes that were
acquired from multi-view aerial imagery. The descriptors
were evaluated in terms of accuracy for object classifica-
tion using the Bag-of-Words technique. Experimental results
revealed that FPFH produced a high recall while being com-
pact and fast to compute. Salti et al. (2012) investigated the
effectiveness of the combinations between seven 3D local
feature descriptors and six keypoint detectors. Experimen-
tal results showed that intrinsic shape signatures (ISS) is the
most effective 3D keypoint detector, while SHOT is amongst
the best 3D local feature descriptors.

However, none of the listed papers above exhaustively
tested the performance of 3D local feature descriptors. First,
a very limited number of descriptors were evaluated in each
paper and their coverage of existing descriptors was not suf-
ficient. Second, these descriptors were mainly tested under
a particular application scenario while their performance
in other application contexts remains unclear. Third, the
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robustness of existing 3D local feature descriptors was not
fully analyzed. In this work, we address these limitations by
testing and comparing the state-of-the-art 3D local feature
descriptors on a set of datasets, which cover the scenarios
of 3D object recognition, 3D shape retrieval, and 3D mod-
eling. Note that, although Salti et al. (2012) compared the
performance of different local feature descriptors in three
different application contexts, our work tested six additional
local feature descriptors including Local Surface Patch (LSP)
(Chen and Bhanu 2007a), THRIFT (Flint et al. 2008), Point
Feature Histograms (PFH) (Rusu et al. 2009), Fast Point Fea-
ture Histograms (FPFH) (Rusu et al. 2009), Tri-Spin-Images
(TriSI) (Guo et al. 2013c¢), and Rotational Projection Statis-
tics (RoPS) (Guo et al. 2013b). Moreover, the robustness of
these feature descriptors is not covered by Salti et al. (2012)
and is fully investigated in this paper.

3 3D Local Feature Descriptors

A number of 3D local feature descriptors have been con-
structed to encode the information of a local surface. Among
these approaches, many algorithms use histograms to repre-
sent different characteristics of the local surface. Specifically,
they describe the local surface by accumulating geomet-
ric or topological measurements (e.g., point numbers) into
histograms according to a specific domain (e.g., point coordi-
nates, geometric attributes). We categorize these algorithms
into “spatial distribution histogram’ and “geometric attribute
histogram” based descriptors.

3.1 Spatial Distribution Histogram based Descriptors

These descriptors represent the local surface by generating
histograms according to the spatial distributions (e.g., coordi-
nates) of the points on the surface. They usually start with the
construction of a Local Reference Frame/Axis (LRF/A) for
the keypoint, and partition the 3D support region into several
bins according to the LRF/A. They then generate a histogram
for the local surface by accumulating the spatial distribu-
tion measurements (e.g., number of points) in each spatial
bin.

Spin Image (SI) (Johnson and Hebert 1998, 1999) The
surface normal n at the keypoint p is used as the LRA at
the keypoint, and each point g; in the support region is then
represented with two parameters « and B. Here, o and B
are the in-plane and out-plane distances of the point g; to the
keypoint, respectively. The @ — 8 space is then discretized into
a2D array accumulator. Finally, the ST descriptor is generated
by accumulating the points in the support region into each
bin of the 2D array, as illustrated in Fig. 1a. The dimension of
the SI descriptor is dfl., where d; is the number of bins along
each dimension of the « — f space. The SI descriptor has

been successfully used in many applications with a number
of variants (Ruiz-Correa et al. 2001; Dinh and Kropac 2006;
Assfalg et al. 2007; Darom and Keller 2012).

3D Shape Context (3DSC) (Frome et al. 2004) 3DSC uses
the surface normal n at the keypoint p as its LRA. First,
a 3D spherical grid is placed at p, with the north pole of
the grid being aligned with the surface normal n. Next, the
support region is divided into several bins along the radial,
azimuth and elevation dimensions. The divisions are logarith-
mically spaced along the radial dimension and linearly along
the other two dimensions, as shown in Fig. 1b. The 3DSC
descriptor is generated by counting the weighted number of
points falling into each bin of the 3D grid. The dimension
of 3DSC is ds¢c X dse g X dsc_o, Where dse , dge 4 and
dsc o are respectively the numbers of bins along the radial,
azimuth and elevation axes. One major limitation of 3DSC
is that ds._, descriptors have to be calculated at each model
keypoint due to its ambiguity along the azimuth dimension
(Frome et al. 2004; Tombari et al. 2010b).

Unique Shape Context (USC) (Tombari et al. 2010a) USC
is an extension of 3DSC which avoids computing multiple
descriptors at a given keypoint. First, an LRF is constructed
for each keypoint using the technique presented in Tombari
etal. (2010b). Next, the local surface is aligned with the LRF
in order to provide invariance to rigid transformations (i.e.,
rotations and translations). The support region of the keypoint
is then divided into several bins, as shown in Fig. 1c. Finally,
a USC descriptor is generated by accumulating the weighted
sum of the points falling into each bin, which is analogous to
the approach used in 3DSC. USC improves 3DSC in terms
of memory footprint and efficiency (Tombari et al. 2010a).
The dimension of USC is the same as 3DSC.

Rotational Projection Statistics (RoPS) (Guoetal.2013a,b)
ROPS is based on a novel, unique and repeatable LRF. First,
an LRF is constructed for each keypoint and the local surface
is aligned with the LRF to achieve invariance to rigid transfor-
mations. The points on the local surface are then respectively
rotated around the three coordinate axes (i.e., x, y and z). For
each rotation, the points in the support region are further pro-
jected onto the three coordinate planes (i.e., xy, yz and xz).
A distribution matrix is generated for each plane by dividing
the plane into several bins and counting the number of points
falling into each bin. The distribution matrix is subsequently
encoded with five statistics. Finally, the RoPS descriptor is
generated by concatenating all these statistics of all rotations
and projections, as shown in Fig. le. The dimension of the
RoPS descriptor is 3 x 3 X 5 X dyps_r, Where dyqps_, is the
number of rotations around each axis.

Tri-Spin-Image (TriSI) (Guo et al. 2013c, 2015) It uses
a similar technique as in Guo et al. (2013b) to construct
its LRF. Once the LRF is defined for a keypoint, the local
surface is aligned with the LRF. Next, a spin image is gen-
erated using the x axis as its LRA and the SI descriptor
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Fig. 1 A schematic illustration of the selected descriptors. a SI b 3DSC ¢ USC d TriSI e RoPS f LSP g THRIFT h PFH i FPFH j SHOT (Color

figure online)

(Johnson and Hebert 1999) procedure is then adopted. In
addition, another two spin images are generated using the y
and z-axes as the LRAs of these spin images, as shown in
Fig. 1d. The three spin images are then concatenated to form
the TriSI descriptor. TriSI significantly improves the descrip-
tiveness and robustness compared to SI (Guo et al. 2013c).
The dimension of the TriSI descriptor is 3dt2ri i» Where dipigi
is the number of bins along each dimension.
Other Methods The 3D Tensor descriptor (Mian et al.
2006a) uses a pair of points and their surface normals to con-
struct its LRF. The local surface is aligned with the LRF and
the support region is divided into several cubic bins to define
a 3D grid. The area of intersection of the local surface with
each bin of the grid is recorded in the 3D Tensor. That is, each
element of the 3D Tensor is equal to the total surface area of
the local surface intersecting the grid bin that corresponds to
that tensor element. Other methods in this category include
spin image signature (Assfalg et al. 2007), multi-resolution
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spin image (Dinh and Kropac 2006), and asymmetry patterns
shape context (Sukno et al. 2013).

3.2 Geometric Attribute Histogram based Descriptors

These descriptors represent the local surface by generating
histograms according to the geometric attributes (e.g., nor-
mals, curvatures) of the points on the surface.

Local Surface Patch (LSP) (Chen and Bhanu 2007a,b):
The shape index (Koenderink and Doorn 1992) of each point
q; in the support region of the keypoint p, and the cosine of
the angle between the surface normal of ¢; and the normal at
the keypoint p are calculated. The LSP descriptor is a 2D his-
togram, which is formed by accumulating points in particular
bins along the two dimensions (i.e., the shape index value,
and the cosine of the angle between the surface normals), as
shown in Fig. 1f. The dimension of LSP is djs, ¢ X disp_a,
where djsp_s and dj;,_, are respectively the numbers of bins
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along the dimensions of the shape index and the surface nor-
mals.

THRIFT (Flintetal. 2007,2008) Itis a 1D histogram of the
deviation angles between the surface normal at the keypoint
p and the surface normals at the neighboring points {qi},
as shown in Fig. 1g. The contribution of each neighboring
point g; to a particular bin of the histogram is determined
by two factors: the density of point samples and the distance
from the neighboring point to the keypoint. The dimension
of THRIFT is dypyift, where dypyrips is the number of bins of
the histogram.

Point Feature Histogram (PFH) (Rusu et al. 2008) PFH is
a multi-dimensional histogram over several features of point
pairs in the support region. For each pair of the points in the
support region, a Darboux frame is first defined using the sur-
face normals and point positions (as shown in Fig. 1h). Next,
four features are calculated for each point pair using the Dar-
boux frame, the surface normals, and their point positions.
PFH is generated by accumulating points in particular bins
along the four dimensions. The dimension of PFH is d; i
where d )7, is the number of bins along each dimension. In
a later work (Rusu et al. 2009), one feature (i.e., the distance
between any two points) is excluded from the histogram of
PFH in order to improve its robustness with respect to vari-
ations in the point densities. Consequently, the dimension of
the modified PFH becomes d;f n

Fast Point Feature Histogram (FPFH) (Rusu et al. 2009)
The generation of a FPFH descriptor consists of two steps.
In the first step, a simplified point feature histogram (SPFH)
is generated for each point by calculating the relationships
between the point and its neighbors (as shown in Fig. 1i).
This is different from PFH, where the relationships between
all pairs of points in the support region are calculated. In
SPFH, the descriptor is generated by concatenating three sep-
arate histograms along three feature dimensions. That is, one
histogram is generated along each dimension. This is also
different from PFH, where a joint histogram is generated
along three different dimensions. In the second step, FPFH
is constructed as the weighted sum of the SPFH of the feature
point and the SPFHs of the points in the support region. The
dimension of FPFH is 3d ), 7, Wwhere d rp j, is the number of
bins along each dimension.

