This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 1

A Comparative Study of 3-D Face Recognition
Under Expression Variations

Dirk Smeets, Peter Claes, Jeroen Hermans, Dirk Vandermeulen, and Paul Suetens

Abstract—Research in face recognition has continuously been
challenged by extrinsic (head pose, lighting conditions) and intrin-
sic (facial expression, aging) sources of variability. While many
survey papers on face recognition exist, in this paper, we focus on a
comparative study of 3-D face recognition under expression varia-
tions. As a first contribution, 3-D face databases with expressions
are listed, and the most important ones are briefly presented and
their complexity is quantified using the iterative closest point (ICP)
baseline recognition algorithm. This allows to rank the databases
according to their inherent difficulty for face-recognition tasks.
This analysis reveals that the FRGC v2 database can be consid-
ered as the most challenging because of its size, the presence of
expressions and outliers, and the time lapse between the record-
ings. Therefore, we recommend to use this database as a reference
database to evaluate (expression-invariant) 3-D face-recognition al-
gorithms. We also determine and quantify the most important fac-
tors that influence the performance. It appears that performance
decreases 1) with the degree of nonfrontal pose, 2) for certain ex-
pression types, 3) with the magnitude of the expressions, 4) with
an increasing number of expressions, and 5) for a higher number
of gallery subjects. Future 3-D face-recognition algorithms should
be evaluated on the basis of all these factors. As the second con-
tribution, a survey of published 3-D face-recognition methods that
deal with expression variations is given. These methods are subdi-
vided into three classes depending on the way the expressions are
handled. Region-based methods use expression-stable regions only,
while other methods model the expressions either using an isomet-
ric or a statistical model. Isometric models assume the deformation
because of expression variation to be (locally) isometric, meaning
that the deformation preserves lengths along the surface. Statistical
models learn how the facial soft tissue deforms during expressions
based on a training database with expression labels. Algorithmic
performances are evaluated by the comparison of recognition rates
for identification and verification. No statistical significant differ-
ences in class performance are found between any pair of classes.

Index Terms—Biometrics, databases, expression variation, face
recognition, facial expression, meta-analysis, 3-D face.
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1. INTRODUCTION

INCE the beginning of this century, the pace of devel-
S opment and improvements of biometric technologies has
accelerated considerably as a consequence of the increased at-
tention to security issues. However, the discipline of biometrics
is older than that. Some believe that handprints, nearby paintings
in a cave that is estimated to be at least 31 000 years old, are the
first form of biometry. True biometric systems began to emerge
in the second half of the 20th century, coinciding with the de-
velopment of increasingly more powerful computer systems,
with major advances since the 1990s [1]. Biometric systems
can be divided into two classes depending on the characteris-
tics that are used. One class uses physiological characteristics
that are related to the shape and appearance of the body and
body parts, such as fingerprint, finger knuckles, face (2-D and
3-D), DNA, hand and palm geometry, iris texture, and retinal
vasculature. Systems belonging to the second class use behav-
ioral characteristics, such as gait, handwriting, keyboard typing,
and speech [2]. According to Jain et al. [3], biometric systems
need to satisfy four requirements: universality, distinctiveness,
permanence, and collectability.

Faces are probably the most common biometric identifier that
is used by humans to recognize people. Computer-based face
recognition is either feature based (using the shape and posi-
tion of facial features, such as eyes, nose, and lips) or holistic
(using the overall analysis of the facial image). Research in auto-
matic face recognition has been conducted since the 1960s and
has resulted in commercially available systems with accept-
able performance using 2-D images. However, these systems
impose a number of restrictions (fixed pose, controlled illumi-
nation) [4], [5]. In order to lift these restrictions, recent research
has shifted from 2-D to 3-D face representations [6]—[8]. This
shift is also demonstrated by the setup of large evaluation studies
of 3-D face-recognition algorithms. Indeed, in 2006, the Face-
Recognition Grand Challenge (FRGC) [9] was the first large
comparison, followed by the Shape Retrieval Contest (SHREC)
in 2007 [10], 2008 [11] and 2011 [12]. However, note that 3-D
face acquisition is typically more controlled than 2-D face ac-
quisition. Two remaining difficulties in 3-D face recognition are
intersubject similarity and intrasubject variability. The differ-
ence between two 3-D representations of different subjects can
be quite small, making correct recognition not straightforward.
High intersubject similarity occurs, for instance, with identical
twins, father and sons, or mothers and daughters. The second
challenge, intrasubject variability, is because of intrasubject skin
deformation, which can be caused by internal/gradual (expres-
sions, ageing) or external/abrupt changes (cosmetic changes),
or a combination of both. It has been shown that deformations
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Three-dimensional faces with different expressions with and without texture, coming from the BU-3DFE database [15].

Fig. 1.

because of cosmetic surgery negatively affect the performance
of some state-of-the-art 3-D face-recognition methods [13]. De-
formations because of internal conditions are mainly caused by
changes in facial expressions. Deformations because of facial
expressions are reported as one of the main challenges of 3-D
face recognition in [14] and are the subject of this paper. In
Fig. 1, some 3-D expression scans of facial surfaces with and
without texture are shown.

Dual to the problem of expression-invariant face recognition
is the emerging challenge of expression recognition [16], [17].
Although face recognition should be stable under expression
variations, expression recognition needs to be invariant to iden-
tity changes. Recent surveys provide a good overview of the
state of the art in expression recognition [18] and expression
analysis [18], [19] starting from 2-D images.

An extensive number of surveys for 3-D face recognition
in general already exist, see, e.g., [7], [14], [20]-[33]. From
these, the most influential for 3-D face recognition is presented
in [22]. In this paper, on the other hand, we focus on a compar-
ative analysis of 3-D face-recognition methods that deal specif-
ically with expression variations, since more recently a lot of
research results have accumulated in this subfield. In the previ-
ous work [32], expression variations and conceptual approaches
to deal with them during 3-D face recognition are also shortly
discussed, albeit in a different field of expertise without fo-
cusing on the underlying methodology, technical algorithms,
and available databases. As the second contribution, in this pa-
per, we provide an exhaustive overview of existing 3-D face
databases with facial expressions, while the most important ones
are briefly discussed. A complexity analysis of these databases
is performed using a baseline face-recognition algorithm. As a
consequence, it is possible to rank the databases according to
their inherent difficulty, allowing to compare more objectively
the performances of the various methods that are available in the
literature. We determine and quantify the most important factors
that influence the face-recognition performance. As a result, this
analysis offers an objective comparison of the performances of
state-of-the-art methods.

This paper is structured as follows. In Section II, we discuss
and compare the different 3-D face databases that contain ex-
pression variations. Published methods for 3-D face recognition
are discussed in Section III based on a classification into three
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classes. In addition, they are compared based on their published
recognition performances. In Section IV, some remaining fun-
damental problems in 3-D face recognition are discussed. Con-
clusions and future challenges are listed in Section V.

