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Abstract—Deformable image registration is a fundamental task
in medical image processing. Among its most important applica-
tions, one may cite: 1) multi-modality fusion, where information
acquired by different imaging devices or protocols is fused to fa-
cilitate diagnosis and treatment planning; 2) longitudinal studies,
where temporal structural or anatomical changes are investigated;
and 3) population modeling and statistical atlases used to study
normal anatomical variability. In this paper, we attempt to give
an overview of deformable registration methods, putting emphasis
on the most recent advances in the domain. Additional emphasis
has been given to techniques applied to medical images. In order
to study image registration methods in depth, their main compo-
nents are identified and studied independently. The most recent
techniques are presented in a systematic fashion. The contribution
of this paper is to provide an extensive account of registration tech-
niques in a systematic manner.

Index Terms—Bibliographical review, deformable registration,
medical image analysis.

I. INTRODUCTION

EFORMABLE registration [1]-[10] has been, along

with organ segmentation, one of the main challenges
in modern medical image analysis. The process consists of
establishing spatial correspondences between different image
acquisitions. The term deformable (as opposed to linear or
global) is used to denote the fact that the observed signals
are associated through a nonlinear dense transformation, or a
spatially varying deformation model.

In general, registration can be performed on two or more im-
ages. In this paper, we focus on registration methods that involve
two images. One is usually referred to as the source or moving
image, while the other is referred to as the target or fixed image.
In this paper, the source image is denoted by S, while the target
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image is denoted by 7'. The two images are defined in the image
domain €2 and are related by a transformation W,

The goal of registration is to estimate the optimal transforma-

tion that optimizes an energy of the form

M(T, S o W)+ R(W). 1)
The previous objective function (1) comprises two terms. The
first term, M, quantifies the level of alignment between a target
image 7" and a source image S. Throughout this paper, we in-
terchangeably refer to this term as matching criterion, (dis)sim-
ilarity criterion or distance measure. The optimization problem
consists of either maximizing or minimizing the objective func-
tion depending on how the matching term is chosen.

The images get aligned under the influence of transformation
W. The transformation is a mapping function of the domain €2
to itself, that maps point locations to other locations. In gen-
eral, the transformation is assumed to map homologous loca-
tions from the target physiology to the source physiology. The
transformation at every position x &€ €1 is given as the addition
of an identity transformation with the displacement field u, or
W (x) = x + u(x). The second term, R, regularizes the trans-
formation aiming to favor any specific properties in the solution
that the user requires, and seeks to tackle the difficulty associ-
ated with the ill-posedness of the problem.

Regularization and deformation models are closely related.
Two main aspects of this relation may be distinguished. First,
in the case that the transformation is parametrized by a small
number of variables # and is inherently smooth, regularization
may serve to introduce prior knowledge regarding the solution
that we seek by imposing task-specific constraints on the trans-
formation. Second, in the case that we seek the displacement of
every image element (i.e., nonparametric deformation model),
regularization dictates the nature of the transformation.

Thus, an image registration algorithm involves three main
components: 1) a deformation model, 2) an objective function,
and 3) an optimization method. The result of the registration
algorithm naturally depends on the deformation model and the
objective function. The dependency of the registration result on
the optimization strategy follows from the fact that image regis-
tration is inherently ill-posed. Devising each component so that
the requirements of the registration algorithm are met is a de-
manding process.

Depending on the deformation model and the input data, the
problem may be ill-posed according to Hadamard’s definition
of well-posed problems [11]. In probably all realistic scenarios,
registration is ill-posed. To further elaborate, let us consider
some specific cases. In a deformable registration scenario, one
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seeks to estimate a vector for every position given, in general,
scalar information conveyed by image intensity. In this case, the
number of unknowns is greater than the number of constraints.
In arigid 2D setting, let us consider a consider a scenario where
two images of a disk (white background, gray foreground) are
registered. Despite the fact that the number of parameters is only
6, the problem is ill-posed. The problem has no unique solution
since a translation that aligns the centers of the disks followed
by any rotation results in a meaningful solution.

Given nonlinear and nonconvex objective functions, in gen-
eral, no closed-form solutions exist to estimate the registration
parameters. In this setting, the search methods reach only a local
minimum in the parameter space. Moreover, the problem itself
has an enormous number of different facets. The approach that
one should take depends on the anatomical properties of the
organ (for example, the heart and liver do not adhere to the same
degree of deformation), the nature of observations to be regis-
tered (same modality versus multi-modal fusion), the clinical
setting in which registration is to be used (e.g., offline interpre-
tation versus computer assisted surgery).

An enormous amount of research has been dedicated to de-
formable registration towards tackling these challenges due to
its potential clinical impact. During the past few decades, many
innovative ideas regarding the three main algorithmic registra-
tion aspects have been proposed. General reviews of the field
may be found in [1]-[7], [9]. However due to the rapid progress
of the field such reviews are to a certain extent outdated.

The aim of this paper is to provide a thorough overview of the
advances of the past decade in deformable registration. Never-
theless, some classic papers that have greatly advanced the ideas
in the field are mentioned. Even though our primary interest is
deformable registration, for the completeness of the presenta-
tion, references to linear methods are included as many prob-
lems have been treated in this low-degree-of-freedom setting
before being extended to the deformable case.

The main scope of this paper is focused on applications that
seek to establish spatial correspondences between medical im-
ages. Nonetheless, we have extended the scope to cover appli-
cations where the interest is to recover the apparent motion of
objects between sequences of successive images (optical flow
estimation) [12], [13]. Deformable registration and optical flow
estimation are closely related problems. Both problems aim to
establish correspondences between images. In the deformable
registration case, spatial correspondences are sought, while in
the optical flow case, spatial correspondences, that are associ-
ated with different time points, are looked for. Given data with
a good temporal resolution, one may assume that the magnitude
of the motion is limited and that image intensity is preserved in
time, optical flow estimation can be regarded as a small defor-
mation mono-modal deformable registration problem.