Signature of Histogram of Orientations (SHOT) (Tombari
et al. 2010b; Salti et al. 2014) The descriptor encodes the
histograms of the surface normals in different spatial loca-
tions. First, an LRF is constructed for the keypoint p, and its
neighboring points in the support region are aligned with
the LRF. Next, the support region is divided into several
volumes along the radial, azimuth and elevation axes, as
shown in Fig. 1j. For each volume, a local histogram is gen-
erated by accumulating point counts into bins according to
the angles between the normals at the neighboring points
within the volume and the normal at the keypoint. Finally,

the SHOT descriptor is generated by concatenating all the
local histograms. The dimension of the SHOT descriptor is
dshot_r X dshot_a X dshot_e X dshot_h> Where dspot_r, dshot_a
and dsp,; . are respectively the number of divisions along
the radial, azimuth and elevation dimensions, and dspo;_p is
the number of bins in each local histogram.

Other Methods: Taati and Greenspan (2011) proposed
a set of variable-dimensional local shape descriptors (VD-
LSD). An eigenvalue decomposition is first performed on
the covariance matrix of each point to obtain several invari-
ant properties for that point. The VD-LSD is then generated
by accumulating the neighboring points into histogram bins
according to their invariant properties. Lo and Siebert (2009)
developed a 2.5D SIFT algorithm by extending the classic
SIFT method from 2D grey-scale images to depth images.
Bayramoglu and Alatan (2010) introduced the SI-SIFT algo-
rithm using SIFT to extract descriptors from the shape index
values rather than the depth values from the depth image.

4 Experimental Setup

After a brief review of the major 3D local feature descriptors
and their characteristics, we now proceed to carry out a com-
prehensive comparison. In this section, we first describe the
datasets and the evaluation criteria used in our tests. We also
present the implementation details for the evaluated descrip-
tors.

4.1 Datasets

We evaluate the descriptors on eight publicly available
datasets (Guo et al. 2014d). Figure 2 shows some examples
of models and scenes taken from these datasets. The details
of these datasets are listed in Table 1. We first test the 3D
local feature descriptors on the same datasets (i.e., the first
five datasets in Table 1) following the evaluation of 3D key-
points in Tombari et al. (2013). Therefore, our work is able to
provide the possibility to select an appropriate combination
of 3D keypoint detectors and feature descriptors for a partic-
ular application based on their respective performance on a
benchmark dataset. We then test the descriptors on three addi-
tional datasets to further support our findings. These datasets
are selected based on the following considerations.

(i) Diverse Acquisition Techniques: The Retrieval and Ran-
dom views datasets were synthetically built using models
taken from the Stanford 3D scanning repository (Curless
and Levoy 1996). The Laser scanner and 2.5D Views
datasets (Mian et al. 2006a) were acquired with a laser
scanner (i.e., Minolta Vivid 910). The LIDAR dataset (Taati
and Greenspan 201 1) was also captured by a Minolta Vivid
scanner, but with a relatively lower image quality com-
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Fig. 2 Examples of models and scenes from the datasets. One model and two scenes are shown for each dataset. a Retrieval. b Random views. ¢
Laser scanner. d Space time. e Kinect. f LIDAR. g Dense stereo. h 2.5D views

Table 1 Datasets used in the evaluation

No.  Dataset name Acquisition Quality Occlusion ~ Clutter ~ Model  Scene  #Models  #Scenes  Scenario

1 Retrieval Synthetic High N N 3D 3D 6 18 Retrieval

2 Random views  Synthetic High Y Y 3D 2.5D 6 36 Recognition
3 Laser scanner Minolta vivid High Y Y 3D 2.5D 5 10 Recognition
4 Space time SpaceTime stereo ~ Medium Y Y 2.5D 2.5D 6 12 Recognition
5 Kinect Microsoft kinect Low Y Y 2.5D 2.5D 27 17 Recognition
6 LIDAR Minolta vivid Low Y Y 3D 2.5D 5 10 Recognition
7 Dense stereo Bumblebee Very Low Y Y 3D 2.5D 3 12 Recognition
8 2.5D views Minolta vivid High Y N - 2.5D - 75 Modeling

pared to Laser scanner and 2.5D Views. The Dense stereo
dataset (Taati and Greenspan 2011) was collected with a
low-resolution Bumblebee stereo camera. The Space time
dataset was obtained using the SpaceTime stereo acquisi-
tion technique (Tombari et al. 2013). The Kinect dataset
(Tombari et al. 2013) was generated using a low-cost com-
mercial scanner (Microsoft Kinect v1).

(ii) Different Application Scenarios: The focus of this paper

is on the selection of the 3D feature descriptors that achieve
the best performance in the context of 3D object recogni-
tion. We also, however, analyze the performance of the
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descriptors for 3D shape retrieval and 3D modeling. The
aim of 3D object recognition is to correctly identify objects
that are present in a scene and recover their poses (Guo et al.
2013b). Each scene is a 2.5D surface mesh, which consists
of several objects, while each model can be a 2.5D mesh
or a full 3D mesh of an isolated object. Objects in a scene
can be affected by both occlusion and clutter. The aim of
3D shape retrieval is to search for similar 3D models in a
gallery given a probe 3D shape (Tangelder and Veltkamp
2004). Both the probe (scene) and the gallery (model)
shapes are commonly represented by full 3D meshes. In
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this case, occlusion and clutter are absent in either the scene
or the model. The aim of 3D modeling is to register and
integrate a set of meshes of an object that are acquired
from different viewpoints in order to construct a complete
model of the object (Guo et al. 2014c). Each scene is a
2.5D mesh scanned from an isolated object. Models are
not needed for the 3D modeling scenario. Objects can be
subject to occlusion in each scene, but there is no clutter.
Each scene in the Random views, Laser scanner, LIDAR
and Dense stereo datasets is a 2.5D mesh acquired by a
scanner from a specific viewpoint, whereas their models
are full 3D meshes. Therefore, these datasets are suitable to
compare the performance of 3D local feature descriptors in
the case of object recognition. The Space time and Kinect
datasets represent a different object recognition scenario
where 2.5D models (rather than full 3D models) are used
to recognize their instances in cluttered 2.5D views.

The Retrieval dataset focuses on the 3D shape retrieval
scenario, where a full model is used to create each scene
without any occlusion or clutter. These scenes include rigid
transformations and synthetic noise. The main purpose of
employing this dataset is to address a shape retrieval sce-
nario using the same objects as Random Views. Therefore,
the impact of the application contexts (e.g., recognition
vs retrieval) on the performance of the descriptors can be
highlighted (Tombari et al. 2013).

The 2.5D Views dataset addresses a 3D modeling scenario
where each scene is a 2.5D mesh of one object without any
clutter. The scenes in the 2.5D Views dataset were scanned
from the same objects as the Laser Scanner dataset. There-
fore, the impact of the application context (i.e., recognition
vs modeling) on the performance of the descriptors can also
be highlighted here.

(iii) Various Image Qualities: These selected datasets con-
tain large variations in the image quality. For example, the
quality of the surface meshes in Retrieval and Random
views are very high since they were synthetically gener-
ated from high-resolution models. Laser scanner and 2.5D
Views contain images with a medium level quality. In con-
trast, the image quality of the other datasets is relatively low
because they were acquired with low-resolution scanners.
The variation in the image quality enables us to analyze
the performance of the existing descriptors under different
levels of image qualities.

4.2 Ground-Truth

There are six datasets in the context of object recognition:

Each dataset consists of a set of models M = {MN”’ }

i and

a set of scenes § = {S,](V;l } Each scene is a 2.5D point-

cloud/mesh (acquired by a scanner from a specific viewpoint)
that contains a subset of the models. The ground-truth rigid

transformation (i.e., rotation R j; and translation j; ) between
each model M; and its instance in the scene Sy is known a
priori. In the synthetic datasets (e.g., Random views), the
ground-truth transformation is obtained during the process
of simulation (Tombari et al. 2013). In the non-synthetic
datasets, the ground-truth transformation is recorded dur-
ing the process of pointcloud/mesh acquisition. The reader
is referred to Mian et al. (2006a); Tombari et al. (2010b);
Taati and Greenspan (2011); Tombari et al. (2013) for more
details regarding the generation of these ground-truth trans-
formations.

The retrieval dataset in 3D shape retrieval context: The

dataset comprises 6 models M = {M?zl} and 18 scenes

S = {S;3,}. Each scene is a 3D mesh which was created
by applying a random rigid transformation to a selected 3D
model. The ground-truth transformation is therefore known
during the process of simulation.

The 2.5D View dataset in the 3D modeling context: The

dataset contains a set of scenes S = { ]1(\/;1} from four

objects. Each scene is a 2.5D mesh which contains a separate
object and was acquired by a scanner from a specific view-
point. The ground-truth transformation between any pair of
meshes of the same object is computed in two steps. First,
a coarse transformation is obtained using manually selected
point correspondences. The transformation is then applied
to one mesh such that the two meshes are roughly aligned.
Second, the iterative closest point (ICP) algorithm (Besl and
McKay 1992) is used to refine the transformation between
the roughly aligned meshes. The composition of the coarse
and fine transformations results in an accurate transformation
between the two meshes.

4.3 Evaluation Criteria

We test the selected descriptors in terms of descriptiveness,
robustness, scalability, and efficiency. We also tested the
combined performance of these descriptors with different
keypoint detectors. Their definitions are given in the follow-
ing.

4.3.1 Descriptiveness

We use the Precision-recall curve (PRC) to evaluate the
descriptiveness of a feature descriptor. The PRC is commonly
used for the evaluation of local feature descriptors (in both
2D images and 2.5D meshes), for example in Ke and Suk-
thankar (2004); Mikolajczyk and Schmid (2005); Flint et al.
(2008); Tombari et al. (2010b); Guo et al. (2013b). The PRC
is more suitable for evaluating feature descriptors compared
to another popular criterion (i.e., receiver operating charac-
teristics (ROC)) which is well-suited for evaluating classifiers
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(Ke and Sukthankar 2004; Tombari et al. 2010b; Mikolajczyk
and Schmid 2005).

The PRC is generated as follows. First, a number of key-
points are detected from both the scene and all the models.
A feature descriptor is then computed for each keypoint
using the method under consideration. Second, the near-
est neighbor distance ratio (NNDR) technique (Lowe 2004;
Mikolajczyk and Schmid 2005) is used to perform feature
matching. Specifically, for each feature f;g in the scene,
its nearest and second nearest neighbors (denoted by f IM
and ff‘f’ ) in the models are selected. The ratio between

the two distances is calculated as Hf,s =M/ ‘VIS —fM|. If the
distance ratio is less than a threshold 7, the two features
fls and flM are considered a match, as given in Lowe
(2004); Moreels and Perona (2007); Tombari et al. (2010b);
Guo et al. (2013b). Further, if flM comes from the same
object as fis , and the distance between the keypoint of
f lM and the ground-truth corresponding point of f IS is less
than half of the support radius, the match is assumed cor-
rect (similar to the test used in Mikolajczyk and Schmid
(2003, 2005); Flint et al. (2008)). Otherwise, it is assigned
a false match. The precision is calculated as the num-
ber of correct matches with respect to the total number of
matches:

o The number of correct matches
Precision = . (1)
The number of matches

The recall is calculated as the number of correct matches
with respect to the number of corresponding features between
the scene and models:

The number of correct matches
Recall = - . (2)
The number of corresponding features

The value of the threshold 7 is varied from 0 to 1 to
obtain the PRC. To test the descriptiveness of the descrip-
tors, the ISS method with boundary point removal (ISS-BR)
was used to detect the keypoints in the scene and the models.
As reported in Salti et al. (2012), ISS achieves the best per-
formance compared to other keypoint detectors when used
in conjunction with feature descriptors. This conclusion is
also demonstrated in Sect. 5.5. Since the same procedure
is applied to all methods, we believe the comparison is fair
and unbiased. Moreover, in order to further demonstrate the
results of existing feature descriptors when combined with
different 3D keypoints, we provide an additional experiment,
which is discussed in Sects. 4.3.4 and 5.5. Note that, once
the keypoints are detected, the same keypoints are used for
all descriptors.