II. THREE-DIMENSIONAL FACE DATABASES
WITH EXPRESSIONS

A. Overview of Databases

Many research organizations have built various 3-D face
databases to evaluate 3-D face-recognition algorithms. Publicly
available face databases that contain facial expressions are listed
in Table I, indicating the number of scans and the number of sub-
jects in each database. The most important databases (frequently
mentioned in the literature and publicly available) of Table I will
be discussed and compared using a baseline algorithm, in order
to measure their complexity w.r.t. face-recognition performance.
The databases that are considered are FRGC v1, FRGC v2,
BU-3DFE, Bosphorus, SHREC’08, FRAV 3D, and CASIA. An
example scan from each of these databases is shown in Fig. 2.
Although the surface representations differ according to how
they are stored in the database, each representation essentially
codes for 3-D facial information, and all can be converted to the
same representation, if required by a particular face-recognition
methodology.

The most popular 3-D expression databases are the FRGC
databases [9]. The Grand Challenge probably has had and still
has a large impact on the development and testing of face-
recognition algorithms. The FRGC databases are, therefore,
considered as the reference databases for validation of 3-D
face-recognition algorithm. The 3-D scans, which are 640 x
480 range images, were taken under controlled illumination
conditions by a “Minolta Vivid 900/910” scanner (laser range
scanning technique) with coregistered RGB texture information.
Data are divided into a training dataset (FRGC v1), which con-
tain 943 3-D scans, and a validation dataset (FRGC v2), which
contain 4007 3-D scans from 466 persons. Compared with the
training set, the validation set contains additional expressions,
such as anger, happiness, sadness, surprise, and disgust, as well
as puffy faces.

Another reference database that is acquired especially for ex-
pression recognition and expression-invariant face recognition
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OVERVIEW OF DATABASES WITH EXPRESSIONS

TABLE I

SMEETS et al.: COMPARATIVE STUDY OF 3-D FACE RECOGNITION UNDER EXPRESSION VARIATIONS

database institute ~ #im.  # subj. type texture URL
Biometrics [8], [34] University of Notre Dame 1906 277 range im. YES  hitp/iwww.cse.nd.eduw/~cvrl/CVRL/Data_Sets.html
FRGC vl [9] University of Notre Dame 943 200 range im. YES  hups/www.fvtorg/FRGC/
FRGC v2 [9] University of Notre Dame 4007 466 range im. Y€S  hups/iwww.fivt.org/FRGC/
ND2006 [35] University of Notre Dame 13450 888 range im. YES  hup//www.nd.edu/~evil/
GavabDB [36] Universidad Rey Juan Carlos 549 61 range im. NO  hup://www.gavab.etsii.uric.es/recursos_en.html
FRAV3D [37] Universidad Rey Juan Carlos 1696 106 mesh YES  hup:/iwww.frav.es/databases FRAV3d/
UoY [38] University of York 5250 350 mesh YES  hup:/iwww-users.cs.york.ac.uk/~nep/research/3Dface/tomh/3DFaceDatabase. html
BJUT-3D [39] Beijing University ? 500 mesh YeS  hup//www.bjpu.cdu lab/3 iewhtm
Bosphorus [40] Bogazici University 4666 105 point cloud YES  hup//www.cmpe.boun.edu.tr/~dibeklioglu/documents/bioid2008_db.pdf
BU-3DFE [15] Binghamton University 2500 100 mesh YeS  hup/iwww.cs.bi edu/~lij 3DFE/3DFE_Analysis.html
BU-4DFE [41] Binghamton University 60600 101 3D video YeS  hup/iwww.cs.bi edu/~lij 3DFE/ADFE_Analysis.html
CASIA [42]  Chinese Academy of Sciences 4059 123 range im. NO  hup//www.ia.ac.cn:8080/english/
Texas 3DFRD [43] University of Texas 1149 118 range im. YES  hupi/live.ece.utexas.edu/research/iexas3dfi/
FSU [44] Florida State University 222 37 mesh no -
MSU [45] Michigan State University 533 90 range im. no -
ZJU-3DFED [46] Zhejiang University 360 40 mesh yes -
Beckman [47] Beckman Institute ? 475 mesh yes -

(®

Fig. 2.
(d) Bosphorus, (¢) SHREC’08, (f) FRAV, and (g) CASIA.

is the BU-3DFE database [15]. The 2500 3-D scans from 100
persons, with ages ranging from 18 to 70 years, are acquired with
a “3dMD” scanner (stereo photogrammetry technique) and con-
sist of 20 000-35 000 polygons and 1300 x 900 texture images.
The database contains six types of expressions each with four
levels of expression strength per subject. This makes it possible
to evaluate degradation of recognition performance as a result
of an increasing level of expression strength. The classification
of the basic facial expressions into the six classes, i.e., anger,
happiness, sadness, surprise, disgust, and fear, was proposed
in [48]. The author also showed that facial expressions of emo-
tion are not culturally determined, but universal across human
cultures and thus biological in origin. Another advantage of the
BU-3DFE database is the presence of fiducial points, which
can be used in the development and evaluation of marker-based
face-recognition algorithms.

A third important 3-D database is the Bosphorus database
[40]. The facial expressions are composed of a selected sub-
set of action units, as well as the six basic emotions (same as
for BU-3DFE). The database consists of 4666 scans from 105
subjects and is acquired with the “Inspeck Mega Capturor II

One scan from each of the most used 3-D face databases containing expression variations is shown: (a) FRGC vl, (b) FRGC v2, (c) BU-3DFE,

3D” scanner (structured-light technique) leading to 3-D point
clouds of approximately 35 000 points. Besides expression vari-
ations, pose variations and occlusions are also present in the
database.

Another database that is often used to validate 3-D face-
recognition algorithms that deal with expression variations is
the GavabDB [36], which is acquired with a “Minolta VI-700”
digitizer (laser range scanning technique). For each of the 61
subjects, nine scans are taken that include two frontal scans,
three expression scans, and four scans with pose variations (35°
up, 35° down, left and right profiles). A subset, excluding the
profile scans, was used during the SHREC in 2008 [11]. An
important advantage of this subset is that the faces are partially
pose normalized (nose tip indicated).

The FRAV 3D database is also acquired with a “Minolta
Vivid-700” scanner and contains 106 subject with 16 scans each
(six frontal, eight nonfrontal poses, one smiling, and one open
mouth). The CASIA databases, which are acquired with the
“Minolta Vivid 910 scanner, contain 4059 facial scans from
123 persons, with different expressions (smile, laugh, anger,
surprise, closed eyes) and pose variations.
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Fig. 3. Some important characteristics of the described databases, containing
for each database (a) boxplot of the number of points, (b) bounding box volume,
and (c¢) mesh resolution.

The main characteristics of the databases listed earlier are
given in Fig. 3(a)—(c), containing for each database the boxplot
of the number of points, the bounding box volume, and the mesh
resolution, respectively.

In Fig. 3, it is shown that the number of points, as well as the
bounding box, in the FRGC database is clearly higher (larger)
than in the other databases. Moreover, the number of points per
scan differs a lot within the FRGC database. This can be because
of the use of different lenses on the Minolta 910, or equivalently,
because of a change in distance of the subjects to the scanner.
The larger the bounding box, the more nonfacial outliers can

be expected, e.g., because of the presence of the chest in the
scan. In Fig. 3(c), it is shown that the mesh resolution of the
BU-3DFE database, the SHREC’08 dataset, and the FRAV 3-D
database is similar.

