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Abstract In the past few years detection of repeatable and
distinctive keypoints on 3D surfaces has been the focus of
intense research activity, due on the one hand to the increas-
ing diffusion of low-cost 3D sensors, on the other to the
growing importance of applications such as 3D shape re-
trieval and 3D object recognition. This work aims at con-
tributing to the maturity of this field by a thorough evalua-
tion of several recent 3D keypoint detectors. A categoriza-
tion of existing methods in two classes, that allows for high-
lighting their common traits, is proposed, so as to abstract all
algorithms to two general structures. Moreover, a compre-
hensive experimental evaluation is carried out in terms of
repeatability, distinctiveness and computational efficiency,
based on a vast data corpus characterized by nuisances such
as noise, clutter, occlusions and viewpoint changes.

Keywords 3D detectors - Performance evaluation - 3D
object recognition - 3D shape retrieval

1 Introduction

Recognition of similarities among 3D shapes represents one
of the most challenging tasks in surface analysis applica-
tions. Research efforts aimed at improving the capabilities
of 3D shape recognition algorithms are nowadays gaining
momentum thanks to the increasing availability of low-cost,
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dense 3D sensors, such as stereo and Time-of-Flight cam-
eras, as well as structured light sensors (e.g. the recent
Kinect device by Microsoft).

The main trend for establishing similarities among sur-
faces relies on computing correspondences between 3D fea-
tures (Chua and Jarvis 1997; Johnson and Hebert 1999;
Frome et al. 2004; Novatnack and Nishino 2008; Zaharescu
et al. 2009; Tombari et al. 2010; Bronstein and Kokkinos
2010). Feature-based surface matching is now one of the
standard paradigm in applications such as 3D object recog-
nition (Johnson and Hebert 1999; Mian et al. 2010; Zhong
2009), 3D reconstruction (Novatnack and Nishino 2008), 3D
shape retrieval (Boyer et al. 2011), and 3D object catego-
rization (Salti et al. 2010; Knopp et al. 2010). An alternative
approach, generally adopted in the absence of clutter and oc-
clusions, relies instead on describing the whole surface by
means of a single descriptor (Shang and Greenspan 2010;
Akgiil et al. 1992; Shilane et al. 2004).

Feature-based matching relies on two steps: feature de-
tection and feature description. The first step identifies 3D
keypoints, i.e. points of the shape that are prominent accord-
ing to a particular definition of interestingness or saliency.
3D keypoints are extracted from surfaces by a 3D detector,
which analyses local neighborhoods around the elements of
the given surface in order to identify such interest points.
Then, the neighborhood of a keypoint is described by a 3D
descriptor, which projects the neighborhood into a proper
feature space. Finally, descriptors computed on different sur-
faces are matched together, the most reliable matches yield-
ing point-to-point 3D correspondences.

A detector should extract repeatable keypoints under a
number of nuisances that can affect the input data, e.g. view-
point changes, missing parts, point density or topology vari-
ations, clutter, sensor noise. A 3D detector may provide the
ability of associating to each extracted keypoint a character-
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istic scale, or support size, which should be repeatable under
the aforementioned nuisances, and that can be provided to
the following description stage to identify the neighborhood
of points on which the local feature ought to be computed.
It is worth pointing out that the definition of a proper and
repeatable scale in 3D data differs from the scale-invariance
notion of 2D features. In the 2D domain, scale invariance
is motivated by the requirement to detect image structures
invariantly to the possible size changes that occur when the
3D space is projected onto a 2D plane. However, 3D sen-
sors typically provide metric data, so that the association of
a characteristic scale to a keypoint serves primarily to ob-
tain highly distinctive features, in particular by allowing for
the description of the most salient neighborhood around a
candidate keypoint, as well as to prevent missing impor-
tant features of an object by measuring saliency based on
a given support size only. Accordingly, we prefer to de-
note 3D detectors that associate a characteristic scale to a
keypoint as adaptive-scale rather than scale invariant detec-
tors.

Traditionally, distinctiveness and repeatability have been
regarded as the main traits of a 3D detector: the former is the
ability to detect keypoints that can be effectively described
and matched, so as to possibly prevent wrong point-to-point
correspondences. The latter, instead, deals with the capabil-
ity to detect the same keypoints accurately under various
nuisances. In our analysis and evaluation we deliberately fo-
cus on repeatability, the reason being twofold: as the same
3D structure can be represented more or less effectively by
different descriptors, distinctiveness can be measured only
in combination with a specific description algorithm, which
renders the results of such experiments and their analysis
of limited generality; distinctiveness of a local shape ele-
ment is, indeed, a rather global property of a scene or model,
which is therefore hard to capture by a local algorithm, such
as a feature detector. To help visualize the latter issue, think
of an image of a chessboard or a surface made out of iden-
tical, equally spaced bumps: clearly a lot of repeatable key-
points can be identified in both examples, but none of them
can be told easily apart by looking at a local area only.

A notable scientific fervor has recently characterized the
field of 3D detectors, leading to several relevant propos-
als (Mian et al. 2010; Chen and Bhanu 2007; Zhong 2009;
Novatnack and Nishino 2008; Unnikrishnan and Hebert
2008; Akagunduz and Ulusoy 2007; Zaharescu et al. 2009;
Fadaifard and Wolberg 2011; Knopp et al. 2010; Castellani
et al. 2008; Sun et al. 2009). Compared to its 2D counter-
part, and to 3D descriptors as well, research on 3D detectors
has started much more recently (mainly in the past 3 or 4
years) and, to date, only limited taxonomic and evaluation
work has been carried out, with experimental comparison
usually performed separately within (and relatively to) each
specific proposal. The only relevant works in this respect
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are described in Bronstein et al. (2010), Boyer et al. (2011),
which propose an experimental evaluation of 3D detectors
and descriptors focused on the 3D shape retrieval scenario,
and a preliminary version of this paper, which was presented
in Salti et al. (2011). A parallel line of research has targeted
the evaluation of 2D detectors and descriptors on 3D objects
(Moreels and Perona 2007).

Given the wealth of recent proposals concerning 3D de-
tectors, we believe there is a lack in the literature of a sur-
vey aimed at reviewing the state of the art and compar-
ing quantitatively the different approaches within a common
and well-defined experimental framework. Hence, this pa-
per proposes a comparison of state-of-the-art 3D detectors,
which is grounded on the established methodology adopted
in the related field of 2D detectors (Schmid et al. 2000;
Mikolajczyk et al. 2005) and mainly focused on the 3D
object recognition scenario, which is peculiarly character-
ized by the presence of occlusions and clutter. Such a sce-
nario differs from that addressed by Bronstein et al. (2010),
Boyer et al. (2011), as 3D shape retrieval is not required
to deal with occlusion, clutter and viewpoint changes, large
intraclass shape variations being instead the main nuisance
to be dealt with. Moreover, the proposed framework eval-
uates the robustness of state-of-the-art methods with re-
spect to noise (both real and synthetic) and addresses com-
putational efficiency. Nonetheless, we also propose some
basic retrieval experiments, to highlight how the absolute
performance of detectors, and the ranking of their per-
formance, are influenced by the specific application sce-
nario. Therefore, this paper and (Bronstein et al. 2010;
Boyer et al. 2011) usefully provide complementary perspec-
tives on the topic of quantitative evaluation of 3D local fea-
ture detectors. All datasets and experimental results related
to this evaluation have been made publicly available through
the web page of this project.

The paper is structured as follows. Section 2 presents the
state of the art by dividing proposals into two categories
(fixed-scale, adaptive-scale) and identifying the main com-
putational steps within each category, so as to describe then
how these steps are carried out by each method. Section 3
discusses the evaluation methodology, which comprises the
datasets, the performance metrics and the selected algo-
rithms. Finally, Sect. 4 reports and discusses experimental
results, while Sect. 5 draws conclusions.