Since there is no model in the 2.5D View dataset, we take
each pair of meshes that have an overlap of more than 50%
as a scene-model pair. That is, we treat one view as a scene
and another view as a model, and follow the same method
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described above to calculate the PRC results. For all these
datasets, we plot the average of the PRC results over the
number of model-scene pairs of each dataset to show aggre-
gated results.

4.3.2 Robustness

We test the robustness of each feature description method
with respect to a set of sources of interferences that may affect
the performance. These sources include Gaussian noise, shot
noise, varying mesh resolutions, support radius, distance to
the mesh boundary, keypoint localization errors, occlusion
and clutter.

Support Radius We use different support radii to define the
neighboring local surface of each keypoint. For a given radius
p, points within a radius of p of the keypoint constitute the
neighborhood of that keypoint. It should be noted that in the
case of 3D data, “scale” corresponds to the “support radius”
(Tombari et al. 2013). In this paper, the support radius p is
defined based on a global measure such that the extracted
descriptor is less sensitive to the sampling resolution of the
data. Following the approach proposed in Zaharescu et al.
(2012), the support radius p is calculated as:

p= %4 3)

where A,, is the total area of the 3D surface of an object, «
is a parameter to control the size of the support radius. For
full 3D models (e.g., those in the Retrieval and Laser scan-
ner datasets), the total area A,, is computed as the sum of
all triangle areas of the mesh. For 2.5D models (e.g., those
in the Kinect and 2.5D Views datasets) acquired from a sin-
gle viewpoint, the total area A, is estimated as 4.5 times
the overall area of the 2.5D mesh. Here, 4.5 is the average
ratio between the area of a 2.5D single-view mesh and the
area of its corresponding 3D model for a number of tested
objects. Seven different support radii with o ranging from
0.08 to 1.4 % are used to produce the results presented in
Sect. 5.3.1.

Gaussian Noise: We add five levels of Gaussian noise with
standard deviations of %, ]25—%, ]35—%, 145_%’ and IST% to each
scene, where p denotes the support radius. For a given stan-
dard deviation, Gaussian noise is independently added to the
x,y,and z-axes of each scene point. An illustration of a scene
with three levels of Gaussian noise is shown in Fig. 3a—c. The
robustness results with respect to different levels of Gaussian
noise are presented in Sect. 5.3.2.

Shot Noise: We add five levels of shot noise with outlier
ratios of 0.2, 0.5, 1.0, 2.0, and 5.0 % to each scene. Given an
outlier ratio y, a ratio y of the total points in each scene is
first selected and a displacement with an amplitude of ‘% is
then added to each selected point along its normal direction
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Fig. 3 Anillustration of a scene with different levels of Gaussian noise,
shot noise, and mesh resolutions. a Gaussian noise—Level 1 b Gaussian
noise—Level 3 ¢ Gaussian noise—Level 5 d Shot noise—Level 1 e

(the same as in Zaharescu et al. (2012)). Note that, shot noise
usually lies along the viewing line of a given point. However,
the displacement along the normal direction can well approx-
imate the real shot noise, especially for complete 3D meshes
(Zaharescu et al. 2012). An illustration of a scene with three
levels of shot noise is shown in Fig. 3d—f. The robustness
results with respect to different levels of shot noise are pre-
sented in Sect. 5.3.3.

Varying Mesh Resolutions We resample each scene at five
levels such that only 1/2, 1/4, 1/8, 1/16, and 1/32 of their orig-
inal points are left in the resampled scene. An illustration
of a scene with three levels of mesh resolutions is shown
in Fig. 3g—i. The robustness results with respect to varying
mesh resolutions are presented in Sect. 5.3.4.

Shot noise—Level 3 f Shot noise—Level 5 g Decimation—Level 1 h
Decimation—Level 3 i Decimation—Level 5

Distance to the Mesh Boundary We first extract the bound-
ary points of each scene (as shown in Fig. 4), and then
calculate the shortest distance dj of each keypoint to the
boundary points. We classify the scene keypoints into 6
groups according to their distances to the mesh boundary.
Each group contains keypoints with a range of distances. For
example, the 2nd group contains keypoints with distances
dp larger than § and less than 2?’). The 6th group contains
keypoints with distances dj larger than p (p is the support
radius). The robustness results with respect to different dis-
tances to the mesh boundary are presented in Sect. 5.3.5.

Keypoint Localization Error For each pair of correspond-
ing points (le , pls) in each scene-model pair, we randomly
select another scene point pf, such that the distance between
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Fig. 4 An illustration of a scene with boundary points. The boundary
points are shown in red (Color figure online)

pls and pf, is less than a threshold 7;. We use these new
corresponding points IM , pf,) to produce the RPC results.
Six different distance thresholds 7, (i.e., %, ?—g’, %, 71—’5’, ?—g’,
and 111—5") are used in the tests. The robustness results with
respect to different keypoint localization errors are presented
in Sect. 5.3.6.

Occlusion and Clutter In order to analyze the robustness
of the selected feature descriptors with respect to occlusion
and clutter, we first calculate the occlusion and clutter of
each local surface around a keypoint of the scene. Following
a similar approach to the one used in Johnson and Hebert
(1999); Mian et al. (2006a), the occlusion and clutter for

each local surface in a scene is calculated as:

The area of model local surface in scene

Occlusion =1 —
The area of the model local surface

“

and

The area of model local surface in scene

Clutter =1 —
The area of the scene local surface

&)

Note that, in Johnson and Hebert (1999); Mian et al.
(20064a), the overall occlusion and clutter are calculated for
each object that is present in the scene. However in this paper,
the occlusion and clutter are calculated for each local surface
around a keypoint (since we are investigating the robustness
of a feature descriptor that is defined on a local surface rather
than the whole surface of an object). The keypoints in the
scene are then classified into several different groups accord-
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ing to their occlusion and clutter. The robustness results with
respect to different occlusion and clutters are presented in
Sect. 5.3.7.

In order to avoid the influence of the keypoint detection
algorithms on the robustness results, Ny (N =1000 in this
evaluation) keypoints are randomly selected from each scene
without keypoint detection, their corresponding points in the
models are then extracted using the known rigid transfor-
mations between the scene and models (as in Tombari et al.
(2010b); Guo et al. (2013b)). Then, 2Ny feature descrip-
tors are computed using the method under consideration,
and the PRC curve for each descriptor is generated. Fur-
ther, the area under the PRC curve (denoted by AUC,,;) for
each descriptor is calculated. AUCy is a simple and aggre-
gated metric to measure how an algorithm performs over
the whole precision-recall space (Davis and Goadrich 2006).
A perfect descriptor would produce a recall equal to 1 for
any precision. In this ideal case, the AUC; is 1. In order to
further avoid the influence of the feature descriptiveness on
the robustness results (due to the significant variations in the
absolute values of the descriptiveness metrics between differ-
ent descriptors), the AUC,;; of each descriptor is normalized
by its maximum value under different levels of a specific nui-
sance (e.g., Gaussian noise). Consequently, the normalized
AUC; clearly indicates the robustness of a selected descrip-
tor, without any influence caused by the descriptiveness of
the descriptors and the accuracy of the keypoint detectors.

4.3.3 Scalability

In order to test the performance of the feature descriptors
on large datasets and their scalability with respect to differ-
ent sizes of the model dataset, we constructed a new dataset
which consists of 52 models. The models in the dataset were
collected from a number of sources including the Laser scan-
ner, LIDAR, Kinect datasets and the Ca’ Foscari Venezia
dataset (Rodola et al. 2013). The scenes in the dataset are
taken from the Laser scanner dataset. The performance of the
selected descriptors with respect to different sizes of model
datasets is presented in Sect. 5.4.

4.3.4 Combination with 3D Keypoint Detectors

Although the focus of this paper is on the evaluation of local
feature descriptors, we also assess the performance of the
selected descriptors combined with different 3D keypoint
detectors. The purpose is to demonstrate the effect of dif-
ferent detectors on the performance of feature descriptors.
We use uniform sampling (Rusu and Cousins 2011), Har-
ris3D (Sipiran and Bustos 2011), ISS (Zhong 2009), and ISS
with boundary point removal (ISS-BR) to detect the key-
points in each scene and model. We then use each selected
feature description method to generate a descriptor around
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each keypoint. The performance of each detector-descriptor
combination is also measured with PRC. The main purpose
of this experiment is to investigate the overall performance
of a feature descriptor when combined with different key-
point detectors. An evaluation of these detector-descriptor
pairs on all datasets is not the main focus of this paper. We
therefore, only present the results of this experiment on the
Laser scanner dataset for readability.

4.3.5 Efficiency

A thorough evaluation of the selected descriptors is provided
in terms of computational efficiency. For each method, we
calculate the average time on several scenes to generate 1000
descriptors in each scene. Since the computational time for
the feature generation is related to the number of points in
the support region, we calculate the time for generating a
feature descriptor with respect to various number of points
in the support region (i.e., from 102 to 10° points). Note that,
amajor factor that would affect the computational time is the
number of points in the local surface (rather than the prop-
erties of the dataset). We therefore, only present the results
of this experiment on the Laser Scanner dataset in order to
improve the readability.

4.4 Implementation Details

In the following, we present the implementation details of
the algorithms for normal and curvature estimation, and local
feature description. We also describe the selection of descrip-
tors.