The remainder of the paper is organized by loosely following
the structural separation of registration algorithms to three com-
ponents: 1) deformation model, 2) matching criteria, and 3) op-
timization method. In Section II, different approaches regarding
the deformation model are presented. Moreover, we also chose
to cover in this section the second term of the objective function,
the regularization term. This choice was motivated by the close
relation between the two parts. In Section III, the first term of
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the objective function, the matching term, is discussed. The opti-
mization methods are presented in Section I'V. In every section,
particular emphasis was put on further deepening the taxonomy
of registration method by grouping the presented methods in a
systematic manner. Section V concludes the paper.

II. DEFORMATION MODELS

The choice of deformation model is of great importance for
the registration process as it entails an important compromise
between computational efficiency and richness of description.
It also reflects the class of transformations that are desirable
or acceptable, and therefore limits the solution to a large ex-
tent. The parameters that registration estimates through the op-
timization strategy correspond to the degrees of freedom of the
deformation model!. Their number varies greatly, from six in
the case of global rigid transformations, to millions when non-
parametric dense transformations are considered. Increasing the
dimensionality of the state space results in enriching the de-
scriptive power of the model. This model enrichment may be
accompanied by an increase in the model’s complexity which,
in turns, results in a more challenging and computationally de-
manding inference. Furthermore, the choice of the deformation
model implies an assumption regarding the nature of the defor-
mation to be recovered.

Before continuing, let us clarify an important, from imple-
mentation point of view, aspect related to the transformation
mapping and the deformation of the source image. In the in-
troduction, we stated that the transformation is assumed to map
homologous locations from the target physiology to the source
physiology (backward mapping). While from a theoretical point
of view, the mapping from the source physiology to the target
physiology is possible (forward mapping), from an implemen-
tation point of view, this mapping is less advantageous.

In order to better understand the previous statement, let us
consider how the direction of the mapping influences the esti-
mation of the deformed image. In both cases, the source image
is warped to the target domain through interpolation resulting
to a deformed image. When the forward mapping is estimated,
every voxel of the source image is pushed forward to its esti-
mated position in the deformed image. On the other hand, when
the backward mapping is estimated, the pixel value of a voxel
in the deformed image is pulled from the source image.

The difference between the two schemes is in the difficulty of
the interpolation problem that has to be solved. In the first case, a
scattered data interpolation problem needs to be solved because
the voxel locations of the source image are usually mapped to
nonvoxel locations, and the intensity values of the voxels of the
deformed image have to be calculated. In the second case, when
voxel locations of the deformed image are mapped to nonvoxel
locations in the source image, their intensities can be easily cal-
culated by interpolating the intensity values of the neighboring
voxels.

The rest of the section is organized by following coarsely
and extending the classification of deformation models given

'Variational approaches in general attempt to determine a function, not just a
set of parameters.



SOTIRAS et al.: DEFORMABLE MEDICAL IMAGE REGISTRATION: A SURVEY

Elastic body models

Sec. 1I-Al

Viscous fluid flow models

Sec. II-A2
Geometric transformations de-
rived from physical models
Sec. II-A

Diffusion models

Sec. 1I-A3

Curvature registration

Sec. II-A4

Flows of diffeomorphisms

Sec. II-A5

Radial basis functions

Sec. 1I-B1

Elastic body splines

Deformation models Sec. 1I-B2

Sec. II Geometric transformations de-

rived from interpolation theory
Sec. II-B

Sec. II-B3

Basis functions from signal

processing
Sec. I11-B4

Locally affine models

Sec. II-B5

Free-form deformations

1155

Task-specific constraints
Sec. II-D

Topology preservation Volume preservation Rigidity constraints
Sec. II-D1 Sec. II-D2 Sec. II-D3

Statistically-constrained geometric transformations
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Fig. 1. Classification of deformation models. Models that satisfy task-specific constraints are not shown as a branch of the tree because they are, in general, used

in conjunction with physics-based and interpolation-based models.

by Holden [14]. More emphasis is put on aspects that were not
covered by that review.

Geometric transformations can be classified into three
main categories (see Fig. 1): 1) those that are inspired by
physical models, 2) those inspired by interpolation and ap-
proximation theory, 3) knowledge-based deformation models
that opt to introduce specific prior information regarding the
sought deformation, and 4) models that satisfy a task-specific
constraint.

Of great importance for biomedical applications are the con-
straints that may be applied to the transformation such that it
exhibits special properties. Such properties include, but are not
limited to, inverse consistency, symmetry, topology preserva-
tion, diffeomorphism. The value of these properties was made
apparent to the research community and were gradually intro-
duced as extra constraints.

Despite common intuition, the majority of the existing regis-
tration algorithms are asymmetric. As a consequence, when in-
terchanging the order of input images, the registration algorithm
does not estimate the inverse transformation. As a consequence,
the statistical analysis that follows registration is biased on the
choice of the target domain.

Inverse Consistency: Inverse consistent methods aim to
tackle this shortcoming by simultaneously estimating both the
forward and the backward transformation. The data matching
term quantifies how well the images are aligned when one
image is deformed by the forward transformation, and the other
image by the backward transformation. Additionally, inverse
consistent algorithms constrain the forward and backward
transformations to be inverse mappings of one another. This
is achieved by introducing terms that penalize the difference
between the forward and backward transformations from the

respective inverse mappings. Inverse consistent methods can
preserve topology but are only asymptotically symmetric.
Inverse-consistency can be violated if another term of the
objective function is weighted more importantly.

Symmetry: Symmetric algorithms also aim to cope with
asymmetry. These methods do not explicitly penalize asym-
metry, but instead employ one of the following two strategies.
In the first case, they employ objective functions that are by
construction symmetric to estimate the transformation from
one image to another. In the second case, two transformation
functions are estimated by optimizing a standard objective
function. Each transformation function map an image to a
common domain. The final mapping from one image to another
is calculated by inverting one transformation function and
composing it with the other.