2 3D Detectors

This section briefly reviews state-of-the-art methods for de-
tection of 3D keypoints, with Table 1 reporting the adopted
notation. 3D detectors are divided into two categories,
namely fixed-scale and adaptive-scale detectors. Their gen-
eral structure is depicted in Figs. 1 and 4, respectively.
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Table 1 Notation

Generic mesh point p

Set of points in the support of p N(p)
Number of points in the support of p N=|N(p)|
Set of points in the Non-Maxima-Suppresion support of p Nnyus(P)
Normal to the mesh in p n(p)
Maximum curvature of the mesh in p Cu(p)
Minimum curvature of the mesh in p Cin(P)
Gaussian curvature of the mesh in p Ck(p)
Mean curvature of the mesh in p Cu(p)
Saliency of point p ,(p)
Saliency of point p at scale ¢ p(p, 1)
Shape index of point p SI(p)
Scatter matrix of the support of point p 2(p)

Set of keypoints of a mesh K
Gaussian kernel with standard deviation equal to o G(o)
Minimum number of edges between two points of a mesh e(p,q)
Geodesic distance between two points of a mesh Yy, Q)

Fig. 1 General structure of a
fixed-scale 3D keypoint detector
(the dashed contour line

indicates an optional block) - 2 N
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<

A fundamental step in common to both categories is the
selection of keypoints as local extrema of a saliency mea-
surement, whose definition determines the robustness and
repeatability of the detector, for it identifies the kind of 3D
structures selected by the detector.

2.1 Fixed-Scale Detectors

Fixed-scale detectors find distinctive keypoints at a specific,
constant scale, which is provided as a parameter to the al-
gorithm. As sketched in Fig. 1, these detectors can be ab-
stracted into two main steps. The main purpose of the ini-
tial, optional, step is pruning the input data by threshold-
ing a quality measure computed at each point. This is done,
on the one hand, to reinforce keypoint selection by an ad-
ditional criterion with respect to the main saliency measure
deployed in the subsequent step, and on the other hand to im-
prove the efficiency of the algorithm by reducing the num-

ber of points provided as inputs to the next step. The second
step consists in a Non-Maxima Suppression (NMS) proce-
dure based upon a saliency measure computed at each point
not discarded by the initial pruning. The saliency measure-
ment associated with each point can be either point-wise (i.e.
a property of a vertex of the mesh) or region-wise (i.e. a
property of a region around each vertex). In case of point-
wise saliency, the input scale is used to define the size of the
NMS support. With region-wise saliency, the scale usually
defines the support on which the saliency measurement re-
lies upon, whereas the NMS support is defined through an
additional parameter.

2.1.1 Local Surface Patches (LSP)

One example of the approach relying on point-wise saliency
measurements is Local Surface Patches (LSP), introduced in
Chen and Bhanu (2007). It measures the saliency of a vertex
according to its Shape Index (S7), as defined by Dorai and
Jain (1997), which, in turn, is based on the maximum and
minimum principal curvatures at the vertex,

SI(p) = Lt tan~! Cu® +CnP) C'"(p).
2 7w Cu () — Cn(p)

Let usy be the mean Shape Index within the given support,

ey

1
nsip) =~ Y Sl@), )
qeN(p)

then a vertex survives the pruning step if its Shape Index is
significantly greater or smaller than pgy, i.e.

SI(p) = (1 + o) usi(p) v SI(p) =< (1 — B)pusi(p) 3
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(a) LSP (b) LSP

(c) ISS (d) ISS

Fig. 2 Example of keypoints detected by LSP and ISS on the Armadillo model of the Retrieval dataset

(a) KPQ

(c) HKS

Fig. 3 Example of keypoints detected by KPQ and HKS on the Armadillo model of the Retrieval dataset

where o and 8 are two scalar parameters defining the mag-
nitude of the differences from the mean that are considered
significant.

Non maxima suppression is then performed on the re-
maining points. As mentioned, the saliency of a vertex is its
Shape Index,

p(p) =SI(p), “

both local minima and maxima are retained

p(P) > p(q), YqeNyus(p)
V; (5)
p(P) <p(@, YqeNyus(p)
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and, in the original proposal and our implementation,
Nywms(p) coincides with A'(p). Exemplar keypoints de-
tected by LSP on a model of the Stanford dataset are shown
in Figs. 2(a) and 2(b). The adopted saliency measure can
detect keypoints spread quite uniformly over the surface,
avoiding only highly planar areas such as those near to the
armadillo’s chest and inner ear pads. On the other hand, it
does not seem to focus only on highly protruded or convex
areas, selecting also weakly characterized zones. We expect
this to negatively influence the repeatability of the detector.

2.1.2 Intrinsic Shape Signatures (ISS)

Intrinsic Shape Signatures were introduced in Zhong (2009).
ISS saliency measure is based on the Eigenvalue Decompo-
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Fig. 4 General structure of an

Adaptive-scale 3D keypoint
detector (dashed contour lines

indicate optional blocks) s

Adaptive Scale
(9P y
Keypoints
with scale

sition (EVD) of the scatter matrix X (p) of the points be-
longing to the support of p, i.e.

1 .
TP =— Y (q—up)q—pp)’ with
N
qeN(p)

1
Mpzﬁ Z q.

qeN(p)

(6)

Given X (p), its eigenvalues in decreasing magnitude or-
der are denoted here as A1, A2, A3. During the pruning stage,
points whose ratio between two successive eigenvalues is
below a threshold are retained,

Kz(P)< " /\)»3(1))
A1(p)

The rationale is to avoid detecting keypoints at points
exhibiting a similar spread along the principal directions,
where a repeatable canonical reference frame cannot be es-
tablished and, therefore, the subsequent description stage
can hardly turn out effective. Among remaining points, the
saliency is determined by the magnitude of the smallest
eigenvalue

< Thys. (7)

p(p) = 13(p) ®)

so as to include only points with large variations along each
principal direction.

Examples of keypoints detected by ISS are depicted in
Fig. 2(a) and 2(b). Although the absolute number of key-

points is similar to that of LSP, some of the points seem to
focus on well identifiable, and likely repeatable, zones, such
as the teeth tips or the center of the eyelids.

2.1.3 KeyPoint Quality (KPQ)

The 3D detector presented in Mian et al. (2010) is referred
to here as KeyPoint Quality (KPQ). Analogously to ISS,
saliency is based on the scatter matrix X (p). Pruning of non-
distinctive points, however, is achieved by thresholding the
ratio between the maximum lengths along the first two prin-
cipal axes, after the support has been aligned to the canon-
ical reference frame given by principal directions. This is
similar to thresholding the eigenvalues ratio but, unlike ISS,
KPQ considers only the first two principal directions, so that
less points are pruned. As for saliency, it is determined by
means of an empirical combination of curvatures within the
support of p,

1000
P =7 D k@)
qeN ()

+ max 100Ck (q) +ming € N'(p)|100Ck (q)|
qeN(p)

+ max 10y (@) + g}\lfr(lp)| 10Cyn (q)]- ©)
To limit the sensitivity of the estimation to noise and sam-
pling density, curvatures are computed over a smoothed and
re-sampled surface fitted to the aligned data by means of a
surface fitting algorithm (D’Errico 2010).

Examples of the keypoints detected by KPQ in an exem-
plar model of the Stanford dataset are reported in Fig. 3(a)
and 3(b). The detector finds a relevant amount of keypoints.
It avoids uniform areas such as the armadillo’s chest, but not
the inner ear pads.

2.1.4 Heat Kernel Signature (HKS)

Heat Kernel Signature (Sun et al. 2009) employs as saliency
measurement the restriction of the heat kernel to the tempo-
ral domain computed over the mesh. The heat diffusion on
the generic manifold M is governed by the heat equation

du(x, 1)

Apu(x.n) = ——

, (10)

where Apu(x,t) is the Laplace-Beltrami operator defined
on M. For any M, there exists a function k;(p, q) that can
be thought of as the amount of heat that is transferred from
P to q in time ¢ given a unit heat source at p. Such a func-
tion is called the heat kernel, and is uniquely determined by
the manifold M, regardless of the quantity being diffused.
As such, it provides a compact characterization of the un-
derlying manifold. In Sun et al. (2009) the authors show that
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the restriction of the heat kernel to the temporal domain, i.e.
k:(p, p), does not result in a loss of information in the de-
scription. Hence they propose to use the temporal evolution
of k;(p, p), sampled at logarithmically spaced time intervals,
as an informative descriptor of the points of M.

To use the HKS as a keypoint detector, the saliency has
been defined by the authors as the value of k; (p, p) for some
large, fixed ¢’. Keypoints are selected as the local maxima of
the saliency over a 2-rings neighborhood, i.e. as those points
where

ke(@.p) > kr(q,q) Vqe{q:e(p,q) <2} (11)

with the 2-rings neighborhood of a vertex p defined as the
set of vertices whose minimum number of edges from p is
at most 2. With this saliency measure, the detector focuses
on the extremities of long protrusions of the surface, as can
be noted in Figs. 3(c) and 3(d). Note that this model is a
down-sampled version of that used to create the previous
and subsequent screenshots. This is due to the memory com-
plexity of this method (see Sect. 3.3). Although our datasets
focus on invariance to rigid transformations, the HKS and,
as a consequence, the HKS detector, are invariant to isomet-
ric deformations. Therefore, the HKS detector offers a wider
degree of invariance than the other detectors, that, although
beneficial in other applications, e.g. non-rigid matching, can
be too broad and less effective for the scenarios considered
in the present evaluation.