B. Recognition Metrics

Biometric technologies aim at recognizing people by the use
of two mutually exclusive scenarios. First, in the authentication
or verification scenario, the problem is to verify that a person
is indeed who he/she claims to be. This involves a one-to-one
matching of the face image to be verified (the probe image)
to one or more of the template images in the database (the
gallery images) of the allegedly same person. Iris and fingerprint
recognition is appropriate for solving this problem, but face
recognition potentially also has this capability. Second, in the
identification scenario, no identity is given a priori and the
person is to be compared with several or all subjects in a gallery
to establish his or her identity. This requires a one-to-many
matching. In addition, for this problem, face recognition could
provide a solution.

The verification and identification performance are measured
by the receiving operating characteristic (ROC) curve and the
cumulative match curve (CMC), respectively [5]. The ROC
curve plots the false rejection rate (FRR) versus the false accep-
tance rate (FAR). The FAR is the fraction of probes that have
wrongly been recognized as being the claimed identity. The
FRR is the fraction of probes that have incorrectly been classi-
fied as being different from the claimed identity. The equal error
rate (ERR) is the point on the ROC curve for which the FAR
is equal to the FRR and can therefore be seen as an important
scalar characteristic of the verification performance. Another
often used point on the ROC is the FRR at 0.1% FAR, which
has been advocated by the FRGC program. In [49], the per-
formance point selected as the reference for the FRR at 0.1%
FAR is 20%. The CMC plots the recognition rate (RR) versus
the rank number. The Rank-1 recognition rate (R;RR) is the
percentage of all probes for which the best match in the gallery
belongs to the same person and is, therefore, a good identifica-
tion measure. The percentage of the best and the second-best
correct matches is the Rank-2 recognition rate and so on for
higher ranks. Another measure for identification is the percent-
age of closest matches (nearest neighbors) in a leave-one-out
all-to-all matching scenario, which is also often termed as the
recognition rate (RR). Here, we will denote it as NN. Note that
this RR is mostly higher than the R;RR.

C. Complexity Analysis Using Baseline
Face-Recognition Algorithms

The performance of 3-D face-recognition methods will differ
for different databases because of the inherent complexity of
the databases. Moreover, most methods are designed on a par-
ticular database, introducing the risk of reduced performance on
other databases. In order to quantify differences because of the
inherent database complexity, one can use a standard baseline
technique for 3-D face recognition on the different datasets.
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TABLE II
COMPARISON WITH PCA OR ICP, FOUND IN THE LITERATURE

method DB # prob.  # temp. (subj.) R1RR
PCA [14] - - 70 55%
PCA [44] FSU 185 37 82%
PCA [53] FSU 300 50 58.4%
PCA [46] yALS) 360 40 79.7%
PCA [54] UND 877 100 80%
PCA [55] UND 1590 355 61.3%
ICP [54] UND 877 100 85%
ICP [55] UND 1590 355 61.5%
ICP [56] UND 1538 353 68.5%
ICP [57] Gavab 120 30 51.7%
ICP [57] Gavab 150 150(30) 65.3%
ICP [58] FRGCv2 4007 466 73.4%
ICP [59] Bosph. 1847 81 68.4%

The standard techniques for face recognition can be divided
into two groups: principal component analysis (PCA)-based
methods and algorithms using iterative closest points (ICP).
The ICP algorithm, which was introduced in [50] and [51], iter-
atively aligns 3-D surfaces by the minimization of the squared
Euclidean distance between closest points. Eigenfaces for 2-D
face recognition were first used in [52]. Each n x m 2-D im-
age is represented as a feature vector in the n.m dimensional
space. PCA finds the best vectors, which are called eigenfaces,
in this space to describe the variations between faces. Lighting,
pose, and scale variations are the main sources of bad classi-
fication. This technique is easily extended to 3-D (2.5-D) face
recognition by replacing the color images by depth images.

1) Literature Comparison: We first quantify the differences
of the reference databases based on a performance comparison
of the baseline techniques using results that are found in the
literature. These are shown in Table II.

As can be seen, the difference in performance between
datasets can be really large (R;RR € [55, 80] for PCA and R;RR
€ [51.7, 85] for ICP). However, the implementation of the base-
line techniques by the different authors can differ slightly as
well. Therefore, we reimplemented the standard ICP algorithm
as detailed in the next section and used it to perform the standard
recognition experiments on these reference databases.

2) Comparison With ICP Implementation: As the baseline
algorithm, we implemented the standard ICP algorithm. In the
first step of each iteration, for each point on the floating surface
(the surface to be transformed), the closest point on the target
(fixed) surface is determined, generating pairs of corresponding
points on these surfaces. In the second step, rigid transformation
parameters are estimated by the minimization of the squared
Euclidean distances between corresponding points. In the third
step of each iteration, this rigid transformation is applied to the
floating surface points. The iterative alignment process stops
when the maximum number (N = 25) of iterations is reached,
limiting the computation time. The root-mean-squared (RMS)
distance between corresponding, i.e., closest, points is chosen
to be the final dissimilarity between the two registered 3-D
surfaces. This RMS distance is assumed to be smaller, when
two facial surfaces belong to the same versus a different person.
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Fig. 4. (a) ROC and (b) CMC to compare the different databases using the
ICP algorithm.

TABLE III
PERFORMANCE COMPARISON OF THE DIFFERENT EXPRESSION DATABASES

database EER R;RR NN

FRGC vl 9.78%  78.29% 81.12%
BU-3DFE  17.16% 64.17% 95.56%
SHREC 20.96% 58.20%  90.40%
Bosphorus  31.79%  50.77%  85.85%
FRAV 35.39% 49.28%  85.19%
CASIA 37.07% 3595% 86.43%
FRGC v2  36.55% 28.10% 66.16%

The baseline algorithm is used for intradatabase face com-
parison providing a dissimilarity between any two faces in the
same database. For identification, the first scan of each subject
is selected as gallery image, while all other scans are consid-
ered as probe images. Every probe image is compared with
every gallery image. For verification, every pair of faces is com-
pared. The results for verification are shown by the ROCs in
Fig. 4(a), while in Fig. 4(b), CMCs for the different databases
in the identification scenario are plotted. Both figures illustrate
the inherent complexity of the considered databases w.r.t. 3-D
face recognition using ICP as a common baseline recognition
algorithm.

The EER, R;RR, and NN are listed in Table III, summarizing
the face-recognition performance of the baseline ICP algorithm
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TABLE IV
FACTORS THAT INFLUENCE THE PERFORMANCE OF THE BASELINE ALGORITHM

FRGC vl FRGC v2 BU-3DFE Bosphorus GavabDB  FRAV3D CASIA
Pose variations Vv N v v
Expression variations 4 Vv v v v v
Outliers v 4 4 v v v
Texture v 4 vV vV Vv

—&— rank 1 recognition rate
equal error rate
—— nearest neighbor |

[%]

0 i L . L & T S ——
0 10 20 30 40 50 60 70 80 90
rotation [degrees]
Fig.5. R RR, the equal error rate, and the nearest neighbor rate as a function

of the rotation of the neutral face in the Bosphorus database.

for each database. The databases are arranged according to a
decreasing performance as measured by the R;RR.

Based on this comparison, it is clear that the FRGC v2,
CASIA, FRAV3D, and Bosphorus databases are the most chal-
lenging for the ICP algorithm. Because of its frequent use in
the literature and its challenging nature, we recommend to use
the FRGC v2 database further as a reference database to evalu-
ate the overall performance of (expression-invariant) 3-D face-
recognition algorithms. In the next section, we examine factors
that explain the differences in performance for the different
databases.