4.4.1 Normal and Curvature Estimation

Surface normals and curvatures are commonly used in many
3D local feature descriptors (Bariya et al. 2012). Since
the triangular mesh is the most popular approximation of
a continuous surface, we evaluate the existing 3D feature
descriptors in this discrete format (Tombari et al. 2013).
For the datasets (e.g., LIDAR) which only provide point-
cloud representations of the scenes and models, we convert
these pointclouds into triangular meshes using the method
described in Guo et al. (2013b). Let I = {V, F} be the data
structure of amesh comprising vertices V and triangular faces
F, where vertices (or points) V are the 3D coordinates of each
point and the triangular faces F are the index numbers of the
points which make up the individual faces. The normal of
a triangular face can be calculated from the equation of the
plane nix+nzy+n3z+a = 0, where the normal of the trian-
gular faceis [n1, na, n3]T. Since the triangular face is defined
by three points, the equation of the normal can easily be
solved (Mian et al. 2010). Given the normal of each triangu-
lar face, the normal of a point is then determined as the mean

value of the normals of all triangular faces sharing that point,
the same as in Mian et al. (2010); Zaharescu et al. (2012). The
surface normals are reoriented towards the the outside of the
objects in order to resolve any ambiguity related to the direc-
tion of the surface normals. Besides the surface normals, the
mean/Gaussian curvatures and shape index values of a mesh
are calculated using the algorithm proposed by Chen and
Schmitt (1992). Note that, other algorithms for normal and
curvature estimation are also available in the literature, e.g.,
(Meek and Walton 2000). They are however out of the scope
of this paper (examining the best normal and curvature esti-
mation algorithm is not our focus). Moreover, since the same
algorithms for the normal and curvature estimation are used
for all descriptors, we can consider that the test is unbiased.

4.4.2 Selected Descriptors

We use 10 different descriptors for our performance evalua-
tion. These descriptors were briefly described in Sect. 3 and
include SI (Johnson and Hebert 1999), 3DSC (Frome et al.
2004), LSP (Chen and Bhanu 2007a), THRIFT (Flint et al.
2008), PFH (Rusu et al. 2008), FPFH (Rusu et al. 2009),
SHOT (Tombari et al. 2010b), USC (Tombari et al. 2010a),
RoPS (Guo et al. 2013b), and TriSI (Guo et al. 2013c¢). These
descriptors are selected based on the criteria of popularity,
state-of-the-art performance, and their category (based on
their underlying concept). Other methods presented in Sect. 3
have specific requirements that make their inclusion in this
comparison infeasible. Specifically, the 3D Tensor descrip-
tor (Mian et al. 2006a) is defined at the center of two points
rather than a single point of the input mesh, and it is there-
fore difficult to generate 3D Tensor descriptors at a set of
given keypoints. VD-LSD (Taati and Greenspan 2011) needs
a computationally expensive training phase for each model
(i.e., 5-6 h per model (Taati and Greenspan 2011)). More-
over, the resulting descriptor is model (object) dependent,
and it is not optimal for other models other than the training
model. 2.5D SIFT (Lo and Siebert 2009) and SI-SIFT (Bayra-
moglu and Alatan 2010) can only work on depth images with
a lattice structure. Since it is impossible to obtain a single
depth image for a full 3D model, these methods cannot be
tested in the context of 3D object recognition and 3D shape
retrieval.

3DSC, PFH, FPFH, SHOT, and USC were implemented
in C++. They are available in the Point Cloud Library (PCL)
Version 1.7.1 (Rusu and Cousins 2011; Aldoma et al. 2012a),
while the others were implemented in Matlab 2011b. All
these descriptors were tested on a Windows 7 platform.
Unless otherwise stated, all the parameters of these descrip-
tors were fixed during the experiments and for all datasets.
In a similar manner to Mikolajczyk et al. (2005); Salti et al.
(2012); Alexandre (2012); Restrepo and Mundy (2012);
Tombari et al. (2013), the proposed default parameters in
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Table 2 Selected 3D local feature descriptors

No. Name Length Parameters Implementation
1 SI (Johnson and Hebert 1999) 225 dsi = 15 Matlab
2 3DSC (Frome et al. 2004) 1980 dse r =15, dsc q =12, dsc ¢ = 11 PCL

3 LSP (Chen and Bhanu 2007a) 578 disp_s = 17, djsp_q = 34 Matlab
4 THRIFT (Flint et al. 2007) 32 diprifr =32 Matlab
5 PFH (Rusu et al. 2008) 125 dprn =5 PCL

6 FPFH (Rusu et al. 2009) 33 diprn =11 PCL

7 SHOT (Tombari et al. 2010b) 352 dshot a = 8, dshor r =2, PCL

dshnt?e = 2, dxhot?h =11

8 USC (Tombari et al. 2010a) 1980 dse r =15,dse ¢ =12,dsc o =11 PCL

9 RoPS (Guo et al. 2013b) 135 drops_r =3 Matlab
10 TriSI (Guo et al. 2013c) 675 dirisi = 15 Matlab

the original articles or PCL implementations were used for
all selected descriptors. The values of these parameters are
listed in Table 2. The only tuned parameter is d;pyif;, the
number of bins of the histogram in the THRIFT descrip-
tor. diprife was set to 32 after tuning the performance of
THRIFT on an independent training dataset. For a descriptor
with fixed parameters, the support radius of the local surface
determines not only the descriptiveness of the descriptor but
also its robustness to occlusion and clutter. The support radius
for all descriptors was set according to Eq. 3 with an « equal
to 0.54 % throughout this paper (except Sect. 5.3.1 where it
was varied to assess the robustness of the descriptors). All
experiments were conducted on a computer with 3.5 GHz
Intel Core 17-2700K CPU and 16GB of RAM.

5 Performance Evaluation

In this section, we present and discuss the experimental
results of our evaluation. First, the descriptiveness of the
descriptors was tested on eight different datasets (Sect. 5.1).
Second, the overall compactness of these descriptors over the
eight datasets was analyzed (Sect. 5.2). Third, the robustness
of descriptors was investigated on the Laser scanner dataset
with respect to a number of factors (Sect. 5.3). Fourth, the
scalability of the descriptors with respect to different num-
bers of models was studied (Sect. 5.4). Fifth, the combined
performances of the selected feature descriptors with sev-
eral different keypoint detectors were analyzed (Sect. 5.5).
Finally, the computational efficiency of these descriptors was
presented (Sect. 5.6).

5.1 Descriptiveness
In this section, we use PRC (Sect. 4.3.1) to evaluate the

descriptiveness of the selected descriptors on the eight
datasets of Sect. 4.1.
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5.1.1 Retrieval Dataset

The Retrieval dataset contains 18 scenes and 6 models. The
scene meshes with the lowest level of noise are used in this
experiment. Figure 5a shows the PRC results of the selected
descriptors on this dataset. USC achieves the best recall
results, followed by SHOT, RoPS, FPFH, PFH and TriSI.
3DSC gives a moderate performance. Note that, the recall
achieved by USC is much higher than 3DSC on the same
dataset. This clearly demonstrates that the use of an LRF in
USC s able to reduce the memory requirements and the com-
putational complexity of 3DSC, and improve the matching
accuracy of 3DSC (Tombari et al. 2010a). Besides, SI is infe-
rior to 3DSC but outperforms LSP and THRIFT. THRIFT
produces very low scores on this dataset. The ranking for
SHOT, FPFH, and SI is consistent with the results reported
in Salti et al. (2014).

5.1.2 Random Views Dataset

The Random views dataset contains 36 scenes and 6 models.
The scene meshes with the lowest level of noise are used in
this experiment. The PRC results of the selected descriptors
on this dataset are shown in Fig. 5b. SHOT achieves the best
performance, closely followed by PFH, FPFH and RoPS.
The next discriminative descriptor is TriSI. 3DSC achieves
slightly better results compared to SI and USC. Similar to
the case of the Retrieval dataset, LSP and THRIFT give the
lowest scores. Note that, Retrieval and Random views have
the same models, with the major difference that the Random
Views dataset contains occluded objects and clutter. Com-
paring the results in Fig. 5a and b, three observations can be
made. First, the recall on Random views is significantly lower
than the recall of Retrieval due to the more challenging con-
ditions caused by occlusions and clutter (see Fig. 2a and b).
Second, when comparing the difference of the performance
of each descriptor on these two datasets, USC, TriSI, RoPS,
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and SHOT have a larger drop compared to the other descrip-
tors. This is because the TriSI, RoPS, and SHOT descriptors
are very sensitive to occlusions and clutter (further results in
Sects. 5.3.1, 5.3.5, and 5.3.7). Third, the rankings of these
descriptors on these two datasets are similar except for USC.
USC is more suitable for 3D shape retrieval compared to 3D
object recognition .

5.1.3 Laser Scanner Dataset

Figure 5c¢ shows the PRC results of the selected descriptors
on the Laser scanner dataset. RoPS achieves the best result,
showing a significant improvement over the other descrip-
tors. The next best performing descriptor is TriSI, followed
by PFH and FPFH that have a similar performance. Note that,
FPFH significantly reduces the computational complexity of
the feature generation compared to PFH, while maintaining
a similar performance in terms of feature matching accuracy.
SHOT produces moderate results, which are better than those
of SI and 3DSC. 3DSC performs much better than USC on
this dataset at the cost of an increased computational com-
plexity and storage requirement.

5.1.4 Space Time Dataset

Figure 5d gives the PRC results of the selected descriptors
on the Space Time dataset. We can see that USC outper-
forms all the other descriptors, closely followed by SHOT and
RoPS. 3DSC also achieves acceptable results on this dataset.
It can be concluded that shape context style descriptors (such
as 3DSC and USC) are more suitable for applications with
Space Time. The next best performing descriptors are PFH,
FPFH, and TriSI. All of these descriptors produce very close
responses. The difference between FPFH and PFH is small.
A similar performance is also achieved by SI and LSP, with
a lower recall compared to TriSI. The ranking for SHOT,
FPFH, and SI is consistent with the results reported in Salti
et al. (2014).

5.1.5 Kinect Dataset

The performance of the descriptors on the Kinect dataset is
shown in Fig. 5e. The recall on this dataset is lower than
the recall on the Laser scanner and Space time datasets by
a large margin. This is caused by the low quality of the data
acquired with the Kinect sensor which is very noisy and
spiky, and comes with a low depth resolution. All descriptors
achieve very low recall on this dataset. RoPS produces the
best performance compared to other descriptors, followed by
USC, SHOT, PFH and FPFH. The recall of FPFH is lower
than PFH, while LSP works slightly better than SI. We also
observe that THRIFT does not work well on this dataset.
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5.1.6 LIDAR Dataset

Figure 5f shows the PRC results of the selected descriptors
on the LIDAR dataset. The recall on this dataset is very low
for all descriptors. The overall performance of these descrip-
tors on this dataset is even worse than the performance on
the Kinect dataset (Sect. 5.1.5). It can be seen that the best
performance attributes to RoPS, followed by PFH, FPFH,
TriSI, and SHOT. USC performs better than 3DSC, the same
as on the Space Time and Kinect datasets (see Fig. 5d and e).
The achieved recall of SI, LSP and THRIFT on this dataset
is very low. The ranking for RoPS, 3DSC and SI is also
consistent with the results reported in Taati and Greenspan
(2011); Guo et al. (2013b) that used the same dataset, where
the recognition rates achieved by the RoPS, 3DSC, and SI
based algorithms are 95.4, 62.1, and 35.4 %, respectively.