2.2 Adaptive-Scale Detectors

As sketched in Fig. 4, the common structure of adaptive-
scale detectors includes building a scale-space defined on
the surface, thus directly extending to the case of 3D data
the well-known concept defined for 2D images (Lindeberg
1998). Alternatively, instead of extending the scale-space
theory to 3D data, an embedding of the data onto a 2D plane
can be computed, so as to carry out then traditional scale-
space analysis.

Successively, a characteristic scale is associated to each
point, which is selected as the maximum along the scale di-
mension of a suitable function, generally coinciding with
the saliency. As previously pointed out, such a character-
istic scale is used to define the support for the subsequent
description stage. Often, in the presence of local maxima,
multiple keypoints with different scales are detected at the
same location. If the function exhibits a monotonic trend,
then no characteristic scale can be defined and the point is
discarded from the set of candidate keypoints.

Next, keypoints are picked up by means of a NMS of the
saliency at the characteristic scale of each point. Generally,
this NMS stage is performed both spatially and along the
scale dimension, although it might be done only spatially
(Mian et al. 2010), using the characteristic scale to define
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the support on which the saliency is computed. Finally, with
similar purposes as in fixed-scale methods, an optional prun-
ing stage whereby additional points are dismissed based on
different constraints may be executed.

2.2.1 Laplace-Beltrami Scale-space (LBSS)

In the proposal presented in Unnikrishnan and Hebert
(2008), hereinafter referred to as Laplace Beltrami Scale
Space (LBSS), the scale-space is built by computing an in-
variant, derived from the Laplace-Beltrami operator Ay, on
increasing supports around each point of the 3D mesh. This
invariant, which provides the saliency, is defined as follows:

2llp — A, DIl 2e=dw@oi
AP = AP DI ,

; 12

p(p. 1) =
where A(p, t) is an operator which can be interpreted as the
displacement of a point along its normal by a quantity pro-
portional to the mean curvature Cg:

2

A®.0) ~p+C®n®)I =p+ > Aup. (13)

Hence, for simple shapes such as perfect spheres or
planes, the saliency employed by LBSS is proportional to
the mean curvature. Moreover, both in the original formula-
tion and in our implementation, the effects of point density
variations are taken into account by defining the saliency in
terms of a density normalized operator A(p, t). It is worth
noting that the geometry of the mesh is not modified dur-
ing the creation of the scale-space. Both scale selection and
NMS are carried out based on p(p, ¢) and there is no addi-
tional pruning stage.

As shown in Figs. 5(a), 5(b), LBSS is characterized by a
very small number of detected keypoints, mainly residents
around bumps and arched surfaces.

2.2.2 MeshDoG

Likewise (Unnikrishnan and Hebert 2008), also MeshDoG
(Zaharescu et al. 2009) deploys the 3D mesh as the repre-
sentation adopted to build the scale-space, which, in turn, is
created by applying different normalized Gaussian deriva-
tives through the Difference-of-Gaussians (DoG) operator,
a well-known approximation of the normalized Laplacian
(Lowe 2004). The operator, though, is not computed directly
on the geometry of the mesh, but on a scalar function de-
fined on the manifold, which in the original paper is either
the mean curvature, the Gaussian curvature or the photomet-
ric appearance of a vertex (the mean of the RGB channels).
The output of the DoG operator represents the saliency used
to detect keypoints. In our evaluation we selected the mean
curvature as scalar function because on our datasets it yields
better results than the Gaussian curvature and RGB values
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(a) LBSS

(b) LBSS

(¢) MeshDoG (d) MeshDoG

Fig. 5 Example of keypoints detected by LBSS and MeshDoG on the Armadillo model of the Retrieval dataset

are not always available. With this choice, the saliency is
then defined as follows:

p(p, 1) =Cl (@) - Cii " ), (14)

where

c®=clV«Go) (15)
_ Liaepa=) Cy @ exp(—%) (16)

— )2
> qetp.p<1) xp(— B45)

ie. Cg) is the z-th convolution of the mean curvature map
with the Gaussian kernel. Similarly to LBSS (Unnikrishnan
and Hebert 2008), MeshDoG does not modify the surface
geometry during construction of the scale-space.

Scale selection is based on the saliency, and NMS is car-
ried out on the scale-space using a fixed-size support deter-
mined by the 1-ring neighborhood at the current and adja-
cent scales. Additionally, a pruning stage is applied based
on two steps. First, all keypoints are ranked according to
their saliency and thresholded, so as to limit their num-
ber to a maximum value corresponding to a fixed percent-
age (5 %) of the number of vertices of the mesh. Then, as
proposed in Lowe (2004), non-corner responses are pruned
by thresholding the ratio between the largest and smallest
eigenvalues of the Hessian matrix at each candidate key-
point.

As vouched by Figs. 5(c), 5(d), and unlike other ap-
proaches such as LBSS, this detector tends to extract a high
number of keypoints, that accumulate around areas charac-
terized by high local curvature.

2.2.3 KeyPoint Quality—Adaptive-Scale (KPQ-AS)

In addition to the fixed-scale method, in Mian et al. (2010)
an adaptive-scale detector method is also proposed, which
will be referred to as KPQ-AS. The scale-space is built by
increasing the size of the support over which the pruning
term used by KPQ, i.e. the ratio between the maximum
lengths along the first two principal axes, is computed. Then,
automatic scale selection at each keypoint is carried out by
means of non-maxima suppression of this term along the
scale. Successively, spatial NMS is performed at the selected
scale based on the same saliency, (9), as in KPQ. No further
pruning step is deployed.

Figures 6(a), 6(b) depict the keypoints extracted by KPQ-
AS on one model of our dataset. It is quite evident how
the keypoint distribution is notably non-uniform along the
global 3D surface, with keypoints extracted also within flat
surfaces such as the Armadillo’s chest and inner ear pads.

2.2.4 Salient Points (SP)

Similarly to Unnikrishnan and Hebert (2008) and MeshDoG
Zaharescu et al. (2009), the proposal in Castellani et al.
(2008), referred to in Bronstein et al. (2010) and here as
Salient Points (SP), builds its scale-space directly on the 3D
mesh. The saliency measure is represented by the response
to the Difference-of-Gaussians (DoG) operator. However,
unlike in Zaharescu et al. (2009), the DoG operator is ap-
plied directly to the 3D coordinates of the vertices. Hence,
this approach modifies the geometrical structure of the sur-
face during the construction of the scale-space. This detector
looks for points that exhibit a significant displacement after
filtering with different scales. To obtain a scalar quantity out
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(a) KPQ-AS

Fig. 6 Example of keypoints detected by KPQ-AS and SP on the Armadillo model of the Retrieval dataset

of the 3D translation, the authors consider as the most rele-
vant displacement that along the normal. Hence, saliency is
defined as the projection of the translation onto the normal
direction, i.e.

p(p,1) = |n(p) - DoG(t, p) 7)

(- indicating the dot product), where

DoG(z, p) = g:(p) — 82:(p) (18)
and
2
Z : <2 qexp(_ (P—(zl) )
& (p) = q:y(p,q) <2t (p_2(tl)2 ) (19)
ay(p.@<2 XP(=7527)

After a normalization step, performed to enhance the
highest peaks, only those points characterized by a saliency
value higher than a percentage of the saliency values in their
neighborhood are retained. Scale selection is performed by
choosing, at each retained vertex, the scale with the high-
est saliency value. Then, in order to perform saliency-based
NMS, all the saliency values obtained at the various scales
are summed up. The final pruning step discards all local
maxima whose saliency is lower than a percentage of the
global maximum.

Figures 6(c), 6(d) depict the keypoints extracted by SP on
one model of our dataset. As it can be seen, this method de-
tects a limited number of keypoints, but well-localized and
often at the extremities of long protrusions of the surface,
such as the fingertips of hands and feet.