Topology Preservation: The transformation that is estimated
by registration algorithms is not always one-to-one and cross-
ings may appear in the deformation field. Topology preserving/
homeomorphic algorithms produce a mapping that is contin-
uous, onto, and locally one-to-one and has a continuous inverse.
The Jacobian determinant contains information regarding the
injectivity of the mapping and is greater than zero for topology
preserving mappings. The differentiability of the transformation
needs to be ensured in order to calculate the Jacobian determi-
nant. Let us note that Jacobian determinant and Jacobian are in-
terchangeably used in this paper and should not be confounded
with the Jacobian matrix.

Diffeomorphism: Diffeomoprhic transformations also pre-
serve topology. A transformation function is a diffeomorphism,
if it is invertible and both the function and its inverse are differ-
entiable. A diffeomorphism maps a differentiable manifold to
another.
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In the following four subsections, the most important
methods of the four classes are presented with emphasis on the
approaches that endow the model under consideration with the
above desirable properties.

A. Geometric Transformations Derived From Physical Models

Following [5], currently employed physical models can be
further separated in five categories (see Fig. 1): 1) elastic body
models, 2) viscous fluid flow models, 3) diffusion models, 4)
curvature registration, and 5) flows of diffeomorphisms.

1) Elastic Body Models:

a) Linear Models: In this case, the image under deforma-
tion is modeled as an elastic body. The Navier-Cauchy Partial
Differential Equation (PDE) describes the deformation, or

uV2u+ (p+ NV(V-u)+F =0 2)

where F(x) is the force field that drives the registration based on
an image matching criterion, y¢ refers to the rigidity that quanti-
fies the stiffness of the material and A is Lamés first coefficient.

Broit [15] first proposed to model an image grid as an elastic
membrane that is deformed under the influence of two forces
that compete until equilibrium is reached. An external force tries
to deform the image such that matching is achieved while an
internal one enforces the elastic properties of the material.

Bajcsy and Kovacic [16] extended this approach in a hierar-
chical fashion where the solution of the coarsest scale is up-sam-
pled and used to initialize the finer one. Linear registration was
used at the lowest resolution.

Gee and Bajscy [17] formulated the elastostatic problem in a
variational setting. The problem was solved under the Bayesian
paradigm allowing for the computation of the uncertainty of the
solution as well as for confidence intervals. The finite element
method (FEM) was used to infer the displacements for the ele-
ment nodes, while an interpolation strategy was employed to es-
timate displacements elsewhere. The order of the interpolating
or shape functions, determines the smoothness of the obtained
result.

Linear elastic models have also been used when registering
brain images based on sparse correspondences. Davatzikos [18]
first used geometric characteristics to establish a mapping be-
tween the cortical surfaces. Then, a global transformation was
estimated by modeling the images as inhomogeneous elastic ob-
jects. Spatially-varying elasticity parameters were used to com-
pensate for the fact that certain structures tend to deform more
than others. In addition, a nonzero initial strain was considered
so that some structures expand or contract naturally.

In general, an important drawback of registration is that when
source and target volumes are interchanged, the obtained trans-
formation is not the inverse of the previous solution. In order
to tackle this shortcoming, Christensen and Johnson [19] pro-
posed to simultaneously estimate both forward and backward
transformations, while penalizing inconsistent transformations
by adding a constraint to the objective function. Linear elasticity
was used as regularization constraint and 3.0 Fourier series were
used to parametrize the transformation.

Leow et al. [20] took a different approach to tackle the incon-
sistency problem. Instead of adding a constraint that penalizes
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the inconsistency error, they proposed a unidirectional approach
that couples the forward and backward transformation and pro-
vides inverse consistent transformations by construction. The
coupling was performed by modeling the backward transforma-
tion as the inverse of the forward. This fact was also exploited
during the optimization of the symmetric energy by only fol-
lowing the gradient direction of the forward mapping.

He and Christensen [21] proposed to tackle large deforma-
tions in an inverse consistent framework by considering a se-
quence of small deformation transformations, each modeled by
a linear elastic model. The problem was symmetrized by consid-
ering a periodic sequence of images where the first (or last) and
middle image are the source and target respectively. The sym-
metric objective function thus comprised terms that quantify the
difference between any two successive pairs of images. The in-
ferred incremental transformation maps were concatenated to
map one input image to another.

b) Nonlinear Models: An important limitation of linear
elastic models lies in their inability to cope with large defor-
mations. In order to account for large deformations, nonlinear
elastic models have been proposed. These models also guar-
antee the preservation of topology.

Rabbitt ez al. [22] modeled the deformable image based on
hyperelastic material properties. The solution of the nonlinear
equations was achieved by local linearization and the use of the
Finite Element method.

Pennec et al. [23] dropped the linearity assumption by mod-
eling the deformation process through the St Venant-Kirchoff
elasticity energy that extends the linear elastic model to the non-
linear regime. Moreover, the use of log-Euclidean metrics in-
stead of Euclidean ones resulted in a Riemannian elasticity en-
ergy which is inverse consistent. Yanovsky et al. [24] proposed a
symmetric registration framework based on the St Venant-Kir-
choff elasticity. An auxiliary variable was added to decouple
the regularization and the matching term. Symmetry was im-
posed by assuming that the Jacobian determinants of the defor-
mation follow a zero mean, after log-transformation, log-normal
distribution [25].

Droske and Rumpf [26] used an hyperelastic, polyconvex
regularization term that takes into account the length, area and
volume deformations. Le Guyader and Vese [27] presented an
approach that combines segmentation and registration that is
based on nonlinear elasticity. The authors used a polyconvex
regularization energy based on the modeling of the images
under deformation as Ciarlet-Geymonat materials [28]. Burger
et al. [29] also used a polyconvex regularization term. The au-
thors focused on the numerical implementation of the registra-
tion framework. They employed a discretize-then-optimize ap-
proach [9] that involved the partitioning voxels to 24 tetrahedra.

2) Viscous Fluid Flow Models: In this case, the image under
deformation is modeled as a viscous fluid. The transformation
is governed by the Navier-Stokes equation that is simplified by
assuming a very low Reynold’s number flow

VAV (up +A)V(V-v)+F =0, 3)

These models do not assume small deformations, and thus are
able to recover large deformations [30]. The first term of the
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Navier-Stokes equation (3), constrains neighboring points to de-
form similarly by spatially smoothing the velocity field. The
velocity field is related to the displacement field as v(x;#) =
dru(x;t) + (Vu(x;t)v(x;t)). The velocity field is integrated
in order to estimate the displacement field. The second term al-
lows structures to change in mass while 11 and A are the vis-
cosity coefficients.