5.1.7 Dense Stereo Dataset

In Fig. 5g, we present the PRC results of these descriptors
on the Dense stereo dataset. The quality of the data acquired
with the dense stereo technique (Bumblebee sensor in this
case) is very poor. The stereo images have much higher noise
levels compared to the LIDAR dataset (Taati and Greenspan
2011). Consequently, the recalls achieved by all descriptors
are extremely low, with the largest value below 0.4 %. Mean-
while, the differences in performance between all descriptors
are very small. It can be noticed that a relatively better per-
formance is achieved by USC, TriSI, THRIFT, and SI.

5.1.8 2.5D Views Dataset

Figure 5h shows the PRC results of these descriptors on the
2.5D Views dataset. TriSI gives the best results, followed
by FPFH and RoPS. PFH produces a much lower score
compared to FPFH although the former requires more com-
putational time. ST and SHOT give a moderate performance,
followed by 3DSC and USC. Besides, the scores of LSP and
THRIFT are amongst the lowest.

Both 2.5D Views and Laser scanner were acquired with
Minolta Vivid 910. The major difference between these two
datasets is that Laser scanner contains both occlusions and
clutter while 2.5D Views only contains occlusions. Compared
to the results reported on Laser scanner (Fig. 5c), several
observations can be drawn. First, the overall rankings of these
descriptors are similar on the two datasets. RoPS and TriSI
give the best results, while 3DSC, USC, LSP, and THRIFT
achieve relatively low scores. Second, RoPS achieves the
best performance on Laser scanner while TriSI performs
best on 2.5D Views. It can be concluded that RoPS is more
suitable for the case of 3D object recognition rather than
3D modeling. Similarly, PFH is more suitable for 3D object
recognition while FPFH is more suitable for 3D modeling.
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Table 3 The AUC); results of the descriptors of Sect. 3 on the eight datasets of Sect. 4.1

Descriptor

Dataset SI 3DSC LSpP THRIFT PFH FPFH SHOT usc RoPS TriSI
Retrieval 0.18494 0.30731 0.08053 0.01388 0.48490 0.52107 0.54452 0.63877 0.53190 0.49252
Random views 0.06177 0.09558 0.00478 0.00044 0.23110 0.24480 0.26045 0.05055 0.19597 0.15498
Laser scanner 0.03130 0.01959 0.00020 0.00013 0.08167 0.07724 0.04830 0.01029 0.15010 0.11585
Space time 0.10091 0.26879 0.10048 0.00753 0.27320 0.25585 0.33830 0.36522 0.31886 0.24042
Kinect 0.00014 0.00099 0.00015 0.00001 0.00125 0.00101 0.00213 0.00391 0.00638 0.00083
LIDAR 0.00010 0.00049 0.00064 0.000000 0.00284 0.00209 0.00145 0.00125 0.00491 0.00196
Dense stereo 0.00005 0.00000 0.00000 0.00007 0.00000 0.00001 0.00000 0.00012 0.00001 0.00008
2.5D views 0.05308 0.02596 0.01427 0.00375 0.08668 0.13429 0.03769 0.01704 0.10133 0.16109
Average 0.05403 0.08984 0.02513 0.00323 0.14521 0.15454 0.15410 0.13589 0.16368 0.14597
Median 0.04219 0.02277 0.00271 0.00029 0.08418 0.10576 0.04300 0.01366 0.12572 0.13541

The best performance is reported in bold face, and the top 4 results for each dataset are shown in italic

Third, 3DSC achieves a better performance than USC on
these two datasets.

5.1.9 Descriptiveness Overall Performance

In order to directly compare the performance of these
descriptors on each dataset, the AUC,; metrics of all these
descriptors on the eight datasets are reported in Table 3. In
order to further evaluate the overall performance of these
descriptors, we also present the average and median AUCp,
of the descriptors over all datasets. Several conclusions can
be summarized as follows.

First, RoPS is the best performing descriptor. Specifically,
RoPS achieves the best performance on the Laser scan-
ner, Kinect, and LIDAR datasets. USC performs best on the
Retrieval, Space Time and Dense stereo datasets. Overall,
RoPS has the highest average value of AUC;; across all these
datasets. It outperforms USC by a large margin, with median
values of AUC; equal to 0.12572 and 0.01366, respec-
tively. Other good feature descriptors in terms of average
and median AUC,; include SHOT, TriSI, PFH, and FPFH.
In contrast, LSP and THRIFT are the descriptors with the
lowest overall performance on all these datasets.

Second, the performance of these descriptors depends on
the dataset. It is clear that RoPS, FPFH, and PFH are the
descriptors with the best performance on the high-resolution
datasets (i.e., Retrieval, Random views, Laser scanner, and
2.5D views). Besides, RoPS, USC, PFH, and TriSI are the
top descriptors when tested on the low resolution datasets
(i.e., Space time, Kinect, Dense stereo, and LIDAR). RoPS
and PFH achieved good results (shown in italic in Table 3)
on both low and high resolution datasets.

Third, TriSI, SI, RoPS, FPFH, and PFH generally show
a more stable performance across datasets compared to all
the others. In contrast, the performance of THRIFT, USC,
LSP, 3DSC, and SHOT varies significantly, as revealed by the

large differences between their average and median values of
the AUC;. This conclusion corroborates with the results in
Restrepo and Mundy (2012) and Kim and Hilton (2013).

Fourth, the AUC; results of all descriptors on Kinect,
LIDAR and Dense Stereo datasets are very low. This indicates
that the design of effective descriptors for high noise and low-
resolution data requires more attention.

5.2 Compactness

These selected feature descriptors have different lengths of
floating-point numbers (see Table 2). The length of a feature
affects the memory footprint and the computational effi-
ciency during feature matching. In this work, we initially
measure the compactness of a feature as the average value of
AUC,; per float. The term compactness is defined as

Average value of AUC,;

6)

Compactness = - .
Length of the descriptor

The term compactness represents the overall descriptive-
ness of each floating-point number in a descriptor vector.
We use the average value of AUC,,; in Table 3 to calculate
the compactness of each descriptor over all these datasets.
The length of each descriptor is given in Table 2, and the
compactness results are shown in Fig. 6. FPFH is the most
compact feature descriptor. It achieves high-level perfor-
mance in terms of precision and recall (see Table 3) with a
very short descriptor (i.e., the length of the descriptor is 33).
RoPS comes second with the highest AUC,; value and a rel-
atively short descriptor (with only 135 floats). PFH achieves
a close score of compactness compared to RoPS. Besides,
SHOT, SI, and TriSI achieve a medium performance in terms
of compactness. On the other hand, although USC and 3DSC
perform well in terms of precision and recall (see Table 3),
their compactness is very low. 3DSC achieves the lowest
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Fig. 6 The compactness of the selected descriptors on these datasets
(Color figure online)

compactness compared to all the other descriptors. This is
because the lengths of the USC and 3DSC descriptors are
larger than the others by orders of magnitude. That is, the
lengths of a typical 3DSC and USC descriptor are 1980. It
can therefore, be concluded that FPFH, RoPS, and PFH are
quite suitable for applications with strict limits on the com-
putational complexity and storage requirements (e.g., robots
and mobile phones).

5.3 Robustness

In this section, we use AUC,; to evaluate the robustness of
the selected descriptors with respect to a set of disturbances
including support radius, Gaussian noise, shot noise, varying
mesh resolutions, distance to the mesh boundary, keypoint
localization error, occlusion and clutter. In order to reduce
the number of charts and improve readability, we only present
experimental results on the Laser Scanner dataset. The Laser
Scanner dataset is selected because it is one of the most
frequently used datasets in 3D computer vision (Mian et al.
20064, 2010; Bariya et al. 2012; Tombari et al. 2013; Aldoma
et al. 2012b; Guo et al. 2013b).

5.3.1 Support Radius

The support radius affects both the feature’s descriptive-
ness and its robustness to occlusions and clutter (Guo et al.
2013b). That is, a large support radius enables a descrip-
tor to encapsulate more information of the local surface and
therefore provides higher descriptiveness. On the other hand,
a large support radius increases the sensitivity to occlusion
and clutter. The performances of these selected descriptors
with respect to different support radii are shown in Fig. 7a.
Seven support radii were used in the experiments.

@ Springer

Two major observations can be made from the results in
Fig. 7a. First, the normalized AUC; results of RoPS, TriSI,
PFH, and FPFH improve rapidly when the support radius is
increased. Their performances then decrease with an increase
in the support radius once a peak value is reached. This is
because these descriptors are highly sensitive to occlusion
and clutter (as further demonstrated in Sect. 5.3.7). They
produce the best performance when an optimal trade-off is
achieved between their descriptiveness and sensitivity. Sec-
ond, for the descriptors that are less sensitive to occlusion
and clutter (e.g., SI, USC, and 3DSC), their performances
increase consistently with an increase in the support radius.
This is because, the major factor influencing their perfor-
mance is the encapsulated information of the underlying local
surface rather than the mesh boundary (as further explained
in Sect. 5.3.5).

5.3.2 Gaussian Noise

Figure 7b shows the normalized AUC,; results of these
descriptors with respect to different levels of Gaussian noise.
The performances of all descriptors decrease rapidly when
the standard deviation of the Gaussian noise increases.
SHOT, USC, TriSI, and RoPS are the most robust descrip-
tors with respect to low-level Gaussian noise. When the noise
level is high (with a standard deviation of more than 125—%),
USC outperforms the other descriptors by a large margin in
terms of robustness. The normalized AUC,,; value of USC
is very stable with a standard deviation of the Gaussian
noise ranging from 125—% to {5,5—’6. In contrast, LSP, THRIFT,
FPFH, and PFH are very sensitive to Gaussian noise, their
AUC,; values drop significantly when the standard deviation
of the Gaussian noise increases to lg;o. This is because these
descriptors rely on the first-order and/or second-order sur-
face derivatives (i.e., surface normal, shape index) that are
prone to noise.