2.2.5 Other Methods

As for other adaptive-scale approaches, the proposals by Ak-
agunduz and Ulusoy (2007), Novatnack and Nishino (2007)
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and Novatnack and Nishino (2008) can be grouped together
based on the peculiarity that they rely on a parametriza-
tion mapping the 3D mesh onto a 2D plane, so as to ex-
ploit the lattice structure of the 2D image to build the scale-
space. In Novatnack and Nishino (2007), the parametriza-
tion is computed by mapping the border of the mesh (that
must be already present or manually created by cutting a
watertight mesh) to the border of a 2D image and then using
the parametrization algorithm proposed by Yoshizawa et al.
(2004). In Novatnack and Nishino (2008) and Akagunduz
and Ulusoy (2007) the parametrization is already available
in the input data, since these methods work on range images.

Given the parametrization, both Novatnack and Nishino
(2007) and Novatnack and Nishino (2008) create a scale-
space representation of the normal map of the mesh, i.e. an
image whose channels represent normal components. The
saliency measure is the cornerness defined by the eigenval-
ues of the Gram matrix of the support. The algorithm flow
is similar in Akagunduz and Ulusoy (2007) but the saliency
measure is given by the mean (Cpg) and Gaussian (Cg) cur-
vatures (denoted as HK maps) and, instead of corners, con-
nected regions of similar curvature are sought for.

Unlike previous proposals, 3D SURF (Knopp et al. 2010)
builds a scale-space out of a voxelized version of the orig-
inal mesh. The use of the voxelized representation allows
for deployment of efficient box-filtering schemes to com-
pute the saliency, which is given by the Hessian of second-
order Gaussian derivatives and computed for each grid bin
and for each octave.

Very recently, another technique which builds the scale-
space directly on the 3D mesh has been proposed in Fadai-
fard and Wolberg (2011). This method is inspired by Sun
et al. (2009) in deriving the scale-space formulation by
means of the diffusion of a signal on the surface based on
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the Laplace-Beltrami operator, the chosen signal being the
surface curvature. Unlike HKS though, which selects all
keypoints at the same, fixed scale, this proposal can asso-
ciate a characteristic scale to each keypoint by exploiting
the scale-space representation. More pertinently, the scale at
each level of the scale-space is defined as the scale of the
Gaussian that fits the transfer function of the smoothing fil-
ter for that level. Keypoints are selected as those vertices be-
ing local extrema among their spatial neighbors both on the
current level and on the two adjacent levels along the scale-
space. Additionally to scale selection, another advantage of
this proposal with respect to HKS is the reduced computa-
tional complexity, as vouched by the reported significantly
faster running times.

3 Methodology
3.1 Datasets

In our experiments we use five datasets. Two of them are
synthetic, in the sense that they have been created apply-
ing known artificial deformation to 3D meshes in order to
simulate two different application scenarios. The synthetic
datasets have been built using models taken from the Stan-
ford Repository.! The other three datasets are: the dataset’
used for the experimental validation in Mian et al. (2010),
acquired with a laser scanner; the dataset used for the ex-
perimental validation in Tombari et al. (2010), obtained by
means of the SpaceTime Stereo acquisition technique; a
novel dataset, acquired in our laboratory by a Microsoft
Kinect device. The last two datasets are available through
the SHOT website.? In the following we will refer to the syn-
thetic datasets as Retrieval and Random Views, to the dataset
of Mian et al. (2010) as Laser Scanner and to the two SHOT
datasets as Space Time and Kinect, respectively.

Each dataset comprises a set of models, M = {Mh},llvzl
and a set of scenes, S = {Sl}l"i |- Each scene contains a sub-
set of the models. Only in the SHOT datasets objects not
present in the model library have been additionally used to
create the scenes (clutter). The ground-truth rotations and
translations, Ry; and ty;, to align each model My, with its in-
stance in the scene S; are known. In the case of the synthetic
datasets, ground-truth is known by construction. For details
on the way it was estimated in the other datasets the reader is
referred to Tombari et al. (2010) and Mian et al. (2010). Fig-
ure 7 shows examples of models and scenes taken from four
of the datasets (all except Retrieval, whose scenes and mod-
els coincide with the models of Random Views). The syn-
thetic 2.5D views were created by applying from a random

lwww.graphics.stanford.edu/data/3Dscanrep.

Zwww.csse.uwa.edu.au/~ajmal.

3vision.deis.unibo.it/SHOT.

point of view the algorithm described in Katz et al. (2007)
on the 3D scene built by randomly rotating and translating
the selected 3D models. Both synthetic datasets have been
made publicly available.

Datasets can also be categorized according to the appli-
cation scenario they address. In one of the synthetic dataset,
Random Views, as well as in Laser Scanner, each scene is a
2.5D mesh, i.e. a view of the spatial arrangement of the mod-
els from a specific vantage point, whereas the models are full
3D meshes. Therefore, these datasets are suitable for com-
paring the performance of the detectors in an object recog-
nition scenario wherein a full 3D model is matched against
a 2.5D view of the scene to detect its presence. The Space
Time and Kinect datasets represent a different object recog-
nition scenario as 2.5D models are sought for in cluttered
2.5D views. Moreover, the latter datasets are acquired with
less accurate and cheaper sensing devices, delivering noisier
and significantly less detailed meshes than laser scanners.

The second synthetic dataset, Retrieval, addresses a 3D
shape retrieval scenario and is similar in spirit to the dataset
used in Bronstein et al. (2010), Boyer et al. (2011): only
one full 3D model is used to create each scene and there are
no occlusions and clutter. On the other hand, this dataset is
much simpler than that used in Bronstein et al. (2010), Boyer
et al. (2011), due to the only nuisances present in scenes
being rigid transformations and synthetic noise. The main
purpose of this dataset is to address a retrieval scenario using
the same data as the Random Views dataset, so as to highlight
the impact of the application context on the performance of
detectors.

3.2 Metrics

Absolute/relative repeatability ~As mentioned in Sect. 1,
the most important trait of a keypoint detector is its repeata-
bility. This characteristic accounts for the ability of the de-
tector to find the same set of keypoints on different instances
of a given model, where the differences may be due to noise
corruption, view point change, partial occlusions/missing
parts or a combination of the previous nuisances.

Similarly to the work by Schmid et al. (2000) on eval-
uation of 2D keypoint detectors, a keypoint extracted from
the model Mj,, k;, and transformed according to the ground-
truth rotation and translation, (Ry;, tn;), is said to be repeat-
able if the distance from its nearest neighbor, k7, in the set of
keypoints extracted from the scene S; is less than a thresh-
old e:
| Ruikly + tny — K || < e. (20)

We evaluate the overall repeatability of a detector both in
relative and absolute terms. Given the set RKj,; of repeatable
keypoints for an experiment involving the model-scene pair
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Fig. 7 One model and three scenes from the datasets. From top to bottom row: Random Views, Laser Scanner, Space Time, Kinect

My, S)), the absolute repeatability is defined as
Fabs = |[RKpi| (21)

whereas the relative repeatability is given by

.o IRK 1|
[Knil

(22)

The set Ky is the set of all the keypoints extracted from
the model My, that are not occluded in the scene S;. This set
is estimated by aligning the keypoints extracted on My, ac-
cording to the ground-truth rotation and translation and then
checking for the presence of vertices in S; in a small neigh-
borhood of the transformed keypoints. This neighborhood
is defined by a sphere centered at the transformed keypoint
and with a radius set to 2 mesh resolution (mr) (Johnson and
Hebert 1999), the mesh resolution given by the mean length
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of the edges in the mesh. If at least a vertex is present in the
scene in such a neighborhood, the keypoint is added to Kp;.

We consider the absolute repeatability, as in Mikolajczyk
et al. (2005), because another important trait of a detector is
the amount of repeatable keypoints it can provide to the sub-
sequent modules of an application. Detecting a small num-
ber of keypoints can not be enough to apply geometrical ver-
ification or outliers removal steps, whereas too many may
waste computational resources.

To show aggregated results, we plot the average of these
repeatability measures over the number of model-scene
pairs of each dataset.

Scale Repeatability As discussed in the previous section,
two classes of detectors are considered. In the case of
adaptive-scale detectors, an additional repeatability score is
introduced, i.e. scale repeatability. Given the scales a;;, alj
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of a pair of repeatable keypoints, (k;;, klj ), the scale repeata-
bility of the pair is defined as:

T V(Sphere(a;’;) N Sphere(olj))
scale V(Sphere(a;;) U Sphere(olj )

(23)

with Sphere(o) indicating the sphere of radius o and V(Sp)
the volume of the 3D region Sp. The overall scale repeata-
bility for one model versus one scene is given by

3 4 e 5o
(K} .k} )eRKy " scale
|RK ni

(24)

As noted in Unnikrishnan and Hebert (2008), the difference
in dimensionality with 2D images makes this overlapping
measure drop faster than for 2D detectors. Citing Unnikr-
ishnan and Hebert (2008),

in the 2D image domain [...] an overlap error of 50 %
can be handled with a sufficiently robust descriptor.
This is equivalent to an error of 65 % in 3D, or an
overlap score of just 35 %.