Christensen et al. [30] modeled the image under deformation
as a viscous fluid allowing for large magnitude nonlinear defor-
mations. The PDE was solved for small time intervals and the
complete solution was given by an integration over time. For
each time interval a successive over-relaxation (SOR) scheme
was used. To guarantee the preservation of topology, the Jaco-
bian was monitored and each time its value fell under 0.5, the
deformed image was regridded and a new one was generated
to estimate a transformation. The final solution was the con-
catenation of all successive transformations occurring for each
regridding step. In a subsequent work, Christensen et al. [31]
presented a hierarchical way to recover the transformations for
brain anatomy. Initially, global affine transformation was per-
formed followed by a landmark transformation model. The re-
sult was refined by fluid transformation preceded by an elastic
registration step.

An important drawback of the earliest implementations of the
viscous fluid models, that employed SOR to solve the equa-
tions, was computational inefficiency. To circumvent this short-
coming, Christensen et al. employed a massive parallel com-
puter implementation in [30]. Bro-Nielsen and Gramkow [32]
proposed a technique based on a convolution filter in scale-
space. The filter was designed as the impulse response of the
linear operator L = pyAu + (py + Ap)V(V - v) defined in
its eigen-function basis. Crun et al. [33] proposed a multi-grid
approach towards handling anisotropic data along with a multi-
resolution scheme opting for first recovering coarse velocity es-
timations and refining them in a subsequent step. Cahill et al.
[34] showed how to use Fourier methods to efficiently solve the
linear PDE system that arises from (3) for any boundary condi-
tion. Furthermore, Cahill ef al. extended their analysis to show
how these methods can be applied in the case of other regu-
larizers (diffusion, curvature and elastic) under Dirichlet, Neu-
mann, or periodic boundary conditions.

Wang and Staib [35] used fluid deformation models in an
atlas-enhanced registration setting while D’Agostino et al.
tackled multi-modal registration with the use of such models
in [36]. More recently, Chiang et al. [37] proposed an inverse
consistent variant of fluid registration to register Diffusion
Tensor images. Symmetrized Kullback-Leibler (KL) diver-
gence was used as the matching criterion. Inverse consistency
was achieved by evaluating the matching and regularization
criteria towards both directions.

3) Diffusion Models: In this case, the deformation is mod-
eled by the diffusion equation

Au+F =0. “
Let us note that most of the algorithms, based on this transforma-

tion model and described in this section, do not explicitly state
the (4) in their objective function. Nonetheless, they exploit the
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fact that the Gaussian kernel is the Green’s function of the diffu-
sion equation (4) (under appropriate initial and boundary condi-
tions) to provide an efficient regularization step. Regularization
is efficiently performed through convolutions with a Gaussian
kernel.

Thirion, inspired by Maxwell’s Demons, proposed to perform
image matching as a diffusion process [38]. The proposed algo-
rithm iterated between two steps: 1) estimation of the demon
forces for every demon (more precisely, the result of the appli-
cation of a force during one iteration step, that is a displace-
ment), and 2) update of the transformation based on the cal-
culated forces. Depending on the way the demon positions are
selected, the way the space of deformations is defined, the in-
terpolation method that is used, and the way the demon forces
are calculated, different variants can be obtained. The most suit-
able version for medical image analysis involved 1) selecting
all image elements as demons, 2) calculating demon forces by
considering the optical flow constraint, 3) assuming a nonpara-
metric deformation model that was regularized by applying a
Gaussian filter after each iteration, and 4) a trilinear interpo-
lation scheme. The Gaussian filter can be applied either to the
displacement field estimated at an iteration or the updated total
displacement field. The bijectivity of the transformation was en-
sured by calculating for every point the difference between its
initial position and the one that is reached after composing the
forward with the backward deformation field, and redistributing
the difference to each field. The bijectivity of the transformation
can also be enforced by limiting the maximum length of the up-
date displacement to half the voxel size and using composition
to update the transformation. Variants for the contour-based reg-
istration and the registration between segmented images were
also described in [38].

Most of the algorithms described in this section were inspired
by the work of Thirion [38] and thus could alternatively be clas-
sified as “Demons approaches.” These methods share the iter-
ative approach that was presented in [38] that is, iterating be-
tween estimating the displacements and regularizing to obtain
the transformation. This iterative approach results in increased
computational efficiency. As it will be discussed later in this
section, this feature led researchers to explore such strategies
for different PDEs.

The use of Demons, as initially introduced, was an efficient
algorithm able to provide dense correspondences but lacked a
sound theoretical justification. Due to the success of the algo-
rithm, a number of papers tried to give theoretical insight into
its workings. Fischer and Modersitzki [39] provided a fast algo-
rithm for image registration. The result was given as the solution
of linear system that results from the linearization of the diffu-
sion PDE. An efficient scheme for its solution was proposed
while a connection to the Thirion’s Demons algorithm [38] was
drawn.

Pennec et al. [40] studied image registration as an energy
minimization problem and drew the connection of the Demons
algorithm with gradient descent schemes. Thirion’s image force
based on optical flow was shown to be equivalent with a second
order gradient descent on the Sum of Square Differences (SSD)
matching criterion. As for the regularization, it was shown that
the convolution of the global transformation with a Gaussian



1158

kernel corresponds to a single step of a first order gradient de-
scent of a functional that penalizes the remainder of the trans-
formation after convolving it with a high-pass filter.

Vercauteren et al. [41] adopted the alternate optimization
framework that Cachier et al. [42] proposed, to relate symmetric
Demons forces with the efficient second-order minimization
(ESM) [43]. In this framework, an auxiliary variable was used
to decouple the matching and regularization terms. Matching
was performed by minimizing the data term through ESM
optimization while regularization was achieved by Gaussian
smoothing.