5.3.3 Shot Noise

The normalized AUC; results of these descriptors with
respect to different levels of shot noise are presented in
Fig. 7c. TriSI is highly robust to shot noise, its normalized
AUC,; value is very stable under all levels of shot noise. Its
robustness is due to the fact that an adaptive outlier-rejection
technique is used during the generation of the TriSI descrip-
tor. USC and SHOT achieve a close performance compared
to TriSI. The other descriptors are more vulnerable to shot
noise. PFH and RoPS are highly sensitive to shot noise, their
performance deteriorates dramatically even with a low level
of shot noise. The performance of FPFH also drops sharply
in the presence of shot noise. Overall, the spatial distribu-
tion histogram based descriptors (including TriSI, USC, SI,
and 3DSC) are more robust to shot noise compared to the
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geometric attribute histogram based descriptors (including
FPFH and PFH). This is because the variation in the spatial
distribution of a point cloud is minor in the presence of a
small number of outliers. However, the geometric attributes
(e.g., surface normals) can vary significantly in the presence
of outliers. From Fig. 7b and c, it is also clear that FPFH
and PFH descriptors are sensitive to both Gaussian and shot
noise. SI is sensitive to Gaussian noise, but it is robust to shot
noise.

5.3.4 Varying Mesh Resolutions

Figure 7d shows the normalized AUC,; results of these
descriptors with respect to varying mesh resolutions. PFH,
FPFH, SI, TriSI are robust to varying mesh resolutions. Their
drop in performance with respect to varying mesh resolutions
is smaller compared to other descriptors. In contrast, THRIFT
and USC are very sensitive to varying mesh resolutions.

5.3.5 Distance to the Mesh Boundary

The points distance from the boundary is an important
attribute that can significantly affect the performance of a
descriptor. A scene with boundary points is illustrated in
Fig. 4 where the boundary points are shown in red. The
performance of the selected descriptors with respect to the
distance to the boundary is shown in Fig. 7e. We can observe
that the performance of RoPS is significantly boosted by
eliminating points that are close to the mesh boundary.
Specifically, the normalized AUCp; of RoPS is increased
from about 0.6 to about 1.0 by removing points with distances
less than 1 p to the mesh boundary. Similarly, the normal-
ized AUC,; results of PFH, SHOT, FPFH, and TriSI are also
significantly improved by removing boundary points. In con-
trast, SI, 3DSC, and USC are more robust to boundary points.
3DSC achieves the best robustness performance compared to
all the other descriptors when tested on keypoints with dis-
tances less than 0.5 p to the boundary. Since the points close
to the boundary include occlusions and clutter (as shown in
Fig. 4), it can be concluded that TriSI, FPFH, PFH, RoPS,
and SHOT are sensitive to occlusions and clutter. In contrast,
SI, 3DSC, and USC are very robust to occlusions and clutter.
This is consistent with the conclusions drawn in Sects. 5.3.1
and 5.3.7.

5.3.6 Keypoint Localization Error

In this section, we investigate the influence of the keypoint
localization error on the performance of descriptors. Figure
7f displays the normalized AUC); results with respect to dif-
ferent levels of keypoint localization errors. As expected, the
recall decreases with increasing keypoint localization errors.
The performance of TriSI, SI, and 3DSC drops faster com-
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pared to all the other descriptors, especially for keypoints
with small localization errors. This indicates that these three
descriptors are highly sensitive to the accuracy of the key-
point localization. Besides, the performance of USC and
THRIFT are also significantly affected in the presence of
keypoint localization errors. LSP, RoPS, and SHOT achieve
a medium level of robustness performance. In contrast, PFH
and FPFH are the most robust descriptors with respect to
keypoint localization errors. Overall, the spatial distribution
histogram based descriptors (including TriSI, SI, and 3DSC)
are more sensitive to keypoint localization errors compared
to the geometric attribute histogram based descriptors. This
is because the former uses spatial distribution measurements
(e.g., number of points) in a set of partitioned regions to
represent the local surface. Therefore, the extracted feature
descriptor is prone to keypoint localization errors.

5.3.7 Occlusion and Clutter

The normalized AUC;; results with respect to different levels
of occlusion and clutter are shown in Fig. 7g and h. It shows
that the RoPS descriptor is highly sensitive to both occlu-
sion and clutter, its normalized AUC,; value drops from 1.0
to about 0.1 when occlusion is increased from 5 to 10 %.
Besides, SHOT, PFH, FPFH, and TriSI are also vulnerable to
occlusion and clutter. In contrast, 3DSC, SI, and USC are just
robust to occlusion; while THRIFT, 3DSC, SI, and LSP are
robust to clutter. It is clear that the descriptors with a higher
distinctive power are more sensitive to occlusion and clut-
ter compared to those with a lower distinctive power. That is
because the former includes more details of the local surface,
which makes it more vulnerable to changes of that surface
under occlusion and clutter. The absolute AUC,,; values of all
of the selected descriptors are very low when occlusion (or
clutter) is more than 10 %. It can therefore be concluded that
occlusion and clutter are two major factors for the perfor-
mance deterioration of existing 3D local feature descriptors.
Note that, the selected feature descriptors are more sensi-
tive to clutter compared to occlusion. That is because the
presence of clutter introduces not only missing data, but also
additional information to the local surface which does not
belong to the object.

5.3.8 Robustness Overall Performance

In order to comprehensively analyze the robustness of the
selected feature descriptors with respect to different nui-
sances, the most robust and sensitive descriptors in each case
are listed in Table 4. The following conclusions can be drawn:

First, USC and TriSI are the most robust descriptors. USC
is robust with respect to several nuisances including Gaussian
noise, shot noise, and distance to the mesh boundary. TriSI
is robust to Gaussian noise, shot noise, and varying mesh
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Table4 The most robust and sensitive 3D local feature descriptors with
respect to different nuisances

Most robust
descriptors

Most sensitive
descriptors

Gaussian noise

SHOT, USC, TriSI,
RoPS

LSP, THRIFT, FPFP,
PFH

Shot noise TriSI, USC, SHOT FPFP, RoPS, PFH
Varying mesh PFH, FPFH, TriSI, 3DSC, USC
resolutions SI
Distance to the mesh  SI, 3DSC, USC RoPS, PFH, SHOT,
boundary FPFP
Keypoint PFH, FPFH TriSI, SI, 3DSC
localization error
Occlusion 3DSC, SI, USC RoPS, PFH, SHOT,
FPFH, TriSI
Clutter THRIFT, 3DSC, SI, RoPS, PFH, SHOT,
LSP FPFH, TriSI

resolutions. In contrast, PFH and FPFH are the most sensi-
tive descriptors. They are vulnerable to Gaussian noise, shot
noise, and distance to the mesh boundary.

Second, RoPS and TriSI achieve a more balanced per-
formance considering both descriptiveness and robustness
(see Tables 3 and 4). Specifically, RoPS achieves the high-
est descriptiveness score compared to the other descriptors
(Tables 3).

5.4 Scalability

Figures 8a and b show the AUC;; and the normalized AUC,
results with respect to varying numbers of models in the
dataset. It can be seen from Fig. 8a that RoPS achieves the
best AUC,,; results, followed by TriSI. The superiority of
the RoPS descriptor is highly significant when tested on a
small dataset (e.g., with a number of models that is less
than 20). When the number of models increases, the dif-
ference in performance between RoPS and TriSI becomes
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smaller. Regarding the scalability, it is clear from Fig. 8b
that TriSI, USC, and 3DSC achieve a very stable perfor-
mance with respect to varying numbers of models. Their
normalized AUC,,; results remain almost the same when the
number of models increases. SI and RoPS achieve an accept-
able scalability with respect to varying numbers of models.
In contrast, the performance of THRIFT drops dramatically
when the number of models increases. The AUC,; value of
THRIFT tested on a dataset with 10 models is lower than 40 %
of its corresponding AUC),; value when tested on a dataset
with 4 models. The scalability of FPFH, LSP and PFH is
also very low. Note that, the ranking of the selected descrip-
tors remains unchanged when tested on different datasets
with varying numbers of models (see Fig. 8a). Therefore,
the most appropriate feature descriptor for a particular appli-
cation can be selected based on a pilot test on a small-size
dataset.

5.5 Combination with 3D Keypoint Detectors

In order to demonstrate the influence of a keypoint detector
on the performance of feature descriptors, the PRC results
of these descriptors combined with four different keypoint
detectors (i.e., Uniform Sampling, Harris3D, ISS, ISS-BR)
are shown in Fig. 9a—d, respectively. Several observations
can be drawn from these figures.

First, the overall performance of these descriptors com-
bined with uniform sampling is the lowest compared to those
achieved when combined with Harris3D, ISS and ISS-BR.
This is reasonable since uniform sampling does not con-
sider the geometric characteristics of the underlying local
surface while performing keypoint detection. Consequently,
the repeatability of the resulting keypoints is relatively low,
and the feature matching performance is decreased. This also
reveals the fact that adopting an appropriate keypoint detec-
tion method can boost the performance of feature matching
(Alexandre 2012). Second, the overall performance of these
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Fig. 8 The scalability of the selected descriptors. a AUCp,; b normalized AUC,,; (Color figure online)
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Fig. 9 Performance of the selected descriptors of Sect. 3 on the Laser scanner dataset combined with different 3D keypoint detectors. a Uniform

Sampling b Harris3D ¢ ISS d ISS-BR (Color figure online)

descriptors combined with Harris3D and ISS is comparable.
That is due to the reason that these two detectors achieve
similar keypoint detection performance. From Fig. 9c and
d, it can further be noticed that the performance of these
descriptors combined with ISS-BR is better compared to the
combination with ISS. This observation is in line with the
conclusion drawn in Sect. 5.3.5. That is, the performance of
most descriptors can be improved by eliminating keypoints
which are close to the mesh boundary. Third, the rank of
these descriptors remains almost the same when combined
with Harris3D, ISS and ISS-BR detectors. The only excep-
tion happens between TriSI and RoPS. TriSI achieved the
best performance compared to the other descriptors when
combined with Harris3D detector, while RoPS is the best
descriptor when combined with ISS and ISS-BR detectors.
The next best performing descriptors are PFH and FPFH. The
score of SHOT, 3DSC, SI and USC is relatively low, while
LSP and THRIFT demonstrate insufficient performance.

In order to further investigate the influence of 3D key-
point detectors, we first randomly extracted 1000 feature
points from each scene without keypoint detection. We then
generated their corresponding feature points in the models
using known rigid transformations between the scene and
models. The scene features were then matched against the
model features to generate a PRC curve for each selected
descriptor (see Sect. 4.3.2 for more details). Note that, the
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Fig. 10 Descriptiveness of the selected descriptors of Sect. 3 on the
Laser scanner dataset with ground-truth keypoints (Color figure online)

corresponding feature points in the scene and the models
were detected from exactly the same physical positions (with-
out any keypoint localization error). The PRC results are
shown in Fig. 10. It is clear that the performance of all these
descriptors with extracted keypoints using the methods in
Rusu and Cousins (2011); Sipiran and Bustos (2011); Zhong
(2009) (as shown in Fig. 9) is lower compared to their per-
formance with ground-truth corresponding feature points (as
shownin Fig. 10). This is because keypoint localization errors
significantly decrease the score of the feature matching. Note
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Fig. 11 Computational time required to generate a feature descriptor for a local surface with varying number of points in the support region. a
Descriptors implemented in MATLAB b descriptors implemented in PCL (Color figure online)

that, the performance deterioration of TriSI, SI, and 3DSC
is more significant compared to the other descriptors. This is
because TriSI, SI, and 3DSC are highly sensitive to the accu-
racy of the keypoint localization (as shown in Sect. 5.3.6 and
Table 4).