Hence, care should be taken when interpreting the results of
this measure. Similarly to the previous case, aggregated re-
sults in terms of scale repeatability are plotted by averaging
this measure over the number of model-scene pairs of each
dataset.

Quantity Bias Experiment The considered detectors gen-
erate different numbers of keypoints, due to several inher-
ent factors, such as the specific design of each step compos-
ing the whole algorithm, the presence of additional pruning
steps after the detection of salient structures, etc., as well
as to extrinsic factors, such as the abundance of the regions
considered salient by a detector in the test data. As discussed
in Mikolajczyk et al. (2005), these differences may have an
undesired impact on the repeatability scores: if the number
of keypoints is large, many of them may be considered re-
peatable by accident and not because of the design of the
detector. In particular, this is going to occur if the number of
extracted keypoints approaches the number of points on the
surface: a detector extracting as keypoints all surface points
would automatically qualify, in terms of both absolute and
relative repeatability, as the ideal detector. This is generally
not the case of the considered detectors, as in practice the
presence of a NMS step forces the extraction of a limited
number of keypoints compared to the total number of sur-
face points. On the other hand, though, the aforementioned
use of a threshold € to determine whether a keypoint is re-
peatable, instead of the theoretically possible but practically
infeasible requirement of exact coordinates, increases the
risk that this metric gets biased due to excessive extraction of
keypoints. Intuitively, by comparing the addressed problem

to a binary classification task, the repeatability metrics can
be interpreted as a sort of Recall, or True Positive Rate: if
not counterbalanced by a complementary measure, i.e. Pre-
cision, even a naive classifier is able to yield an optimum
score for these metrics.

Understanding when this bias occurs for the various
methods is in general hard a task, as it inherently depends
on the local keypoint density extracted on the surface, which
is usually not uniform (see, e.g., Figs. 2-6). Nevertheless, in
order to better analyze how this phenomenon affects our re-
sults, we have included an additional experiment, denoted
hereinafter as Quantity Bias. In this experiment, all key-
points extracted by a method are ranked according to the
saliency specifically defined by that method: this allows lim-
iting the maximum number of keypoints detected by each
approach to those having the highest saliency according to
each detector. Thus, relative repeatability can be plotted over
the number of extracted keypoints. We can therefore under-
stand how the relative performance of each detector changes
from a situation where only a few keypoints are extracted,
warding this bias off and exposing the real effectiveness of
the proposed saliency, to a situation where we potentially
reach a biased repeatability metric. Moreover, this experi-
ment explicitly highlights the maximum quantity of detected
keypoints for each method. To reduce the number of charts
and improve readability we only present the results of this
experiment on a subset of our test data, i.e. datasets Retrieval
and Kinect, as representatives of the two addressed applica-
tion scenarios.

The biasing effect of quantity on repeatability brings in
also the undesirable consequence that tuning the parameters
so as to maximize repeatability risks to excessively increase
the number of extracted keypoints, since this tend to raise
repeatability scores. For this reason, and as done in Mikola-
jezyk et al. (2005), we chose to use the default parameters
supplied by the authors rather than tuning them. Another so-
lution would have been to tune the detectors so as to make
them extract the same number of keypoints, but this is not
feasible for all the considered detectors and, in any case, the
influence of the different number of regions in the data con-
sidered salient by the various detectors cannot be eliminated.

Descriptor Matching Experiment The proposed method-
ology aims at comparing the evaluated detectors in terms
of repeatability which, as mentioned in Sect. 1, is the char-
acteristic of the detectors on which this evaluation mainly
focuses on. Although in our opinion less prominent and less
fairly evaluable, in this work we also aim at assessing the
detectors’ performance with regards to the other main trait,
i.e. distinctiveness. Hence, similarly to Mikolajczyk et al.
(2005), we have included an additional experiment, referred
to as descriptor matching, where the distinctiveness of each
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detector is implicitly evaluated by plotting the False Pos-
itives vs. True Positives curves yielded by the correspon-
dences established by matching descriptors computed at the
extracted keypoints. For this experiment we have employed
two different 3D descriptors, namely SHOT (Tombari et al.
2010) and Spin Images (Johnson and Hebert 1999). Thus,
the outcome of this experiment measures how much the
keypoints extracted by each evaluated detector turn out dis-
tinctive according to the chosen descriptors: an unavoidable
bias of this kind of experiments. As for the implementa-
tion, matching is then performed by means of efficient—but
approximated—indexing schemes, i.e. the best bin first kd-
tree algorithm proposed in Beis and Lowe (1997). Analo-
gously to the Quantity Bias experiment, also in this case we
reduce the numbers of presented charts for the sake of read-
ability, and hence consider only Retrieval and Space Time.

Efficiency Finally, we provide a thorough evaluation of the
considered detectors in terms of computational efficiency.
Specifically, we compute the time required by each method
to extract a set of keypoints on several scenes whose point
density was iteratively decimated in order to generate sur-
faces with various number of points (i.e. from ~10? to ~10°
points). We plot the average measured execution time over
the number of points. This has been done separately for
scenes belonging to two different datasets, Retrieval and
Kinect, so as to usefully provide also realistic absolute exe-
cution times for typical surface sizes used in the application
scenarios addressed throughout this work.

3.3 Selected Methods

The set of 3D detectors evaluated in our experiments in-
cludes: all the fixed-scale proposals introduced in Sect. 2,
namely LSP, ISS, KPQ and HKS; among adaptive-scale
methods, the MeshDoG, Laplace-Beltrami Scale-Space,
KPQ-AS and Salient Points detectors. As for MeshDoG,
we used the publicly available original C++ implementa-
tion.* For SP, we obtained a binary version of the detec-
tor from the authors. All other methods have been imple-
mented in C++ as well. In particular, unlike the previous
version of this evaluation (Salti et al. 2011), for KPQ detec-
tors we re-implemented in C++ the surface smoothing and
fitting routine used internally by the detectors and available
only as a MATLAB script (D’Errico 2010). Moreover, al-
though the original source code for HKS is available at the
authors’ website,> we completely re-implemented it in C++
and Fortran, by using the same linear algebra libraries called
internally by MATLAB eigs command, i.e. ARPACK®

4svn://scm.gforge.inria.fr/svn/mvviewer.
Shttp://geomtop.org/software/hks.html.
Shttp://www.caam.rice.edu/software/ ARPACK/.
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to solve the sparse generalized eigenvalues problem and
UMFPACK to perform the LU factorization of the mesh
Laplacian operator L. This allows for fairly comparing all
the proposals also in term of computational efficiency (see
Sect. 4.4).

Nevertheless, HKS could not be compared to the other
methods on exactly the same data. Its memory requirements
force the user to apply it only on meshes with a limited num-
ber of vertices. The exact number depends on the amount of
RAM available on the user machine. The authors report in
(Sun et al. 2009) that with 16 GB of RAM they were able
to extract HKSs on a mesh with about 100 K vertices.® On
our 6 GB machine, using the default parameters, the upper
bound to the surface size turned out to be 30 K vertices.
Hence, results concerning HKS have been obtained on dec-
imated models and scenes. More precisely, we did not deci-
mate every mesh in a dataset with more than 30 K vertices,
leaving the others unchanged, as this would modify the point
density between meshes of the same dataset. We, instead,
decimated every mesh in a dataset with a constant decima-
tion ratio, such as to rescale the mesh with the greatest num-
ber of vertices to 30 K and all the others accordingly.

Some of the methods presented in Sect. 2 have specific
requirements on the input data that made their inclusion
in this comparison unfeasible. Specifically, Novatnack and
Nishino (2007) require that one and exactly one border is
present in the input mesh. While this may be reasonable for
partial views registration, it is definitely not straightforward
in the case of retrieval of full 3D meshes, where a cut should
be introduced manually to use this method, nor within an ob-
ject recognition scenario, where many separated objects can
be present in one scene, each one defining a separated mesh
border, so that a previous segmentation of objects would be
required to apply this method.