In [44], Vercauteren et al. proposed a variant of Thirion’s al-
gorithm endowed with the diffeomorphic property. In contrast
to classical Demons approaches, in every iteration of the al-
gorithm an update field is estimated. In order to estimate the
current transformation, a compositional update rule is used be-
tween the previous estimate and the exponential map of the up-
date field. The exponential map is efficiently calculated by using
the scaling and squaring method [45], [46] and the composition
of displacement fields. The exponentiation of the displacement
field ensures the diffeomorphism of the mapping.

To further facilitate the use of the Demons algorithm in
anatomical computational studies, Vercauteren et al. [47]
extended Demons to be symmetric. Initially, it was shown
how the complete spatial transformation can be represented
in the log-domain. Subsequently, a symmetric extension was
provided by averaging the forward and backward forces that
were computed separately.

The efficiency of this two-step iterative strategy spurred
research interest in seeking a mathematical justification of the
smoothing step to allow for deformations bearing different
physical properties [32], [48]-[50].

Stefanescu et al. presented a way to perform adaptive
smoothing by taking into account knowledge regarding the
elasticity of tissues in [51]. A nonstationary diffusion filter was
used to smooth less inside areas where greater deformations
were expected and smooth more inside objects where coherence
should be preserved. The authors also proposed to take into
account the local image gradient content during smoothing. In
areas with large image gradients where the local confidence for
the established correspondences is higher, smoothing is scaled
down. On the contrary, smoothing is scaled up in homogeneous
areas.

Cahill et al. [48] showed that curvature and fluid registra-
tion can be formulated as two coupled diffusion equations. Their
stationary solution may be approached via successive Gaussian
convolutions, thus yielding a Demons algorithm for these cases.
In a subsequent work, Cahill et al. [49] showed how to extend
the curvature regularization to consider local image gradient
content. The authors proposed a coupled PDE system whose
stationary solution can be attained by consecutive convolutions
with the Green’s function of the diffusion equation.

In another example, Mansi et al. [50] introduced a physical
constraint in the registration process to estimate the my-
ocardium strain from Cine-MRI. The logDemons algorithm
[47] was endowed with the incompressibility constraint by
making the velocity field divergence-free. This was achieved
by solving the Poisson equation under 0-Dirichlet boundary
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conditions within a subdomain of the image showing the
myocardium.

The earliest registration methods of this family of models
used an SSD criterion to drive the matching. As a consequence,
they were appropriate for mono-modal image registration. Sub-
sequent approaches coped with the multi-modal registration
problem. Guimond et al. [52] proposed a method that alternates
between Demons based registration and intensity correction.
Other efforts include the encoding of similarity metrics such as
normalized mutual information by Tristan-Vega et al. [53] and
Modat et al. [54].

The application of the Demons algorithm is not limited to
scalar images and has been extended to multi-channel images
[55], diffusion tensor ones [56], as well as different geome-
tries [57]. Peyrat et al. used multi-channel Demons to register
4D time-series of cardiac images by enforcing trajectory con-
straints in [55]. Each time instance was considered as a different
channel while the estimated transformation between successive
channels was considered as constraint. Yeo et al. [56] derived
Demons forces from the squared difference between each el-
ement of the Log-Euclidean transformed tensors while taking
into account the reorientation introduced by the transformation.
Finally, the Demons framework was employed to register cor-
tical surfaces parametrized as spheres by Yeo et al. [56]. To gen-
eralize Demons on the sphere, a method was introduced to mea-
sure the distance between two transformations and to regularize
the transformation.

4) Curvature Registration.: In this case, the deformation is
modeled by the following equilibrium equation:

A+ F =0. 5)

This regularization scheme does not penalize affine linear trans-
formations. As a consequence, unless an initial significant mis-
alignment in space is present, these registration frameworks do
not necessarily require an additional affine linear preregistration
step.

Fischer and Modersitzki used this constraint in [58], [59].
To solve (5), the Gateaux derivatives with respect to the data
and regularization terms were calculated and a finite difference
scheme was employed to solve the resulting PDE. Neumann
boundary conditions were used since they result in a highly
structured matrix problem that can be solved efficiently. Despite
this fact, the resulting underlying function space penalizes the
affine linear displacements as pointed out by Henn in [60]. Thus,
Henn proposed to include second-order terms as boundary con-
ditions in the energy and applied a semi-implicit time discretiza-
tion scheme to solve the full curvature registration problem.

Glocker et al. [61] used an approximation of the curvature
penalty in the case of parametric grid-based deformation
models. The approximation was derived by simultaneously
examining the displacements of two neighboring grid nodes
while the third was assumed to be fixed. Beuthien et al. [62],
inspired by the approach presented in [32] for the viscous fluid
registration scenario, proposed another way to solve the curva-
ture based registration problem. Instead of devising a numerical
scheme to solve the PDE that results from the equilibrium equa-
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tion (5), recursive convolutions with an appropriate Green’s
function were used.

5) Flows of Diffeomorphisms: Flows of diffeomorphisms
have also been proposed to model the deformation. In this case,
the deformation is modeled by considering its velocity over
time according to the Lagrange transport equation [30], [63],
[64]. The regularization term constrains the velocity field to be
smooth

1

R:AHw%# (6)
Il - |lv- is a norm on the space V' of smooth velocity vector fields
defined as || f|lv = ||Df|lz,, where D is a differential oper-
ator and || - ||z, is the L» norm of square integrable functions.
Choosing a kernel associated with V' allows for the modeling of
different types of spatial regularization [63]. While most often
a single Gaussian kernel is used [65], it is possible to use mul-
tiple kernels and smooth the deformations adaptively at dif-
ferent scales [65], [66]. Lastly, the fact that the velocity field
varies over time allows for the estimation of large deformations
[67].

This framework, known as large deformation diffeomorphic
metric mapping (LDDMM), allows for the definition of a dis-
tance between images or sets of points [68], [69]. The distance
between these elements is defined as a geodesic, according to
a metric, that connects them and can be used for studies of
anatomical variability [70]. A number of theoretical aspects of
this framework and especially the ones related with computa-
tional analysis were further developed in [71]-[75]. The inter-
ested reader is referred to [76] for an overview of its evolution
and the corresponding equations.