D. Discussion of Factors That Influence the Performance

The main factors influencing the performance of the baseline
algorithm are pose variations, expression variations, the set-up
of the experiment, the presence of outliers and the use of texture.
In Table IV, we summarize the databases for which these factors
are relevant.

In an attempt to quantify these factors, we use the Bosphorus
database [40] and the BU-3DFE database [15] since they are
annotated with pose and expression information.

1) Pose Variations: A first factor that influences the per-
formance of the baseline method are large pose variations,
which severely degrade the performance because the ICP-
algorithm gets stuck in a local optimum. Different subsets of the
Bosphorus database [40] are used to quantify the effect of face
rotation on the performance of the baseline algorithm. Each
subset consists of the first neutral scan and one scan per yaw-

rotation (0°, 10°, 20°, 30°, 45°, or 90°) per subject.1 The results
are shown in Fig. 5, demonstrating a severe performance drop
when the rotation is 45° or more.

2) Expression Variations: Another data-related factor of
particular interest that influence the results is the presence of
expressions in the probe set. We examine three aspects: the
expression type, the expression strength, and the number of
expressions in the database.

a) Expression type: Different subsets of the BU-3DFE
and Bosphorus databases are used to quantify the effect of the
type of expression on the performance of the baseline algorithm.
The results are shown in Fig. 6. Although there are some differ-
ences between both databases, the “happy” expression seems to
be challenging in both databases.

b) Expression strength: The expression strength also has a
strong influence on algorithmic performance. The baseline ICP
algorithm is used to perform the recognition experiments on
four different subsets of the BU-3DFE database [15] with four
levels of expression strength. In Fig. 7, the results are shown,
demonstrating a clear performance decrease with an increasing
level of expression strength.

¢) Number of expressions: If more nonneutral probes are
used, a performance decrease of 5.8% and 8.1% is observed
in [60] and [55], respectively. This aspect can also be quantified
using the baseline method. In Fig. 8, the R;RR, the equal error
rate, and the nearest neighbor rate against the number of differ-
ent expression types in the BU-3DFE and Bosphorus databases
are shown. The more expressions are considered, the lower the
performance in terms of R;RR and equal error rate. This ten-
dency is not preserved for the nearest neighbor rate. This can
be explained since more scans of the same subject are present
in the dataset. The factor of an increasing number of subjects is
examined in Section II-D3.

3) Design of the Experiment: The third source is the de-
sign of the experiment. An important factor is the number of
templates. One of the conclusions in [61] about the results of
the (2-D) Face-Recognition Vendor Test (FRVT) 2002 was the
following:

“For identification and watch list tasks, performance decreases lin-
early in the logarithm of the gallery size.”

In a first experiment, this finding is validated by varying
the number of gallery images, while keeping the number of
subjects over the number of gallery images constant (a ratio of
1:25). The results are shown in Fig. 9, confirming the findings
that are presented in [61] with Pearson’s correlation coefficient:

1For 0°, there is not always a scan available. This explains the lower nearest
neighbor rate.
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(b) Bosphorus database.

r = —0.934. This linear performance decrease, however, can
only be seen for the R{RR and less, and so for the nearest
neighbor rate or the equal error rate (with » = —0.800 and r =
—0.703, respectively).

4) Outliers: The presence of outliers has a negative impact
on the performance of the ICP baseline algorithm because of the
risk to get stuck in a local optimum during optimization. Out-
liers can be present because of the presence of extra attributes
(eyeglasses, hats, scarfs,. . .), a changing field of view of the 3-D
scanner such that ears or chest are sometimes visible sometimes
not, or because of artifacts in the acquisition. In Fig. 2, we pro-
vide an impression of the presence of outliers in the considered
databases. The BU-3DFE database has the least number of out-
liers, which is (partly) the reason for the good performance of
the baseline algorithm despite the strong expression variations
(see Fig. 4 and Table III).
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5) Texture: The use of 2-D texture information combined
with the 3-D shape is expected to provide better results than the
use of 3-D shape information only. This expected difference is
confirmed in [62]-[65], where the combination of 2-D and 3-D
performs better. Using only 2-D texture information is expected
to perform worse as is demonstrated in [66]. In [67], a recog-
nition improvement is obtained by adding texture to the shape
information for frontal (neutral and nonneutral) scans. However,
arecognition decrease is noticed for nonfrontal scans, probably
because of illumination changes in the texture information.

III. THREE-DIMENSIONAL FACE-RECOGNITION METHODS
THAT DEAL WITH EXPRESSION VARIATIONS

Because of facial muscle contractions the soft tissue of the
face deforms during expression variations, which obviously has
an effect on recognition performance. In this section, we re-
view several 3-D face-recognition approaches and classify them
into three main categories based on their approach to handle
expression variations. Some methods build a statistical model
of facial soft tissue deformations that are caused by expres-
sions using a training dataset of expression-labeled exemplars.
We termed these methods as statistical methods. Other meth-
ods assume the deformation because of expression variation to
be isometric, meaning that the deformation preserves lengths
along the surface. We call these methods the isometric defor-
mation modeling approaches. The third class of methods, which
are called region-based methods, does not assume a statistical
or isometric deformation model but uses only regions that are
not or not much affected by expressions. The three classes are
discussed in more detail in the following sections. Their typical
processing pathway is presented in Fig. 10.

A. Region-Based Methods

Historically, the first class of expression-invariant face-
recognition algorithms 1is the region-based methods. In

I
1 Training stage §
| |P0int correspondence |

1

| Statistical model |

| Correspondence

l

| Region selection |

l Test stage
Region dissimilarity Model fitting
| o |

1

Dissimilarity fusion Dissimilarity
| || (o]
Y
(@) (b)
l
| Correspondence

1

Isometric deformation
invariant representation

Representation dissimilarity

|

()

Fig. 10. (a) Typical structure of a region-based 3-D face-recognition algo-
rithm. (b) an algorithm using a statistical model, and (c) an isometric deforma-
tion model.

Fig. 10(a), the typical structure of a region-based 3-D face-
recognition algorithm is shown.

The first block contains the calculation of region correspon-
dence, which is based on knowledge about the location of land-
marks and their relation with the regions to be selected [59], [62],
[68]-[72], by automatic region segmentation mostly using cur-
vature information [55], [73]-[75], by a matching process [46],
[59], [62], [63], [73], [76]-[82], or by a combination.