As for the works by Akagunduz and Ulusoy (2007) and
Novatnack and Nishino (2008), these methods have been de-
signed to work with range images. They both exploit the lat-
tice structure provided by the range image in order to build
a scale-space representation of the input data. Although the
meshes of the scenes we use are obtained from range images
(laser scans or disparity maps), and in principle the trans-
formation is invertible, there is no way to obtain a single
range image for the 3D models. Due to this reason, they are
not suited to an object recognition scenario wherein full 3D
models are sought for in 2.5D views, as defined in this com-
parison.’

Thttp://www.cise.ufl.edu/research/sparse/umfpack/.

8The requirement of 16 GB of RAM for 100 K vertices was confirmed
by personal communication with the authors.

Recently, the detector proposed in Novatnack and Nishino (2008) has

been used (Bariya and Nishino 2010) for object recognition on the
Laser Scanner dataset by synthesizing range images from a number
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Table 2 Parameters used throughout the evaluation

LSP o 0.35
B 0.2
ISS Thy, 0.975
Thy3 0.975
KPQ th 1.06
n 20
MeshDoG B 5 %
Amax [min 10
HKS h 2mr
Gaussian cutoff 3

3.4 Parameters

All parameters have been fixed for the experiments on all
datasets. Metric parameters, such as radii, distances, noise
standard deviations, etc. are expressed throughout the paper
in mesh resolution units (mr). Default parameters proposed
in the original publications have been used, their values re-
ported in Table 2. The only tuned parameter is the Non Max-
ima Suppression radius in ISS, the two variants of KPQ and
SP. In fact, in ISS and KPQ this parameter was specified in
metric units by the authors, while in SP the default value was
tuned for partial views registration. Thus, we fixed the Non
Maxima Suppression radius to 4mr after running the detec-
tors on a tuning scene with different possible values. As an-
ticipated in the description of the method, MeshDoG results
are reported using the mean curvature as saliency measure,
for we found that it yields better results than the Gaussian
curvature.

In all repeatability experiments, adaptive-scale detectors
have been run on the set of scales X' = {2mr, 6mr, 10mr,
14mr, 18mr, 22mr}.10 This allows the detector to look for
discriminative and repeatable structures ranging from point-
wise scales to local and object sub-part scales. Since the first
and last scales are used by some adaptive-scale detectors
only to assess the presence of local extrema in the immedi-
ately subsequent or antecedent scale, detections can happen
only at scales > = {6mr, 10mr, 14mr, 18mr}. To compare
results on the same set of structure sizes, we ran fixed-scale
detectors for each scale in X. The only exception is again
HKS. The already discussed limit of 30 K vertices due to
memory occupancy holds only if the default parameters are

of uniformly distributed overlapping views of the 3D model of the ob-
ject. This technique is not suitable for our experimental comparison
because the performance of detectors working on range images will
be influenced by external factors such as synthetic views position and
distribution.

10As MeshDoG implements a non-linear scale increment within its
scale-space, we tuned its scale-space parameters so as to best approxi-
mate the same scale set used by the other methods.

used. In particular, the limit is influenced by the sparsity of
the Laplace operator matrix L which in turn is controlled
by parameter 4. This parameter intuitively but not quanti-
tatively corresponds to the support size analyzed by the al-
gorithm around each point (to determine the quantitative re-
lationship between & and the size of the support is left as
a future work by the authors in Sun et al. (2009)). There-
fore, given the impossibility to compute the value of & cor-
responding to every entry in the set = and the need to create
a decimated set of data for each value of 4, we chose to
evaluate it only with the default scale 4 = 2mr used by the
authors in the publicly available implementation. The dis-
tance threshold for the repeatability scores € is set to 2mr.
To simulate sensor noise in the synthetic datasets we added
three levels of Gaussian noise, with standard deviation equal
to 0.1mr, 0.3mr and 0.5mr.

For the sake of readability, in the Quantity bias and De-
scriptor matching experiments only the best radius for every
algorithm in every dataset, as it turned out in the repeatabil-
ity experiments, was used.

The attentive reader may notice a difference between the
results of KPQ on all the object recognition datasets reported
in this paper and those in the preliminary version (Salti et al.
2011). In the preliminary version points too close to the bor-
der of 2.5D meshes were not discarded, as instead suggested
by the authors in Mian et al. (2010). By visually inspect-
ing the results (e.g. the screenshots reported in Fig. 8), it is
evident that the exclusion from detectable points of those
lying on the borders is crucial to obtain meaningful repeata-
bility scores. Considering border points, would instead bias
repeatability due to the excessive number of keypoints in an
area, as discussed previously. Hence, as border points would
unfairly raise the repeatability scores for this algorithm, we
exclude them in this evaluation.

4 Experimental Results
4.1 Repeatability Experiments

These experiments aim at comparing the selected 3D de-
tectors in terms of relative and absolute repeatability. Scale
repeatability is also assessed for those methods that extract
a characteristic scale (adaptive-scale detectors).

4.1.1 Retrieval and Random Views Datasets

Between fixed-scale detectors, the highest relative repeata-
bility on the Retrieval dataset (Figs. 9(a), 9(c), 9(e)) i s pro-
vided definitely by HKS. HKS, and KPQ alike, demonstrate
an impressive resilience to noise, their performance in the
three charts being marginally deteriorated by the increase of
noise. The relative repeatability of ISS is also notably good,

@ Springer
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(a) without border points (b) without border points

(c) with border points

(d) with border points

Fig. 8 Keypoints detected by KPQ with and without inclusion of bor-
der points

but compared to HKS and KPQ the method is less robust
to noise. LSP, instead, performs poorly compared to other
fixed scale detectors, presumably due to its saliency mea-
sure based on second-order derivatives which does not grant
sufficient robustness even at the lowest noise level. More-
over, the choice of selecting the maximum SI within the lo-
cal support appears to be particularly error-prone since spu-
rious peaks in the distribution of SIs can easily occur in the
presence of noise. As both ISS as well as KPQ base their
saliency upon the covariance matrix X', the higher robust-
ness exhibited by the latter is likely to be ascribed to the use
of an effective surface resampling and smoothing procedure
(D’Errico 2010).

In terms of absolute repeatability (Figs. 9(b), 9(d),
9(f)), the performance of HKS turns out unsatisfactory, the
mean number of repeatable keypoints being about 10. Al-
though HKS keypoints are extremely repeatable, its effec-
tive saliency is too selective to yield enough keypoints as
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required in many practical applications. On the other hand,
KPQ yields an impressive number of keypoints compared
to other proposals. Overall ISS and LSP with radius 6mr
provide a good quantity of keypoints (=100).

By comparing these results with those obtained on the
Random Views dataset (Fig. 10) we can observe how al-
gorithms performance changes significantly. Overall, fixed-
scale detectors based on the scatter-matrix (i.e. ISS and
KPQ) behave worse than in the retrieval scenario in the pres-
ence of partially occluded shapes, as the absence of parts of
the geometric structure modifies the scatter matrix, thus re-
ducing the repeatability of the detector. Furthermore, and
conversely to the retrieval scenario, the use of large sup-
ports turns out no longer beneficial to increase repeatabil-
ity due to the presence of clutter (Figs. 10(a), 10(c), 10(e)).
In this dataset ISS clearly outperforms KPQ in terms of
relative repeatability: the use by the latter method of the
resampling and smoothing procedure turns out detrimental
when matching 3D models with 2.5D scenes, as the missing
parts of the mesh in the scene significantly alter the surface
obtained from the resampling and therefore its curvatures,
upon which saliency is based. KPQ exhibits the largest per-
formance degradation due to the change of dataset, so that it
becomes similar to LSP, which performs as poorly as in the
Retrieval dataset due to the reasons pointed out previously.
Also HKS performance degrades significantly: as a large ¢
is used to evaluate the heat kernel in order to use the HKS
as a detector, a large part of the input mesh contributes to
the saliency of a point p, this amplifying the negative im-
pact of the missing parts of the mesh. On the other hand, the
absolute number of repeatable keypoints (Figs. 10(b), 10(d),
10(f)) as well as the resilience to noise of HKS remain un-
changed with respect to the Retrieval scenario. As instead
ISS and KPQ decrease by one order of magnitude their ab-
solute repeatability, all detectors end up extracting a compa-
rable amount of repeatable keypoints in this dataset. Overall,
ISS represents the best trade-off in this dataset, especially
at small scales, given that detection of non-repeatable key-
points wastes computation in the description stage.