The LDDMM framework has been extended to solve a
number of problems. Among its extensions, one may cite
volume registration for scalar [67], [77]-[79] vector- [80] and
tensor-valued data [81], point-matching [68], point-matching
on spheres [82], matching sets of unlabeled points [83]-[85],
shape-matching [65], [86], curve-mapping [87]-[90], and
hybrid registration [91], [92].

Even though the LDDMM framework provides diffeo-
morphic transformations, it is not symmetric. To encode the
symmetric property a number of approaches have been pro-
posed [77], [78], [93]. Beg and Khan [77] focused on providing
symmetric data terms. Younes [93] also discussed ways to
render the alignment process symmetric while Avants et al.
[78] presented a symmetric LDDMM registration process
driven by cross-correlation.

The mathematical rigor of the LDDMM framework comes at
an important cost. The fact that the velocity field has to be in-
tegrated over time results in high computational and memory
demands. Moreover, the gradient descent scheme that is usu-
ally employed to solve the optimization problem of the geodesic
path estimation converges slowly [79]. More efficient optimiza-
tion techniques for the LDDMM have been investigated in [79],
[94], [95].

Cotter and Holm presented an approach that involves a par-
ticle mesh method in [95]. Marsland and McLachlan [94] for-
mulated the problem in a PDE framework and used a particle
method to solve for the diffeomorphism. More recently, Ash-
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burner and Friston [79] gave a Gauss-Newton implementation
of the algorithm in [95]. These approaches were based on the
fact that the initial velocity field is sufficient to calculate the in-
termediate and final deformations. In other words, the diffeo-
morphism is parametrized by the initial velocity field. These
calculations are possible by reformulating the initial boundary
problem to an initial value one. The initial conditions comprise
the initial velocity and the starting position. The optimization
opts to estimate the initial velocity field that best aligns the im-
ages. This approach is known as geodesic shooting.

An alternative way to efficiently calculate diffeomorphisms
involves the simplification of the problem by decreasing its de-
grees of freedom. Stationary velocity fields [96] have been used
towards this direction. Despite being limited with respect to the
diffeomorphisms that they can capture, stationary velocity fields
are a common choice among many researchers [97]-[100].

Hernandez et al. followed this approach and used stationary
Ordinary Differential Equations (ODEs) in the LDDMM
framework [101]. Ashburner [97] assumed the velocity field to
be constant over time in order to propose a fast diffeomorphic
image registration that was based on either membrane, bending
or linear elastic energy. The solution was estimated through
integration over time by composing successive solutions. Given
an even number of steps, this was performed efficiently by
a scaling and squaring approach [45], [46]. Furthermore, the
exponential of the flow field was used to guarantee that the
inferred mapping is diffeomorphic. The energy was optimized
using the Levenberg-Marquardt algorithm coupled with a full
multi-grid approach to efficiently compute its update step.

B. Geometric Transformations Derived From Interpolation
Theory

Rather than being motivated by a physical model, the models
of this class are derived from either interpolation theory or
approximation theory. In interpolation theory, displacements,
considered known in a restricted set of locations in the image,
are interpolated for the rest of the image domain. In approxima-
tion theory, we assume that there is an error in the estimation
of displacements. Thus, the transformation smoothly approx-
imates the known displacements rather than taking the exact
same values. These models are rich enough to describe the
transformations that are present in image registration problems,
while having low degrees of freedom and thus facilitating
the inference of the parameters. Among the most important
families of interpolation strategies, one may cite (see Fig. 1):
1) radial basis functions, 2) elastic body splines, 3) free-form
deformations, 4) basis functions from signal processing, and 5)
piecewise affine models.

1) Radial Basis Functions: One of the most important fam-
ilies of interpolation strategies is that of radial basis functions
(RBFs), where the value at an interpolation point x is given as
function of its distance r from the known sample p, or

N
u(x) = wid(llx - pil))- ™
i=1

Zagorchev and Goshtasby presented an evaluation study com-
paring RBFs used as transformation functions in nonrigid
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image registration in [102]. More recently, Yang et al. [103]
presented an analysis with respect to the ability of RBFs to
preserve topology. An important property of RBFs is that they
are able to interpolate a deformation field from irregularly
placed known values. A common property of most RBFs, that
are described in this section, is their global support. Knowing
the displacement at one point influences the values of points
in the whole image domain. As a consequence, interpolation
in sparsely populated areas is feasible. On the other hand, this
behavior is undesirable when seeking local transformations.
In order to counter it, sufficient landmarks are required in the
regions of interest.

Bookstein proposed the use of thin-plate splines (TPS) for
image registration in [104], [105]. TPS minimize the bending
energy assuming infinite boundary conditions. The solution
is given in a closed-form and its uniqueness is guaranteed in
most cases. Nonetheless, TPS, as proposed by Bookstein, are
known to exhibit certain shortcomings. The transformation
from one image domain to another is not inverse consistent
[106]. Moreover, their support is global, which hinders the
recovery of local image warpings [107]-[109]. Furthermore,
TPS do not take into consideration possible errors in the esti-
mation of the displacements in the landmark positions [110].
Lastly, as the number of points increases, the interpolation
becomes computationally demanding [111]. A number of
researchers have worked to lessen the importance of these
shortcomings [106]-[111].

In [106], Johnson and Christensen tackled the inverse in-
consistency problem. They considered the minimization of the
bending energy under cyclic boundary conditions in an effort
to account for the great consistency error that they observed in
the boundary of the images. Additionally, a term that penalizes
the consistency error was introduced in the objective function
to render the registration inverse consistent.

Li et al. coped with the problem of the global nature of TPS
in [107]. TPS were constructed in such a way that their support
is restricted locally. In a subsequent work, Yang et al. [108]
defined the support of each point in an adaptive way by taking
into consideration the distribution of the points in the image
domain. These approaches [107], [108] were based on heuristics
and a truncation of the original basis, to limit the influence of the
control points. Rohr and Worz [109] introduced a variant of TPS
which assumes that the forces that act at the landmarks, also
influence the region around them. These forces are described
by a Gaussian function of the radial distance from the landmark
instead of a Dirac delta function as in the classical TPS. The
parametrization of the forces by the standard deviation of the
Gaussian function allows for the control of the locality of the
transformation.