The second part is the selection of regions that vary less
under expression deformations, which can be done by several
strategies. The first and most used strategy is to select well-
defined anatomic regions based on observations or on the liter-
ature. The most popular region is positioned around the nose,
as in [55], [59], [62], [65], [68]-[71], [73]-[75], [83], and [81].
Another anatomic region that is used is the eyes/forehead re-
gion [59], [62], [70], [78]. The second strategy to determine
expression-invariant regions is the use of local features. Convex
regions [73], Gabor features [42], [65], [78], [84], [85], matched
local-invariant range images [77], Haar and Pyramid wavelet
features [79], and local shape pattern (LSP) features [82] ap-
pear to be less affected by expressions. This often involves a
learning step using AdaBoost [42], [84], sparse representation
classifier (SRC) [82], or visual codebooks [78]. The third strat-
egy is the automatic determination of the more rigid part of the
face during rigid registration as in [46], [63], [76], and [80].
Points with low registration error are considered to belong to
the more rigid part of the face.
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TABLE V
OVERVIEW OF THE RESULTS OF THE REGION-BASED METHODS

method year DB # prob.  # temp. (subj.) # expr. RR EER FRR@0.1%FAR
Chua [76] 2000 - 6 6 (6) 4 100.0% 0.0% 0.0%
Mian [62] 2005 UND 671 277 (277) - 100.0% 0.3% +1.7%
[86] 2006  FRGCvl 668 275 (275) - 100.0% < 0.1% 0.0%
Maurer [63] 2D+3D) 2005  FRGCv2 4007 4007 (466) - - 2.1% 6.5%
(3D) 2005  FRGCv2 4007 4007 (466) - - +3% 13.0%
Chang [55] 2006 UND 3839 449 (449) - 95.2% - -
UND 1590* 355 (355) - 87.1% 12% +37%
Wang [46] 2006 ZJu 320 40 (40) 4 96.9% - -
Mian [77] (2D+3D) 2006  FRGCv2 200" 466 (466) 81.0% +3% 14.0%
(3D) 2006  FRGCv2 200* 466 (466) - 73.0% 5% 24.0%
Faltemier [68] 2006  FRGCv2 3541 466 (466) - 94.9% - -
FRGCv2 4007 4007 (466) - - 32% 12.5%
FRGCv2 2114 1893 (466) - - 2.5% 11.2%
[69] 2008  FRGCv2 3541 466 (466) - 98.1% - -
FRGCv2 4007 4007 (466) - - - 6.8%
FRGCv2 2114 1893 (466) - - - 5.2%
Cook [65] 2006  FRGCv2 4007 466 (466) - 93.2% +1.6% + 6.3%
[85] 2006  FRGCv2 4007 466 (466) - 94.6% - -
FRGCv2 4007 4007 (466) - - - 7.7%
Xu [42] 2006 CASIA 500* 100 (100) 5 90.8% - -
[84] 2009  FRGCv2 2114 1893 (466) - - +4.6% 29.5%
Zhong [78] 2007 FRGC 4950 4950 (466) - - 4.9%
CASIA 1845 1845 (123) - - 7.5%
Lin [66] (sum rule) 2007  FRGCv2 2114 1893 (466) - - +18% 69.16%
(LDA) FRGCv2 2114 1893 (466) - - +18% 68.96%
Kakadiaris [79] 2007  FRGCv2 4007 466 (466) - 97.0% - -
2007  FRGCv2 2144 1893 (466) - - +1.5% 3.0%
FRGCv2 2114 1893 (466) - - - 4.7%
Queirolo [83] 2008  FRGCv2 4007 465 (465) - 98.4% - -
FRGCv2 4007 4007 (465) - - - 3.5%
FRGCv2 2144 1893 (465) - - - 3.4%
Xu [71] 2008 SHREC 427 427 (61) 7 81.7%" - -
[84] 2009 CASIA 500* 100 (100) 5 90.0% - -
Nair [75] 2008 SHREC 427 427 (61) 7 82.2%1 - -
Fabry [80] 2008 SHREC 427 427 (61) 7 90.6%* - -
Alyiiz [59] 2008 Bosph. 1847 81 (81) 34 95.4% - -
Smeets [81] 2010 BU-3DFE 900 100 (100) 8 89.9% - -
BU-3DFE 900 900 (100) 8 - 6.8% -

In the third part, region dissimilarities are calculated using a
variety of dissimilarity measures. The region dissimilarity is fre-
quently set equal to the final average dissimilarity measure that
is used for the matching process, when region correspondence
is found by a matching process or with an additional registration
for dissimilarity calculation. This is often the Euclidean distance
between closest points (ICP) as in [46], [62], [63], [68], [74],
and [81], but also correlation [73], number of points having a
similar feature [76], surface interpenetration measure [70], and
kernel correlation [80] are used. In some cases, the dissimilarity
is measured with a measure different from the one used dur-
ing matching, e.g., the volumetric difference [59] or Hausdorff
distance [75]. Other dissimilarity measures that are computed
between feature vectors are the Mahalanobis cosine [65], the
mean Euclidean distance [77], the Bray—Curtis distance [71],
L1 distance [79], and the structural similarity (SSIM) index [79]
(which is translational insensitive with the intention to be insen-
sitive for expressions). Dissimilarity can also be obtained using
a learned classifier [42], [82], [84].

When more than one region is taken into account, fusion of
the region dissimilarities is needed. This can be done at score
or rank level, combining the dissimilarity scores or the ranks,
respectively, after ordering of the faces based on the individual
scores. Fusion is not always necessary since sometimes only

one region is used [46], [71], [75], [76]. When fusing is used,
authors often experiment with different fusing rules [55], [59],
[62], [69], [74]. At the score level, the product rule consistently
seems to be the best in [55], [62], [74], and [59], while the sum
rule is used in [73], [77], [83], [85], and [81]. At the rank level,
the Borda count voting scheme is used in [69].

An advantage of region-based methods is their handling of
missing data, since these methods work quasi-locally. However,
region-based methods do not use all available information by
throwing away those parts that are affected by expressions. This
leads to loss of information that could be discriminative.

In Table V, we provide an overview of the reported results of
the region-based methods. The asterisk in the “# prob.” column
indicates that only nonneutral probes are used. The “1” in “RR”
column means that the nearest neighbor rate is used instead of
the R;RR.

B. Statistical Modeling Methods

In the second class of methods, a statistical model is used.
The most popular statistical model is the PCA model, which
expresses a random shape S as the sum of the average shape
S of the training set and a linear combination of the principal
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components, which is mathematically expressed as
S(@)=S+M-a (1)

with M being a matrix that contains the principal components
in the columns and « the coefficients of the shape in the PCA
space. In order to obtain such a statistical model, correspon-
dences between different shapes are needed. Each shape can
then be represented as a vector in an n-dimensional space. The
principal components are the eigenvectors of the covariance ma-
trix, calculated on the n-dimensional vector representations of
the shapes in the training data. The eigenvector that corresponds
to the largest eigenvalue describes the largest mode of variation.
If all model parameters «; of the model are retained, the shape
can be fully recovered. However, when dimensionality reduc-
tion is applied, only the parameters that correspond to the largest
modes of variation are preserved. PCA models are often used
in 2-D face recognition [87], leading to the concept of eigen-
faces. This made its application on 2.5-D range images a logic
extension. Later on, PCA was also applied to 3-D scans.

In Fig. 10(b), the general structure of methods using a sta-
tistical model for expression-invariant face recognition, which
consists of two main stages, i.e., a training and a test stage,
is shown. The training stage involves establishing point corre-
spondence and statistical model construction. In the test stage,
the model is fit to the probe, and a dissimilarity measure is
calculated.

A variety of methods are available for finding point correspon-
dences. When the statistical model is derived from range images,
pose normalization and projection onto a 2-D grid provide 2-D
range images that are pixelwise in correspondence [44], [88],
[89]. In statistical models that are derived from 3-D shapes, ICP
often provides correspondence information, as in [90] (com-
bined with features for initialization), [91] (on the rigid parts of
the face) and [92] (with extra energy terms for regularization
and larger convergence area). In [93], anatomic landmarks are
detected as correspondence information.