For what concerns adaptive-scale detectors, in the Re-
trieval dataset KPQ-AS reports overall the best repeatability
results (Figs. 9(g), 9(h), 11). Even though at the lowest noise
level SP and MeshDoG yield a higher relative repeatability
and MeshDoG also a slightly higher number of repeatable
keypoints, KPQ-AS neatly shows a superior robustness to-
wards noise in terms of both absolute and relative repeata-
bility, and a better scale repeatability (Fig. 11). This higher
robustness can be motivated by the fact that the saliency
of KPQ-AS averages curvatures computed at all vertices
in the support smoothed with the algorithm by D’Errico
(2010), while MeshDoG and SP rely on DoGs of, respec-
tively, point-wise curvatures and point coordinates. As for
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Fig. 10 Results on the Random Views dataset. Fixed-scale detectors:
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LBSS, the local maxima of its invariant are extremely ef-
fective in determining the characteristic scale of 3D struc-
tures even in the presence of noise (Fig. 11), which proves
experimentally its theoretical characteristics. However, its
performance is unsatisfactory in terms of spatial localiza-
tion, yielding a low relative repeatability and a notably small
number of detected keypoints.

Likewise fixed-scale detectors, the object recognition
scenario turns out much more challenging than retrieval
for adaptive-scale detectors, with all methods yielding de-
creased performance in the Random Views dataset. More
specifically, MeshDoG, KPQ-AS and SP score lower rela-
tive as well as absolute repeatability due to missing parts of
the mesh (Figs. 10(g), 10(h)). Still, KPQ-AS proves signifi-
cantly more robust to noise, thus resulting the best adaptive-
scale method also on this dataset. It is interesting to note
that, unlike the retrieval scenario, MeshDoG and SP perform
better than KPQ-AS in terms of scale repeatability at the
lowest noise level (Fig. 12), due to the fact that the character-
istic scale in KPQ-AS is determined by principal directions
and, as aforementioned, the methods based on the scatter-
matrix cannot deal effectively with partial shapes. As far as
LBSS is concerned, its scale invariance is still the best one.
Nevertheless, the relative and absolute repeatability are still
not comparable to those achieved by the other approaches.
Overall, on both datasets SP compares similarly to Mesh-
DOG in terms of relative repeatability and scale repeatabil-
ity, though yielding a notably smaller absolute repeatability.

Finally, comparing together the overall best approaches
between fixed-scale and adaptive-scale detectors, HKS at-
tains a higher relative repeatability than MeshDoG, KPQ
and KPQ-AS on Retrieval, whilst KPQ-AS is clearly the
most effective method on RandomViews.

4.1.2 Laser Scanner, Space Time and Kinect datasets
Results concerning these three datasets are shown for fixed-

scale detectors in Figs. 13—15, for adaptive-scale detectors
in Tables 3-5.
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Fig. 12 Scale repeatability of adaptive-scale detectors on the Random
Views dataset.

The main differences between the Laser Scanner dataset
and the Space Time and Kinect datasets consist in the point
density variation between models and scenes and the dimen-
sionality of models. In Space Time and Kinect, models and
scenes have the same dimensionality (2.5D) as well as the
same point density. In Laser Scanner models are instead full
3D meshes and their point density is one order of magnitude
higher than in scenes. The main differences between Space
Time and Kinect consist in the higher noise level and amount
of holes and artifacts present in the latter, which render it the
most challenging dataset used throughout this evaluation.

The results obtained on these real datasets are mostly co-
herent with the experimental findings regarding the Random
Views dataset. In particular, between fixed-scale detectors,
ISS confirms acceptable performance in terms of both rel-
ative and absolute repeatability, with the exception of the
challenging Kinect. The LSP detector is not robust to the
sensor noise present in these datasets. As far as adaptive-
scale detectors are concerned, many findings are consistent
as well: LBSS provides outstanding scale overlaps among
different keypoint detections but lacks spatial repeatability;
the scale repeatability of MeshDoG, SP and KPQ-AS is sat-
isfactory, although the criterion employed by the methods to
determine the characteristic scale seems not particularly ef-
fective when full 3D models are compared to 2.5D scenes,
as vouched by the performance drops between Space Time
and Laser Scanner; the absolute repeatability of SP is usu-
ally lower than that of MeshDoG and KPQ-AS.

As for differences in the experimental findings, HKS
demonstrated on the Random Views dataset to suffer the dif-
ference in dimensionality between scenes and models. Here
its performance degrades even more, dropping at the same
level as LSP. A reason for this behavior might be the absence
in the real datasets of strongly protruded surfaces and de-
tails, as the adopted real sensors tend to  produce smoother,
less-detailed surfaces than those of Stanford models. This
is especially true for SpaceTime and Kinect, whereas laser
scanner data are usually richer of details. Hence, perfor-
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Table 3 Results on the Laser Scanner dataset for adaptive-scale de-
tectors: relative, absolute and scale repeatability

Rel. rep. Abs. rep. Scale rep.
LBSS 0.07 4 0.98
MeshDoG 0.29 277 0.41
KPQ-AS 0.30 233 0.51
SP 0.30 264 0.43

Table 4 Results on the Space Time dataset for adaptive-scale detec-
tors: relative, absolute and scale repeatability

Rel. rep. Abs. rep. Scale rep.
LBSS 0.06 2 1.00
MeshDoG 0.54 223 0.59
KPQ-AS 0.39 188 0.69
Sp 0.36 96 0.55

Table S Results on the Kinect dataset for adaptive-scale detectors: rel-
ative, absolute and scale repeatability

Rel. rep. Abs. rep. Scale rep.
LBSS 0.02 1 1.00
MeshDoG 0.44 94 0.63
KPQ-AS 0.39 89 0.55
SP 0.28 39 0.44

mance on the Laser Scanner dataset hints to the low robust-
ness of HKS to point density variations. Unlike the results
concerning the synthetic dataset, MeshDoG yields similar or
higher repeatability than KPQ-AS, both in absolute and rel-
ative terms, and it is the top performer among adaptive-scale
detectors on all the three datasets, tied by KPQ-AS and SP
only on Laser Scanner.

To compare fixed- and adaptive-scales detectors,
Figs. 13(a), 14(a), 15(a) and Table 3, 4, 5 indicate that while
MeshDoG is overall the best detector on Space Time and
Kinect, its performance deteriorates on the Laser Scanner
dataset, so that ISS at small scales turns out the best method
on the last dataset. In turn, this fact, together with the good
results yielded by MeshDoG on Random Views (Fig. 10(g)),
where one of the nuisances is the difference between model
and scene dimensionality (3D versus 2.5D), indicates that
MeshDoG is prone to point density variations.

An interesting observation stems from the comparison
between Figs. 10(a), 10(c), 10(e) and Fig. 14(a). In all these
tests there is no difference in point density between models
and scenes. The only difference is that, as with the Random
Views dataset, models are fully 3D while scenes are 2.5D,
yielding as a consequence that part of the surface included
in the support of the models’ keypoints will be absent in

the corresponding keypoints on the scene. The fact that the
performance of ISS and KPQ deteriorates at bigger scales
on this dataset whereas they are constant on the Space Time
dataset confirms that the alteration of the scatter matrix in-
duced by the occlusion of part of the support is a severe issue
for these detectors.

On Kinect the gap between fixed-scale and adaptive-scale
detectors widens. Kinect is also the only dataset where KPQ
performs consistently more effectively than ISS. This con-
firms the challenging characteristics of this dataset, and indi-
cates that the surface smoothing step deployed by KPQ or a
multi-scale analysis of the surface is a crucial factor to cope
with the nuisances present in the dataset.

4.2 Quantity Bias Experiment

In this experiment, relative repeatability of all methods is
plotted for increasing numbers of extracted keypoints. As
previously explained, limiting the number of extracted key-
points was done by ranking them based on saliency and then
selecting only the most salient ones. Figure 16(a) shows the
results concerning the Retrieval dataset with o noise equal
to 0.1 mr. The overall performance trend of Fig. 9(a), 9(b)
is highlighted again. HKS is the best performing method,
although characterized by a severely limited number of ex-
tracted keypoints. ISS, SP, KPQ and KPQ-AS feature good
repeatability scores, which decrease alongside with the in-
creasing number of extracted keypoints, as predictable intu-
itively as the first keypoints extracted are those characterized
by a higher saliency, hence likely the most repeatable ones.
On the other hand, LBSS, LSP and MeshDoG exhibit a poor
performance in the Retrieval scenario, especially if com-
pared with that of the other approaches. Differently from
other methods, LSP, and more evidently MeshDoG, exhibit
a clear increase of repeatability when more keypoints are
considered. On one side, this is a hint that the saliency used
by these methods is not particularly effective, on the other
this may indicate a quantity bias in the repeatability score in
the previous experiment.