5.6 Efficiency

Figure 11a and b show the computational time required to
generate various feature descriptors implemented in MAT-
LAB 2011b and PCL Version 1.7.1, respectively. In order
to make the results in Fig. 11a and b comparable, the SHOT
descriptor was implemented in both MATLAB and PCL, with
its corresponding computational time plotted in both Fig. 11a
and b.

For the descriptors implemented in MATLAB (Fig. 11a),
the most efficient descriptors are ST and THRIFT. Their com-
putational performance are comparable. For local surfaces
with less than 1000 points, SHOT and LSP are the most
computationally intensive descriptors, being one order of
magnitude slower compared to SI and THRIFT. As the num-
ber of points in a local surface increases, RoPS, TriSI and
SHOT become the slowest methods. Their computational
performance is similar, which is one order of magnitude
slower compared to SI and THRIFT.

For the descriptors implemented in PCL (Fig. 11b), FPFH
and PFH achieve the best computational performance when
the number of points in the support region is less than 5000.
Specifically, FPFH and PFH are faster than all the other
descriptors by about three orders of magnitude when the
number of points in the support region is 100, the compu-
tational efficiency of FPFH and PFH is still better than the
others by an order of magnitude when the number of points
in the support region is 1000. However, when the number of
points in the support region is more than 5000, it is very time-
consuming to generate the PFH and FPFH descriptors. The
most efficient descriptor in this case is SHOT. Besides, USC
consistently outperforms 3DSC in terms of computational

efficiency in all cases with respect to different numbers of
points in the support region. It is also worth noting that, FPFH
outperforms PFH when the number of points in the support
region is less than 50,000. When the number of points in the
support region is further increased, PFH performs better than
FPFH in terms of computational efficiency.

Taking the computational time of SHOT implemented in
both MATLAB and PCL as a benchmark, several observa-
tions can be made for all these descriptors. First, FPFH,
PFH, THRIFT, and SI are among the most efficient descrip-
tors when the number of points in the support region is
less than 1000. In contrast, 3DSC and USC are the most
computationally expensive descriptors. Second, when the
number of points in the support region is between 1000 and
5000, the most efficient descriptors are FPFH, PFH, THRIFT,
and SI, while 3DSC, USC, RoPS, and TriSI are very time-
consuming. Third, as the number of points in the support
region is more than 5000, FPFH and PFH are inferior in
terms of computational efficiency compared to all the other
descriptors, with SI and THRIFT being the most efficient
descriptors. Overall, SI consistently achieves a very good
performance while SHOT takes an average time for all cases
with respect to different numbers of points in the support
region. FPFH and PFH are extremely efficient to be gener-
ated for small local surfaces.

6 Summary and Discussion

In order to further provide a guidance for the selection of an
appropriate 3D feature descriptor for a specific application,
several points are summarized below.

For time-crucial applications (e.g., real-time systems) on
point clouds with a small number of points, FPFH is the best
option. That is because the FPFH descriptor is reasonably
descriptive, computationally efficient (for both feature gener-
ation and matching), and lightweight (for feature storage). It
provides a good balance between feature matching accuracy
and computational efficiency. For time-crucial applications
on point clouds with a large number of points, SHOT achieves
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a good performance in terms of both descriptiveness and
computational efficiency.

For space-crucial applications (e.g., embedded devices),
FPFH is the best option. That is because its memory require-
ment for feature storage is low. RoPS can also be considered
as it achieves a better descriptiveness performance at the cost
of slightly higher storage requirements. For scenarios where
a high registration accuracy (or recognition rate) is required,
RoOPS is strongly recommended due to its higher discrimina-
tive power compared to other descriptors.

If the characteristics (e.g., noise level, resolution) of a
dataset are unknown, RoPS is the best option as it consis-
tently produces good results on all kinds of datasets (see
Table 3). The RoPS descriptor achieves a very stable perfor-
mance across different datasets.

The feature matching performance of the selected descrip-
tors can significantly be improved when combined with 3D
keypoint detection methods (as opposed to uniform sampling
or arandom selection of the keypoints). ISS-BR consistently
achieved the best performance when combined with these
selected descriptors.

TriSI, USC, and 3DSC have the best scalability with
respect to an increasing number of models in the dataset.
However, the descriptiveness of the USC and 3DSC descrip-
tors is relatively low and their performance variations across
different datasets are significant. Moreover, both the compu-
tational and storage costs of USC and 3DSC are high (with
a dimensionality of the descriptor of 1980). Consequently,
TriSI is the best choice for applications on large datasets.

Note that, although these descriptors perform well with
high resolution datasets (collected using expensive scanners),
their performance is rather weak with data from low-cost low-
resolution sensors (e.g., Kinect and Dense Stereo). Research
should therefore be directed towards the design of suitable
descriptors for low resolution and high-level noise data, or
the design of higher resolution and low-cost RGBD cameras.

7 Conclusions

This paper has presented a comprehensive evaluation of 3D
local feature descriptors on a variety of datasets. The descrip-
tiveness of these descriptors was evaluated on eight datasets
for different application contexts (i.e., 3D object recogni-
tion, 3D shape retrieval, and 3D modeling). The robustness
of the selected descriptors was tested with respect to a set
of nuisances (including Gaussian noise, shot noise, vary-
ing mesh resolutions, mesh boundary, keypoint localization
errors, occlusion and clutter). The compactness and scala-
bility of these descriptors were also presented. Next, these
descriptors were tested with the combination of different
3D keypoint detectors. Finally, the computation efficiency
of these descriptors were analyzed. This paper can therefore,

@ Springer

serve as a “User Guide” for the selection of the most appro-
priate feature descriptor in the area of 3D computer vision.

Acknowledgments This research is supported by a National Natural
Science Foundation of China (NSFC) fund (No. 61471371), a China
Scholarship Council (CSC) scholarship and Australian Research Coun-
cil Grants (DE120102960, DP110102166, DP150100294).

References

Aldoma, A., Marton, Z., Tombari, F., Wohlkinger, W., Potthast, C.,
Zeisl, B., et al. (2012a). Tutorial: Point cloud library: Three-
dimensional object recognition and 6 DOF pose estimation. /[EEE
Robotics & Automation Magazine, 19(3), 80-91.

Aldoma, A., Tombari, F., Di Stefano, L., & Vincze, M. (2012b). A
global hypotheses verification method for 3D object recognition.
In European Conference on Computer Vision, (pp 511-524).

Alexandre, L.A. (2012). 3D descriptors for object and category recog-
nition: A comparative evaluation. In Workshop on Color-Depth
Camera Fusion in Robotics at the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).

Assfalg, J., Bertini, M., Bimbo, A., & Pala, P. (2007). Content-based
retrieval of 3-D objects using spin image signatures. /EEE Trans-
actions on Multimedia, 9(3), 589-599.

Bariya, P, Novatnack, J., Schwartz, G., & Nishino, K. (2012). 3D geo-
metric scale variability in range images: Features and descriptors.
International Journal of Computer Vision, 99(2), 232-255.

Bayramoglu, N., & Alatan, A. (2010). Shape index SIFT: Range image
recognition using local features. In 20th International Conference
on Pattern Recognition, (pp. 352-355).

Bennamoun, M., Guo, Y., & Sohel, F. (2015). Feature selection for
2D and 3D face recognition, In Encyclopedia of electrical and
electronics engineering. Book Chapter (pp. 1-54).

Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-
D shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2), 239-256.

Boyer, E., Bronstein, A., & Bronstein, M., et al. (2011). SHREC 2011:
Robust feature detection and description benchmark. In Euro-
graphics Workshop on Shape Retrieval, (pp. 79-86).

Bronstein, A., Bronstein, M., & Bustos, B., et al. (2010). SHREC 2010:
Robust feature detection and description benchmark. In Euro-
graphics Workshop on 3D Object Retrieval, vol 2, p 6.

Bronstein, A., Bronstein, M., Guibas, L., & Ovsjanikov, M. (2011).
Shape google: Geometric words and expressions for invariant
shape retrieval. ACM Transactions on Graphics, 30(1), 1-20.

Burghouts, G. J., & Geusebroek, J. M. (2009). Performance evaluation
of local colour invariants. Computer Vision and Image Understand-
ing, 113(1), 48-62.

Chen, H., & Bhanu, B. (2007a). 3D free-form object recognition in range
images using local surface patches. Pattern Recognition Letters,
28(10), 1252-1262.

Chen, H., & Bhanu, B. (2007b). Human ear recognition in 3D. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 29(4),
718-737.

Chen, X., & Schmitt, F. (1992). Intrinsic surface properties from surface
triangulation. In European Conference on Computer Vision, (pp.
739-743).

Curless, B., & Levoy, M. (1996). A volumetric method for building
complex models from range images. In 23rd Annual Conference
on Computer Graphics and Interactive Techniques, (pp. 303-312).

Darom, T., & Keller, Y. (2012). Scale invariant features for 3D mesh
models. IEEE Transactions on Image Processing, 21(5), 2758—
2769.



Int J Comput Vis

Davis, J., & Goadrich, M. (2006). The relationship between precision-
recall and roc curves. In 23rd International Conference on Machine
learning, (pp. 233-240).

Dinh, H., & Kropac, S. (2006). Multi-resolution spin-images. /[EEE
International Conference on Computer Vision and Pattern Recog-
nition, 1, 863-870.

Filipe, S., & Alexandre, L.A. (2014). A comparative evaluation of 3D
keypoint detectors in a RGB-D object dataset. In 9th International
Conference on Computer Vision Theory and Applications, (pp. 1-
8).

Flint, A., Dick, A., & Hengel, A. (2007). THRIFT: Local 3D struc-
ture recognition. In 9th Conference on Digital Image Computing
Techniques and Applications, (pp. 182—-188).

Flint, A., Dick, A., & Van den Hengel, A. (2008). Local 3D structure
recognition in range images. IET Computer Vision, 2(4), 208-217.

Frome, A., Huber, D., Kolluri, R., Biilow, T., & Malik, J. (2004). Recog-
nizing objects in range data using regional point descriptors. In 8th
European Conference on Computer Vision, (pp. 224-237).

Gao, Y., & Dai, Q. (2014). View-based 3-D object retrieval: Challenges
and approaches. IEEE Multimedia, 21(3), 52-57.