Second, a statistical model is built using the correspondence
information. A PCA shape model can deal with expressions by
including faces with expression in the training data as in [44],
[88], and [90]. PCA can also be used to model deformations, in
this case, the deformation during expression variations. This is
called “principal warps” and is done in [94] and [91]. The for-
mer combined this expression model with a PCA shape model
for identity into one additive model, assuming that it is pos-
sible to transfer expressions from one face to another. When
this assumption is considered to be false, it is necessary to
combine the expression model and identity model into a bi-
linear model as in [92]. However, model fitting becomes com-
putationally more demanding. Other statistical models use in-
dependent component analysis (ICA) [44], linear discriminant
analysis (LDA) [88] or simply pointwise mean and standard
deviation [93].

During validation, the model needs to be fitted to the probe.
Some methods solve this by a combination of correspondence
findings and projection onto the subspace obtained by the sta-
tistical model [44], [88], [90], [91], while others minimize cost

functions with respect to transformation parameters and statis-
tical model parameters [45], [92], [94].

Finally, when the model is fitted, a dissimilarity measure be-
tween probe and gallery is calculated. Popular measures are
the Euclidean distance [44], [88], [92], the related RMS dis-
tance [45], the cosine distance [88], [90], [94], the Mahalanobis
distance [89], and the number of matched points [93].

An important advantage of these statistical model-based
methods is that the template must not be matched to every
gallery image, but only to the statistical model, if dimension-
ality reduction has been applied. This makes statistical models
generally the fastest.

On the other hand, these methods always need a training
stage to construct the model. Therefore, if no sufficient repre-
sentative training data are used or are available, the recognition
performance will decrease. Moreover, the quality of the shape
or deformation model depends on the quality of the point cor-
respondences, which is still an active field of research for 3-D
face data.

In Table VI, we summarize the results of the methods using
a statistical model.

C. Isometric Deformation Modeling

The third class of algorithms makes use of an isometric de-
formation model in which facial surface changes during expres-
sion variations are modeled as isometric deformations. Since
expression variations can be approximated by isometric trans-
formations [97], the isometric deformation-invariant represen-
tation is approximately an expression-invariant representation.
Since it is invariant for position and orientation, it is an intrinsic
representation. Mathematically, an isometric deformation of a
submanifold M in a Riemannian space V is a deformation that
preserves the lengths of curves in M. For recognition purposes,
it is interesting to study geometric invariants during isometric
deformations. According to Gauss’s Theorema Egregium, the
Gaussian curvature K of a surface, i.e., the product of the prin-
cipal curvatures, is invariant under local isometry [98]. However,
on real surfaces, curvatures are sensitive to noise, which makes
the practical use of this invariant difficult. Another geometric
invariant is the first fundamental form of M, which is the inner
product of the tangent vectors and is given explicitly by the
Riemannian metric [99]

ds®> = Edu® + 2Fdudv + Gdv®. )

It determines the arc length of a curve on a surface. The coeffi-
cients are given as follows [99]:

2

x

E= P (3)
ox 0x

F =% ov @
ox|?

“=lov ®

The shortest path between two points on the surface is called
the minimal geodesic, and its length is called the geodesic
distance. This geometric invariant is less noise sensitive and,
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TABLE VI
OVERVIEW OF THE REPORTED RESULTS OF THE NONRIGID METHODS

method year DB # prob.  # temp. (subj.)  # expr. RR EER FRR@0).1%FAR
Hesher [44] (PCA) 2003 FSU 37% 185 (37) 6 94% - -
(ICA) FSU 37* 185 (37) 6 97% - -
Heseltine [88] 2004 York 1470 (230) - 8.2% >45%
Zhong [89] 2006 CASIA 861 369 (123) 5 96.1% - -
Lu [54] (ESM) 2006 UND 877 100 (100) 7 92% +2% +31%
(EGM) UND 877 100 (100) 7 89% +7.5% +33%
(ESM) MSU 533 90 (90) 2 94% +5% +47%
(EGM) MSU 533 90 (90) 2 91.5% +7% +51%
Russ [90] 2006 UND 753* 202 (202) - 82.6% - 9%
Amberg [95]([94]) 2008 SHREC 427 427 (61) 7 99.7%(98.8%) 0.2% 0.2%
UND 953 953 (7)) - 100.0% 0.2% -
Mpiperis [92] 2008 BU3DFE 1250 ? (50) 6 86% +12% >40%
Al-Osaimi [96] 2009 FRGCv2 3541 466 (466) - 96.52% - -
Al-Osaimi [96] 2009 FRGCv2 2114 1893 (466) - - +2.7% 5.95%
Kaushik [93] 2009 BU-3DFE 695 695 (100) 6 98.92% 1.08%
therefore, often used for isometric deformation-invariant 3-D TABLE VII

face recognition. The geodesic distance can be calculated by
the fast marching method on triangulated domains, as described
in [100].

A method using an isometric deformation model usually has
a structure as shown in Fig. 10(c), i.e., correspondence finding,
the construction of an isometric deformation-invariant represen-
tation, and dissimilarity calculation.

First, some minimal correspondence information is re-
quired in order to construct the isometric deformation-invariant
representation. In [60], [101]-[107], and [108], the nose tip
is localized on the probe and gallery image either automat-
ically or manually. This location and its relation, by defini-
tion, with the invariant representation, provide enough corre-
spondence information. In [57], [109], and [110], 43, 25, and
7 manual landmarks are indicated, respectively. In [110], ex-
tra pseudolandmarks are found by remeshing. In [111], ICP
is used for correspondence finding, and in [112], the face
is fitted to a cylinder and further aligned by mesh resam-
pling. Finally, in [113] and [114], correspondence calcula-
tion is done after construction of the isometric deformation-
invariant representation, respectively, with a moment match-
ing algorithm and in an implicit manner with a singular-value
decomposition.

The mostly used isometric deformation-invariant represen-
tations are isogeodesics, curves containing points on an equal
geodesic distance to a reference point (nose tip), as in [60], [102],
[104], [105], [107], [108], and [115]. Vectors with geodesic
distances from points in a well-defined order are related to
the nose tip [111]. Those representations have the advantage
that only the geodesic distances from the nose tip to all other
points need to be calculated, which is efficiently done with the
fast marching method for triangulated domains [100]. In [101]
and [103], the depth values of points on a facial surface mesh are
(near-)isometrically mapped to an isomorphic circle. A compu-
tational more demanding representation is the geodesic distance
matrix, containing the geodesic distance between each pair of
points as in [112]-[114], or with a limited number of points,
in [57], [109], and [110]. In [113], this geodesic distance ma-

OVERVIEW OF THE RESULTS OF THE ISOMETRIC DEFORMATION METHODS

X X S n
region-based methods  94.6% 91.9% 73% 21
statistical methods 94.0% 93.7% 53% 13
isometric methods 945% 91.6% 85% 26

trix is transformed into a geometrical configuration using the
multidimensional scaling algorithm.