This phenomenon is more evident in the experiment on
the Kinect dataset shown in Fig. 16(b). In this case, like-
wise the results presented in Fig. 15 and Table 5, the perfor-
mance of the methods is significantly lower due to the chal-
lenging scenario. Nevertheless, their relative performance is
confirmed with the exception of MeshDoG, which outper-
formed all methods (including KPQ-AS) in the repeatability
experiment. The trend of MeshDoG in Fig. 16(b) indicates
that such a good repeatability may be due to a biased score:
if a limited number of keypoints is taken into account (e.g.
<100), thus selecting a working point where repeatability
scores are definitely not biased by quantity, we can notice
that KPQ and KPQ-AS turn out the best performing meth-
ods, with their relative rank inverted compared to the Re-
trieval scenario. The SP detector exhibits a trend analogous
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Fig. 16 Results for the Quantity Bias experiment

to MeshDoG in this experiment, which highlights the low
suitability of this detector to the object recognition scenario.
ISS yields good repeatability at small quantities, better than
that reported by MeshDoG, although the maximum number
of keypoints it can extract is limited compared to KPQ de-
tectors. HKS confirms limited performance when a typical
3D object recognition scenario is taken into account, even
when only the most salient keypoints are considered.

4.3 Descriptor Matching Experiment

Results for this experiment are shown in Fig. 17. On both
datasets considered for this experiment and according to
both the employed descriptors, it is evident that scatter
matrix-based methods (ISS and the two variants of KPQ)
tend to provide distinctive keypoints. This is especially ev-
ident for SHOT, which uses in a crucial step, i.e. the com-
putation of the local Reference Frame, exactly the scatter
matrix. Hence, regions where the principal directions of X
are well defined are naturally good regions to be described
by SHOT. Moreover, KPQ purposely defines its keypoints
as those points where, among other characteristics, a good
local Reference Frame can be defined, whereas ISS simply
selects regions whose elongation along the three principal
directions is strong enough. This also highlights the bias of
this kind of experiments towards the specific kind of de-
scriptor employed. In addition to ISS and the two variants
of KPQ, MeshDoG and SP also perform well together with
SHOT. In particular, MeshDoG turns out the best method
on the Spacetime dataset. As for Spin Images, on the aver-
age the performance of detectors decreases, this hinting at
a higher descriptive power of SHOT with regards to Spin
Images. Nevertheless, also in terms of this descriptor, KPQ,
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KPQ-AS, MeshDoG, SP and ISS outperform all other meth-
ods in terms of distinctiveness of the extracted keypoints.

It is worth pointing out that this experiment also high-
lights that in a real surface matching pipeline deploying
either SHOT or Spin Images the best detector choices are
MeshDoG and the KPQ variants (but efficiency should also
be taken into account, see next section). Moreover, from the
figure it can be noted that for tight values of the matching
threshold (i.e. around the origin of each chart) also HKS
and LSP—!the latter only in the Spacetime experiment—
show a trend above the bisector when paired with SHOT,
thus being able to detect a set of True Positives against a
small number of False Positives. This indicates that these
methods can be usefully employed within their respective
application scenarios and whenever such a small number of
good correspondences suffices. Finally, LBSS demonstrates
insufficient performance, hence being not suitable to be used
as detector within a pipeline deploying either of the two de-
scriptors.

4.4 Efficiency

The charts in Figs. 18(a) and 18(b) report the measured de-
tection time (in seconds) of each method computed on one
scene of, respectively, the Retrieval and the Kinect dataset.
As for fixed-scale detectors, the value of the radius yield-
ing the best performance in terms of repeatability on each
dataset was used in this experiment. Since all methods are
implemented in the same framework, their efficiency is com-
parable and the charts also provide realistic absolute execu-
tion times for typical surface sizes used in the application
scenarios addressed by each of the two datasets. It has to
be noted that, for the aforementioned computational limits
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the threshold used to consider the nearest neighbor of a descriptor as
a match to establish a point-to-point correspondence between surfaces.
At the top-right corner of all figures, a zoomed view of the charts near
the origin of the axis is shown

Table 6 Best overall detectors according to the different aspects evaluated throughout the comparison

Rel. repeat. Abs. repeat. Scale repeat.  Robustness to noise Distinctiveness Efficiency
Retrieval HKS KPQ, KPQ-AS LBSS KPQ, HKS, KPQ-AS  KPQ LSP, ISS
Recognition  KPQ-AS, ISS, MeshDoG ~ MeshDoG, KPQ-AS  LBSS KPQ, HKS, KPQ-AS  MeshDoG, KPQ-AS  LSP, ISS

due to the memory footprint of HKS, its efficiency could
not be measured with surfaces containing more than 30 K
points.

The relative ranking is overall the same for both datasets.
The most efficient detectors are ISS and LSP, yielding com-
parable efficiency and being slightly faster than MeshDoG
and two orders of magnitude faster than LBSS and HKS.
Conversely, KPQ and KPQ-AS are the most computation-
ally intensive approaches, being one order of magnitude

slower than LBSS and HKS. Finally, SP exhibits a non-
linear trend, thus resulting slightly slower than the most ef-
ficient approaches with small surfaces, while being as slow
as the least efficient approaches on scenes characterized by
a high number of points.

It is worth pointing out that with the typical number of
points computed by the Kinect sensor (of the order of 10°),
none of the detectors is able to run below one second per
scene.
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Fig. 18 Measured detection time (in seconds) on one scene of the Re-
trieval (left) and Kinect (right) dataset. As for fixed-scale detectors, the
best radius was selected for each dataset. The scenes were repeatedly

5 Discussion and Conclusions

This paper has proposed an in-depth survey of the state of
the art of 3D keypoint detectors and a thorough compari-
son of their performance. Beside reviewing and presenting
to the reader in a comfortable common place the theory be-
hind current methods, the survey introduces a classification
between fixed-scale and adaptive-scale detectors that allows
for defining the common structure of detectors belonging
to each class. Abstracting all detectors to a set of common
stages was useful to better highlight the peculiarities of the
various approaches and understand their differences in per-
formance throughout the analysis of the reported experimen-
tal results. We believe that this classification and abstraction
can help researchers to highlight the blind spots of the path
followed so far to devise repeatable detectors, either to im-
prove the current methodology or to propose a completely
different, ground-breaking approach. Another contribution
of the paper is the carefully designed evaluation methodol-
ogy and the definition of a varied and rich data corpus, that
is made publicly available. This would allow researchers to
evaluate their proposals on challenging data and compare
their results to the state of the art without the need to re-
implement existing methods.

The proposed experimental assessment allows for draw-
ing interesting conclusions. In Table 6 we have highlighted
the algorithms that, for the two addressed scenarios, pro-
vided the best overall performance according to the traits
considered throughout the evaluation. As for the shape re-
trieval scenario, KPQ can be recommended as the best tech-
nique in terms of repeatability, distinctiveness (according to
the considered 3D descriptors) and robustness to noise. ISS,
on the other hand, features a good trade-off between abso-
lute and relative repeatability, together with the important
advantage of being highly efficient. As far as object recog-
nition is concerned, the most repeatable methods turn out
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decimated to reduce the amount of vertices, thus enabling the analysis
of the detectors’ efficiency for varying numbers of surface points

to be adaptive scale detectors, in particular MeshDoG and
KPQ-AS, the latter excelling in terms of robustness to noise,
as well as distinctiveness. Still, ISS can deliver reasonably
good results in terms of repeatability while being particu-
larly efficient, so that it represents a viable choice as long as
data are not too noisy.

As for other detectors, LBSS’s main positive trait is scale
repeatability, while LSP’s is efficiency. HKS is especially
suited to object retrieval scenarios, where it yields excel-
lent relative repeatability and robustness to noise. SP can of-
fer interesting performance for shape retrieval provided that
sensor noise is limited.

Our performance evaluation clearly highlights two main
open issues. Firstly, the temporal and/or spatial efficiency of
all existing methods is unsatisfactory. This severely limits
their deployment in real applications and represents a major
bottleneck for reaching the same maturity and spread as 2D
applications based on local image features. The efficiency
problem may become especially important with the likely
spreading of portable devices able to capture and process 3D
data. Secondly, there are nuisances peculiar to 3D data, i.e.
point density variations among data representing the same
object and the difference in dimensionality between mod-
els and scenes, that affect the performance of the consid-
ered methods. Both these nuisances can severely decrease
the performance of every detector. We believe that future
research efforts should be aimed at devising well grounded
and efficient solutions to these open problems.
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