Rohr et al. [110] proposed to take into consideration the land-
mark localization error when estimating the dense deformation
field through the use of approximating thin-plate splines. The
authors proposed to weaken the interpolation constraint and
estimate the transformation by minimizing a functional that
weights the approximation error according to the (isotropic or
anisotropic) landmark position estimation error. The approxi-
mation problem admits an analytical solution that consists of
the same basis functions as the interpolation problem.
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Three ways to address the computational problems related
with the presence of a great number of landmarks were studied
by Donato and Belongie [111]. The straightforward approach
of sub-sampling the points was compared to two more elabo-
rated ones that use either a subset of the basis functions or a
matrix approximation technique based on the Nystrom method.
The more sophisticated methods were shown to outperform the
naive approach in terms of mean squared error. The matrix ap-
proximation method was also shown to be useful when principal
warp analysis was taken into account.

Marsland and Twining [69], [112] employed Clamped-Plate
splines for groupwise registration and groupwise analysis of
deformable registrations. Clamped-plate splines minimize the
same energy as TPS though under specific boundary conditions.
Camion and Younes introduced goedesic interpolating splines
(GIS) following the LDDMM framework [113]. The dense de-
formation field that results from the interpolation with these
splines is diffeomorphic. Younes extended this method to com-
bine GIS with affine transformations in [114] while two ways to
calculate them were presented by Mills et al. [115].

Ruprecht et al. have proposed another family of RBFs, that of
multi-quadratics, that has global support [116]. Little ez al. ex-
tended this approach to cope with the presence of a rigid object
[117].

Arad et al. [118] suggested the use of Gaussian functions
to parametrize the deformation. The choice of an appropriate
Gaussian kernel allows for the control of their spatial influence.
By choosing a small size for the Gaussian kernel, their influ-
ence can be greatly restricted and thus local displacements may
be recovered. A recent example of the use of this deformation
model in brain registration can be found in [119].

Zagorchev and Goshtasby [102] investigated the use of the
normalized weighted average of sparse displacements to create
dense deformation fields. Despite the global support of the con-
trol points, the locality of the transformation can be adapted by
choosing an appropriate weighting function.

In medical image analysis, the presence of different anatom-
ical structures characterized by different properties and the sub-
sequent need to recover local deformations render the previous
models not well suited. To cope successfully with such cases,
interpolation methods where control points have spatially lim-
ited influence are appropriate.

Fornefett ef al. [120] investigated the use of Wendland func-
tions [121], [122] that exhibit the desired locality property, for
deformable registration. Other local support radial basis func-
tions include the C? smooth Wu functions [123] and the func-
tions proposed by Buhmann [124]. Rohde ef al. [125] applied
the Wu functions in image registration and derived bounds for
the basis function’s coefficients so that the Jacobian of the com-
puted transformation remains positive.

More recently, Siddiqui ef al. [126] defined a new model
based on the cosine function. Contrary to what is claimed in
the paper, the new model is not positive definite [127]. A real-
valued, continuously differentiable function is called positive
definite on a neighborhood of the origin, ifit is zero for the origin
and greater than zero for the rest of the points in the neighbor-
hood. The positive definiteness of the functions is important be-
cause it guarantees that the system of linear equations, that arises
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when estimating the coefficients of the interpolation problem,
is solvable for all possible sets of pairs of corresponding land-
marks in the two image domains, which are not colinear in 21
and coplanar in 30 [120]. Lowitzsch [128] introduced a class
of RBFs that are vector-valued analogues of the Wendland func-
tions [121], [122]. This class of RBFs provide interpolated dis-
placement fields that are divergence free.

Yang et al. [103] compared the previous locally constrained
radial basis functions by using transformations on random point
sets, artificial images and medical images.

2) Elastic Body Splines: Splines, though mainly inspired by
interpolation and approximation theory, may also be inspired by
physical models. Such is the case of Elastic Body Splines (EBS),
which were introduced by Davis et al. [129]. These splines are
solutions of the Navier-Cauchy equilibrium equation for a ho-
mogeneous isotropic elastic body subjected to forces. When
the force field that drives the registration based on the land-
mark correspondences is given as a radial symmetric function
of the distance from the landmark, one can solve the equation
analytically.

Kohlrausch et al. [130] extended the previous work by con-
sidering forces that are given as a Gaussian function of the dis-
tance from the landmark (Gaussian EBS). The size of the kernel
of the Gaussian can be used to parametrize the compactness of
the model’s support. As a result, the transformation model can
cope better with local deformations. An analytic solution for the
equilibrium equation also exists for this type of force field.

Worz and Rohr extended Gaussian EBS in [131]. Instead of
opting for an exact interpolation, an approximation strategy was
employed to account for errors in the landmark displacements.
The PDE was extended to incorporate Gaussian forces that were
weighted by the localization uncertainty. The uncertainties, de-
pending on their isotropic or anisotropic nature, were repre-
sented as either scalar weights or matrices. An analytic solution
was obtained for the extended equation.

3) Free Form Deformations: Free-form deformations
(FFDs) is one of the most common types of transformation
models in medical image registration. A rectangular grid
G = K, x K, x K, is superimposed on the image (size
Ny X Ny x N, K, € Ny, K, « Ny, K, < N,) that gets
deformed under the influence of the control points. The dense
deformation is given as a summation of tensor products of
univariate splines. FFDs were first popularized in the computer
graphics community [132], [133] but gained wide acceptance
in the medical image analysis community when coupled with
cubic-B splines [134]-[137].