The final step is to calculate a dissimilarity between the invari-
ant representations in order to be able to compare faces, using
a dissimilarity measure on features of the representation [60],
[102], [104]-[108], [110], [111], [114], a dissimilarity measure
on statistical model coefficients [57], [103], [109], [112], [116],
or a dissimilarity measure on the matching process of the in-
variant representations [113], [117], [118].

A benefit of the isometric deformation model is that it needs
no training and that it has a broad applicability. As demonstrated
in [97], geodesic distances between corresponding point pairs
do not remain constant during expression variations. Follow-
ing [103], the standard deviation of the relative change in the
geodesic distance was found to be about 15%. Therefore, the iso-
metric deformation model is an approximation only. Moreover,
topological changes, like occlusions and open mouth, need spe-
cial care since they disturb the correct calculation of the geodesic
distances.

In Table VII, we provide an overview of the reported results
of the methods using a isometric deformation model.

D. Quantitative Comparison

In this section, we perform a quantitative comparison between
the different class performances. Thereto, we analyze the avail-
able RRs without taking into account the data used. The median
X , the sample mean X, and standard deviation S of the RRs
are computed for each class and shown in Table VIII.

No statistical significant difference in performance is found
between any pair of classes. The hypothesis of equal median
could not be rejected for any pair using the Wilcoxon rank
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QUANTITATIVE COMPARISON

TABLE VIII

method year DB # prob.  # temp. (subj.) # expr. RR EER FRR@0.1%FAR
Bronstein [113] 2005 - 220 65 (30) 10 100.0% 1.9% +7.5%
[117] 2005 - 104 ?(4) 7 98.0% 12.4% -
[119] 2006 UND 180 30 (30) 6 100.0% 3.1% +24%
Pan [101] 2005 FRGCv1 943 943 (276) - 95% 2.83% -
Samir [53] 2006 FSU 300 50 (50) 6 59% - -
FSU 300 250 (50) 6 92% - -
UND 270 470 (162) - 90.4% +2% +14%
Berretti [60] 2006 Gavab 366 61 (61) 7 87.8% - -
Gavab 183 61 (61) 3 82.0% - -
[72] 2008 Gavab 427 427 (61) 7 99.5% - -
Ouji [111] 2006 ECL-1V 400 ? (50) 8 92.7% +12% 25%
Feng [102] 2007 UND - 222 (222) - 95% - -
Li [57] 2007 Gavab 120 30 (30) 7 94.2% - -
Gavab 150 150 (30) 7 97.0% - -
FRGCv2 150 30 (30) 6 85.4% - -
FRGCv2 180 180 (30) 6 95.6% - -
Li [110] 2009  Gavab+FRGCv2 600 120 (120) 5 94.7% - -
Mpiperis [103] (color) 2007 BU3DFE 1500 100 (100) 7 80.3% 9.8% 25%
(depth) 2007 BU3DFE 1500 100 (100) 7 84.4% 12.0% 25%
Gupta [120] 2007 - 663 105 (105) 2 94.7% 1.3% 3.5%
Jahanbin [104] (LDA) 2008 - 813 10 (109) - - 2.6% +12%
(SVM) 2008 - 813 10 (109) - - 2.8% 25%
Li [105] 2008 CASIA 300 100 (100) 4 90.3% - -
terHaar [107]([106]) 2009 SHREC 427 427 (61) 7 92.5% (91.1%) - -
UND 953 953 () - 97.6% - -
Smeets [114] 2009 BU3DFE 900 100 (100) 3 - 13.4% 71.07%
Miao [108] 2010 FRGCv2 100 50 (50) 2 93.64% - -
FRGCv2 100 100 (50) 2 - +12% +26%
Tang [112] 2010 BJUT-3D 450 150 (150) 3 95.3% - -
FRGCv2 350 350 (350) 3 95.04% - -

sum test (region based versus statistical: p = 0.62; region based
versus isometric: p = 0.91; and statistical versus isometric: p =
0.60).

The main limitation of this metaanalysis, however, is that
the algorithms’ performances are obtained on different datasets.
It would therefore be better to analyze results on a standard
dataset, but not enough samples are available for this. Second,
the specific implementation of a certain method has an impor-
tant influence on the method’s performance. It would therefore
be interesting to implement a baseline method for each strategy.
Finally, nonparametric tests, as the one used in this metaanaly-
sis, are known to lack statistical power with small sample sizes.
Therefore, the current metaanalysis can only give limited in-
sights. However, it does allow reflecting about the development
of both methodologies and their implementations, as well as the
construction of future databases.

IV. DISCUSSION OF THE FACE-RECOGNITION METHODS

During the development of 3-D face-recognition algorithms,
several design choices have to be made, like the representation
of the 3-D face, the way to establish the correspondence infor-
mation and the dissimilarity measure. They all have an influence
on recognition performance, speed of the algorithm, implemen-
tation time, applicability to real situations, and so on. Here, we
discuss these fundamental problems in 3-D face recognition for
which design choices are crucial.

A. Face Representations

All the face-recognition algorithms that are discussed in this
paper use a database containing range images, meshes, or point
clouds. This representation mainly depends on the way the
acquisition device outputs data. However, many of the face-
recognition algorithms use another internal data representation
of the faces for probe-template comparison or as an intermedi-
ate representation. We discuss three representations (landmarks,
curves, surfaces) that are all extrinsic. Intrinsic representations,
which are independent of the reference frame, can be extracted
from these basic extrinsic representations.

A first type of representation consists of a sparse set of land-
marks. Originally, a landmark literally means a geographic fea-
ture that is used by explorers and others to find their way back or
through an area. In modern usage, a landmark includes anything
that is easily recognizable. In cephalometry, i.e., the measure-
ment of the human head by imaging, or in anthropometry, in
general, those landmarks play a crucial role [121], [122]. For
3-D facial expression methods, those landmark representations
are used in [120] and [57]. The main disadvantage of this rep-
resentation is its sparseness, implying that some useful shape
information is not captured in the representation. On the other
hand, by using landmarks, the fundamental problem of corre-
spondence is easier to solve (see the text).

The second way of representation of faces are contour curves
and profiles, as shown in Fig. 11. Contour curves are closed,
nonintersecting curves of different lengths [see Fig. 11(c)—(f)].
Profile curves have a starting and an end point [see Fig. 11(a) and
Fig. 11(b)]. Mostly, the starting point is in the middle of the face,
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Fig. 11.  Points on profile curves with (a) curve parts under the same angle or
(b) same z-value and (c) points lying on iso-depth curves and on isoradius curves
obtained by intersection with (d) cylinder or (e) sphere, and (f) isogeodesics.

while the end point is at the edge of the face. Contour curves can
be subdivided into isodepth curves and isogeodesics. Isodepth
curves are obtained by translating a plane through an object
in one direction. The intersections of the object surface and the
plane are closed contours and form isodepth curves. In [104] and
[53], iso-depth curves are used as face representation. All points
on an isogeodesic curve have an equal geodesic distance to a
reference point. According to isometric models, isogeodesics
are more or less invariant for expression variations. In [60],
[102]-[105], isogeodesics are, therefore, used for expression-
invariant face recognition. Curve representations are less sparse
than landmarks; however, some facial shape information is still
not captured. Often, by use of such curves, the relative weight
of the reference point, mostly the nose tip, is higher than points
on, e.g., the cheeks. This is mostly an advantage since the nose
region contains distinctive shape information as shown in [55].