Guo, Y., Bennamoun, M., Sohel, F., Wan, J., & Lu, M. (2013a). 3D
free form object recognition using rotational projection statistics.
In IEEE 14th Workshop on the Applications of Computer Vision,
(pp- 1-8).

Guo, Y., Sohel, F.,, Bennamoun, M., Lu, M., & Wan, J. (2013b).
Rotational projection statistics for 3D local surface description
and object recognition. International Journal of Computer Vision,
105(1), 63-86.

Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J. (2013c). TriSI:
A distinctive local surface descriptor for 3D modeling and object
recognition. In 8th International Conference on Computer Graph-
ics Theory and Applications, (pp. 86-93).

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., & Wan, J. (2014a). 3D
object recognition in cluttered scenes with local surface features:
A survey. I[EEE Transactions on Pattern Analysis and Machine
Intelligence, 36(11), 2270-2287.

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Zhang, J.
(2014b). Performance evaluation of 3D local feature descriptors.
In 12th Asian Conference on Computer Vision, (pp. 1-17).

Guo, Y., Sohel, F., Bennamoun, M., Wan, J., & Lu, M. (2014¢). An
accurate and robust range image registration algorithm for 3D
object modeling. IEEE Transactions on Multimedia, 16(5), 1377—
1390.

Guo, Y., Zhang, J., Lu, M., Wan, J., & Ma, Y. (2014d). Benchmark
datasets for 3D computer vision. In The 9th IEEE Conference on
Industrial Electronics and Applications.

Guo, Y., Sohel, F., Bennamoun, M., Wan, J., & Lu, M. (2015). A novel
local surface feature for 3D object recognition under clutter and
occlusion. Information Sciences, 293(2), 196-213.

Johnson, A. E., & Hebert, M. (1998). Surface matching for object recog-
nition in complex three-dimensional scenes. Image and Vision
Computing, 16(9—-10), 635-651.

Johnson, A. E., & Hebert, M. (1999). Using spin images for efficient
object recognition in cluttered 3D scenes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(5), 433-449.

Ke, Y., & Sukthankar, R. (2004). PCA-SIFT: A more distinctive
representation for local image descriptors. IEEE Conference on
Computer Vision and Pattern Recognition, 2, 498-506.

Kim, H., & Hilton, A. (2013). Evaluation of 3D feature descriptors for
multi-modal data registration. In International Conference on 3D
Vision, (pp. 119-126).

Koenderink, J., & van Doorn, A. (1992). Surface shape and curvature
scales. Image and Vision Computing, 10(8), 557-564.

Lai, K., Bo, L., Ren, X., & Fox, D. (2011). A scalable tree-based
approach for joint object and pose recognition. In 25¢th Confer-
ence on Artificial Intelligence.

Lei, Y., Bennamoun, M., Hayat, M., & Guo, Y. (2014). An efficient
3D face recognition approach using local geometrical signatures.
Pattern Recognition, 47(2), 509-524.

Lo, T., & Siebert, J. (2009). Local feature extraction and matching on
range images: 2.5D SIFT. Computer Vision and Image Under-
standing, 113(12), 1235-1250.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2), 91-110.

Matei, B., Shan, Y., Sawhney, H., Tan, Y., Kumar, R., Huber, D, et al.
(2006). Rapid object indexing using locality sensitive hashing and
joint 3D-signature space estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(7), 1111-1126.

Meek, D. S., & Walton, D. J. (2000). On surface normal and gaussian
curvature approximations given data sampled from a smooth sur-
face. Computer Aided Geometric Design, 17(6), 521-543.

Mian, A., Bennamoun, M., & Owens, R. (2006a). Three-dimensional
model-based object recognition and segmentation in cluttered
scenes. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 28(10), 1584-1601.

Mian, A., Bennamoun, M., & Owens, R. A. (2006b). A novel repre-
sentation and feature matching algorithm for automatic pairwise
registration of range images. International Journal of Computer
Vision, 66(1), 19-40.

Mian, A., Bennamoun, M., & Owens, R. (2010). On the repeatability
and quality of keypoints for local feature-based 3D object retrieval
from cluttered scenes. International Journal of Computer Vision,
89(2), 348-361.

Mikolajczyk, K., & Schmid, C. (2003). A performance evaluation of
local descriptors. In IEEE Conference on Computer Vision and
Pattern Recognition, vol 2, (pp. 11-257).

Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest
point detectors. International Journal of Computer Vision, 60(1),
63-86.

Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation
of local descriptors. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(10), 1615-1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J.,
Schaftalitzky, F., et al. (2005). A comparison of affine region detec-
tors. International Journal of Computer Vision, 65(1), 43-72.

Moreels, P., & Perona, P. (2005). Evaluation of features detectors and
descriptors based on 3D objects. In /0th IEEE International Con-
ference on Computer Vision, vol 1, (pp. 800-807).

Moreels, P., & Perona, P. (2007). Evaluation of features detectors and
descriptors based on 3D objects. International Journal of Com-
puter Vision, 73(3), 263-284.

Restrepo, M.I., & Mundy, J.L. (2012). An evaluation of local shape
descriptors in probabilistic volumetric scenes. In British Machine
Vision Conference, (pp. 1-11).

Rodola, E., Albarelli, A., Bergamasco, F., & Torsello, A. (2013). A
scale independent selection process for 3D object recognition in
cluttered scenes. In International Journal of Computer Vision pp
1-17.

Ruiz-Correa, S., Shapiro, L., & Melia, M. (2001). A new signature-
based method for efficient 3-D object recognition. In /EEE
Conference on Computer Vision and Pattern Recognition, vol 1,
(pp. 1-769).

Rusu, R.B., & Cousins, S. (2011). 3D is here: Point cloud library (PCL).
In IEEE International Conference on Robotics and Automation, pp
1-4.

Rusu, R.B., Blodow, N., Marton, Z.C., & Beetz, M. (2008). Aligning
point cloud views using persistent feature histograms. In /[EEE/RSJ
International Conference on Intelligent Robots and Systems, (pp.
3384-3391).

Rusu, R.B., Blodow, N., & Beetz, M. (2009). Fast point feature
histograms (FPFH) for 3D registration. In /[EEE International Con-
ference on Robotics and Automation, (pp. 3212-3217).

@ Springer



Int J Comput Vis

Salti, S., Tombari, F., & Stefano, L. (2011). A performance evaluation of
3D keypoint detectors. In International Conference on 3D Imag-
ing, Modeling, Processing, Visualization and Transmission (pp.
236-243).

Salti, S., Petrelli, A., Tombari, F., & Di Stefano, L. (2012). On the
affinity between 3D detectors and descriptors. In 2nd International
Conference on 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT), (pp. 424-431).

Salti, S., Tombari, F., & Stefano, L. D. (2014). SHOT: Unique signatures
of histograms for surface and texture description. Computer Vision
and Image Understanding, 125(8), 251-264.

Schmid, C., Mohr, R., & Bauckhage, C. (2000). Evaluation of interest
point detectors. International Journal of Computer Vision, 37(2),
151-172.

Shang, L., & Greenspan, M. (2010). Real-time object recognition in
sparse range images using error surface embedding. International
Journal of Computer Vision, 89(2), 211-228.

Sipiran, I., & Bustos, B. (2011). Harris 3D: a robust extension of the har-
ris operator for interest point detection on 3D meshes. The Visual
Computer pp. 1-14.

Sukno, EM., Waddington, J.L., & Whelan, P.F. (2013). Rotation-
ally invariant 3D shape contexts using asymmetry patterns. In
8th International Conference on Computer Graphics Theory and
Applications.

Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably
informative multi-scale signature based on heat diffusion. Com-
puter Graphics Forum, 28, 1383—-1392.

@ Springer

Taati, B., & Greenspan, M. (2011). Local shape descriptor selection
for object recognition in range data. Computer Vision and Image
Understanding, 115(5), 681-694.

Tangelder, J., Veltkamp, R. (2004). A survey of content based 3D shape
retrieval methods. In IEEE International Conference on Shape
Modeling and Applications, (pp. 145-156).

Tombari, F., Salti, S., & Di Stefano, L. (2010a), Unique shape context
for 3D data description. In ACM Workshop on 3D Object Retrieval,
(pp- 57-62).

Tombari, F., Salti, S., & Di Stefano, L. (2010b). Unique signatures of
histograms for local surface description. In European Conference
on Computer Vision, Springer, New York, (pp. 356-369).

Tombari, F., Salti, S., & Di Stefano, L. (2013). Performance evalua-
tion of 3D keypoint detectors. International Journal of Computer
Vision, 102(1), 198-220.

Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009). Sur-
face feature detection and description with applications to mesh
matching. In IEEE Conference on Computer Vision and Pattern
Recognition, (pp. 373-380).

Zaharescu, A., Boyer, E., & Horaud, R. (2012). Keypoints and local
descriptors of scalar functions on 2D manifolds. International
Journal of Computer Vision, 100, 78-98.

Zhong, Y. (2009). Intrinsic shape signatures: A shape descriptor for 3D
objectrecognition. In /EEE International Conference on Computer
Vision Workshops, (pp. 689—696).



	A Comprehensive Performance Evaluation of 3D Local Feature Descriptors
	Abstract
	1 Introduction
	2 Related Work
	3 3D Local Feature Descriptors
	3.1 Spatial Distribution Histogram based Descriptors
	3.2 Geometric Attribute Histogram based Descriptors

	4 Experimental Setup
	4.1 Datasets
	4.2 Ground-Truth
	4.3 Evaluation Criteria
	4.3.1 Descriptiveness
	4.3.2 Robustness
	4.3.3 Scalability
	4.3.4 Combination with 3D Keypoint Detectors
	4.3.5 Efficiency

	4.4 Implementation Details
	4.4.1 Normal and Curvature Estimation
	4.4.2 Selected Descriptors


	5 Performance Evaluation
	5.1 Descriptiveness
	5.1.1 Retrieval Dataset
	5.1.2 Random Views Dataset
	5.1.3 Laser Scanner Dataset
	5.1.4 Space Time Dataset
	5.1.5 Kinect Dataset
	5.1.6 LIDAR Dataset
	5.1.7 Dense Stereo Dataset
	5.1.8 2.5D Views Dataset
	5.1.9 Descriptiveness Overall Performance

	5.2 Compactness
	5.3 Robustness
	5.3.1 Support Radius
	5.3.2 Gaussian Noise
	5.3.3 Shot Noise
	5.3.4 Varying Mesh Resolutions
	5.3.5 Distance to the Mesh Boundary
	5.3.6 Keypoint Localization Error
	5.3.7 Occlusion and Clutter
	5.3.8 Robustness Overall Performance

	5.4 Scalability
	5.5 Combination with 3D Keypoint Detectors
	5.6 Efficiency

	6 Summary and Discussion
	7 Conclusions
	Acknowledgments
	References