The third type for representation of faces are surfaces, as
shown in Fig. 12. A review of surface representations is given
in [123] and [124]. Most surface representations that are used for
3-D face-recognition methods are explicit. Dense point clouds
are the most simple representation of surfaces [see Fig. 12(a)].
However, they are frequently used because of the ease to trans-
form it into another representation. They are used in [113]
and [54]. A mesh, i.e., a cloud of points that are connected by
edges, can be constructed given a point cloud [see Fig. 12(b)].
The most powerful algorithm to deal with this problem, i.e.,
the power crust algorithm, is described in [125]. Meshes are
used in [57] and [56] and have the advantage of incorporat-
ing knowledge about the connectivity between points. This is
useful for the calculation of geodesic distances, which can be
calculated on a mesh using the fast marching method on trian-

(c)

|

Fig. 12. Possible surface representations of 3-D faces are (a) dense point cloud,
(b) mesh, (c) the range image, (d) kernel density estimate, and (e) distance map.

(e)

gulated domains [100]. Another frequently used explicit surface
representation is range images, e.g., in [44], [83], and [88]; see
Fig. 12(c). They can be easily captured with a laser scanner or es-
pecially calculated as intermediate surface representation [53].
Another interesting representation is the point-cloud-based ker-
nel density estimate used in [80]; see Fig. 12(d). Implicit surface
representation is far less used for 3-D face recognition, although
some positive arguments are stated in [123]. The only used im-
plicit representation is the distance map in [126]; see Fig. 12(e).

B. Correspondences

The second fundamental research question in 3-D face recog-
nition is the correspondence problem.

The most simple way of finding correspondences is the man-
ual indication of landmarks as done in [57] and [120]. The main
advantage is reliability because of the user intelligence that can
be used. However, the indication of landmarks is a tedious and
timeconsuming task, and therefore, only a relative small set of
corresponding points is obtained.

Starting from a set of manual landmarks, heuristic rules can
be used to generate more corresponding points.
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TABLE IX
MosT COMMON DISSIMILARITY MEASURES

definition

D(p,q) = /2 i=1 (Pi — 4i)°
D(p,q) = VZ?:I %
D(p,q) = \/Z?:1 Z;‘L:1 %
D(p,a) =/ 5 X7

n i:1(Pi —¢;)?
D(p,q) =1—- (—==-~—-—
Vi p; Vi a;

Dissimilarity measure
Euclidean distance

Normalized Euclidean distance

Mahalanobis distance

Root mean square distance

n . .
Cosine distance i1 P

Dense correspondences can be determined using rigid and
nonrigid alignment of facial surfaces. The standard algorithm for
rigid surface registration is the ICP algorithm, which iteratively
finds correspondences using the nearest neighbor principle and
calculates a rigid transformation aligning these corresponding
points. It is used in [45], [46], [55], [99], [62], [63], [69], [75],
[79], [90], and [95]. Besides ICP, other rigid registration meth-
ods are used, such as higher order moment matching in [116]
and mean shift in [80].

C. Dissimilarity Measures

Face-recognition algorithms require a dissimilarity measure,
a scalar value on the basis of which a verification/identification
decision is made. In Table IX, we list the most common dissim-
ilarity measures. The vectors p; and ¢; typically represent 3-D
coordinates of corresponding points.

In [127], a psychological study reveals that the Cosine dis-
tance in face space (PCA) bears a closer relation to how humans
perceive similarity than the Euclidean distance in face space.

V. CONCLUSION AND FUTURE CHALLENGES
A. Conclusion

In this study, an overview of the most important existing pub-
lic 3-D face databases containing expressions has been provided.
The availability of these databases worked as a catalyst for the
development of (expression-invariant) 3-D face-recognition al-
gorithms. However, since these algorithms have been tested on
different databases, it is important to quantify the complexity of
these databases when comparing one algorithm with another.

In order to quantify this complexity, in the context of face
recognition, the use of the ICP algorithm as the baseline
face-recognition technique to compare the databases has been
proposed. Based on these results, the use of the FRGC v2
database as reference database has been recommended to evalu-
ate the overall performance of (expression-invariant) 3-D face-
recognition algorithms, since it shows the highest complexity
expressed in ROC and CMC curves. The BU-3DFE database,
on the other hand, is the most appropriate database to evaluate
algorithms for robustness against expression variations. In an at-
tempt to quantify the most influential factors in a database, first,
these factors have been determined, and their influences on the
performance of the ICP baseline algorithm have been measured.
From these experiments, it is clear that large rotations deteri-

orate the performance of the baseline algorithm. Moreover, an
increasing number of expressions and an increasing expression
strength decreases the recognition performance during identifi-
cation, as well as during verification. Performance differences
for different types of expressions have also been observed.

Furthermore, a metaanalysis of 3-D expression-invariant
face-recognition algorithms has been performed. Methods that
deal with expression variations were subdivided into three
groups. Region-based methods perform face recognition by only
taking parts of the face into account that are more or less rigid
during expressions. Isometrical deformation models use the in-
variance of geodesic distances between corresponding points.
Statistical methods construct an additive or combined PCA de-
composition either to model expressions separately or by includ-
ing nonneutral faces in the training set, respectively. For each
category, strengths and disadvantages were listed. It appeared
that there is no global intercategory performance difference. A
thorough and fair comparison, however, requires a standard-
ized database to validate 3-D face-recognition algorithms on,
for which we recommend to use the FRGC v2 database.

B. Future Challenges

One challenge will be the reduction in computational com-
plexity, since the processing of the ever growing size of
databases is proportional to the square of the database size
and, thus, takes a considerable amount of time. For example,
if it takes 1 s for a face-to-face comparison, validation of the
FRGC v2 database requires 186 days. Parallel, cluster-based
processing and GPU implementation provide a possible solu-
tion. Another data-related challenge is 3-D face acquisition with
affordable and reliable equipment. This leads also to questions
of minimum quality. How does the performance of 3-D face-
recognition algorithms degrades with the decreasing quality of
the data? An important aspect here is the limited capture range
of 3-D face scanners, which, often in combination with self-
occlusion, obligates 3-D face-recognition methods to deal with
partial data. Some initial work has been done here [128], [129].

Although much research has been done on 3-D face recog-
nition under expression variations, other intrashape deforma-
tions, mainly time-related changes, are not yet tackled in the
current research. Ageing and weight variation manifest them-
selves in changes of the facial soft tissue envelope. Some work
on age-invariant face recognition has been done [130]. How-
ever, the main challenge there is building appropriate databases
to validate robustness against age variations. In addition, pur-
poseful facial shape modification for identity spoofing becomes
another challenge. Unfortunately, data to validate robustness
against spoofing are not available.

With respect to 3-D face-recognition methodology, perfor-
mance can be further increased by fusing different methods,
different classes of methods [81], and/or different modalities.
The challenges of such multibiometrics for person identifica-
tion are discussed in [131]. The correspondence problem, which
is often a key component in 3-D face-recognition algorithms,
is still an active field of research, and 3-D face recognition
will benefit from the improvement in solving this problem. In
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addition, we believe that solving the problem of expression-
invariant 3-D face recognition could benefit from the dual prob-
lem of 3-D face expression recognition, and vice versa.
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