The displacement field is given as

3 3
11( = Z Z Z Bl le m Ny)Bn(ﬂz)di—l-l,j+m,k+n
=0

m=0n=0
(®)

wherei = |x/N,|—1,7 = |y/Ny| -1,k = |2/N.| -1, s =
z/Ny — [2/Na]spy = y/Ny — ly/Ny| and p. = z/N. —
| 2/N. |. By represents the /th basis function of the B-spline and
d denotes displacement. This transformation model is simple
and can efficiently provide smooth deformations. Moreover, it
requires few degrees of freedom to describe local deformations.
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While in general the transformations that result from cubic
B-spline FFDs are smooth, the preservation of topology is not
guaranteed. Rueckert et al. [138] imposed the hard constraints
proven in [139] to produce diffeomorphic deformation fields.
The required condition is that the maximum displacement
should not be greater than four tenths of the grid spacing.
Preservation of topology may also be ensured through the use
of soft constraints (see Section I1I-D1).

Many extensions of FFDs have been proposed in the litera-
ture. While FFDs are usually uniform, nonuniform approaches
have been proposed. Schnabel et al. [ 140] proposed to use multi-
level B-splines. In this case, the transformation was given as a
summation of the individual transformations of each level. The
authors proposed to assign to every control point a status, either
active or passive, in order to simulate a nonuniform control point
distribution. Active control points were allowed to move, while
passive control points remained fixed. Wang and Jiang [141]
employed nonuniform rational B-splines (NURBS) to perform
medical image registration in an adaptive focus manner. Shi
et al. [142] used the multi-level B-splines model of [140] while
imposing that only a sparse subset of the control points is active.

Noblet et al. [143] presented a symmetric extension of
FFDs. The authors assumed that both images deform toward
a common domain under the influence of two isomorphic
grids. The common domain was assumed to be in an equal
distance from the source and the target. Given the parametric
nature of the transformation, this results in constraining the
displacements of the corresponding nodes in the two grids
to sum to zero. Moreover, in order to calculate the mapping
from one image domain to the other, the respective estimated
mappings toward the common domain should be invertible.
Feng et al. [144] proposed an inverse consistent method based
on FFDs. The proposed method did not require the inversion of
the deformation field. It examined how well the composition
of the two transformations mapped back to the image domain.
Sotiras and Paragios [145] used a similar model to [143]. The
two models differed in the way the invertibility of the mappings
was guaranteed, and the fact that in [145], the registration
problem was formulated as a discrete labeling one.

FFDs have been extended to tackle multiple-image registra-
tion where hard constraints are employed to define a reference
domain [146]-[149]. Moreover, the transformation model has
been extended to the spatio-temporal domain where B-splines
are also used for the temporal axis [150]-[152].

4) Basis Functions From Signal Representation: Inspired by
the mathematical tools that are available to represent and ana-
lyze signals, many researchers have used Fourier and Wavelet
analysis to model transformations. An important reason to use
them is the fact that they can naturally provide a multi-resolu-
tion decomposition of the displacement field. This is a useful
property for the coarse-to-fine schemes that are commonly ap-
plied in medical image registration to ease the computations and
handle large deformations.

Christensen and Johnson employed a Fourier-based transfor-
mation scheme in their consistent registration framework [19].
The Fourier series representation of the transformation simpli-
fies the linear elasticity constraint, thus allowing an efficient nu-
merical implementation. Ashburner and Friston [153] tackled
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nonlinear registration by employing a transformation model that
was parametrized as a linear combination of discrete cosine tu-
ransform basis functions. The separable nature of the basis func-
tions was exploited by the authors to accelerate calculations.

Fourier basis functions are well localized in the frequency
domain. On the contrary, they are not localized at all in the spa-
tial domain. Wavelet basis functions, being localized in both
domains, can model local deformations more efficiently than
Fourier basis [154].

Amit [154] presented two variational approaches for 2D
image matching. In the first case, the transformation was
parametrized with respect to the Fourier basis, while in the
second case, it was parametrized with respect to a wavelet
basis. The reported experimental results indicated that the
second method was able to capture local deformations with
more accuracy than the Fourier method. Wu et al. [155] used
a wavelet-based deformation model. The Cai-Wang wavelet
was employed to generate a multi-resolution description in
Sobolev space yielding intrinsically smooth deformations.
Based on this model, the authors were able to treat global and
local information simultaneously in a coarse-to-fine approach.
Gefen et al. [156] modeled the deformation field with a fi-
nite-supported, semi-orthogonal wavelet toward tackling the
problem of aligning rat brain histological images. In order to
ease the optimization burden, the authors exploited the natural
multi-resolution and multi-band decomposition of the wavelet
coefficients. The transformation parameters were first inferred
for low resolution levels, separately for each subband, before
proceeding to finer resolution levels.

Musse et al. [157] presented a topology-preserving multi-res-
olution approach for 2D images. The authors used nonorthog-
onal Riesz basis of polynomial splines due to their compactness.
The topology was preserved by controlling the Jacobian through
hard linear constraints. Noblet et al. extended this approach to
the 3D domain in [158] and further validated it in [159]. In the
3D case, the same multi-resolution framework was used, though
the topology could not be preserved by satisfying linear con-
straints. This was made possible by solving a constrained op-
timization problem where the Jacobian was enclosed between
two user specified bounds. Cathier [160] used the same wavelet
basis as in [155] to decompose the transformation in a multi-res-
olution fashion. An L penalty on the wavelet coefficients was
used to regularize the registration problem. This regularization
led to sparse transformations with respect to the wavelet basis
and thus facilitated their storage in memory.

5) Locally Affine Models: Locally affine models parametrize
the transformation by locally linear deformations. One may dis-
cern two different cases: 1) piecewise affine models, and 2)
poly-affine ones. In the first case, the image is mosaicked by a
set of triangles or tetrahedra whose nodes parametrize the defor-
mation. Inside each region, affine interpolation takes place. Ef-
ficiency and invertibility are the main strengths of this method,
while lack of smoothness in the region boundaries is its main
limitation. In the second case, fuzzy regions are used in order
to tackle the aforementioned drawback and produce a smooth
transformation.

a) Piecewise Affine Models: Some of the most recent ap-
proaches using a piecewise affine model include, but are not lim-
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ited to, the following. Hellier et al. [161] proposed a multi-reso-
lution and multi-grid approach. The image was partitioned adap-
tively into cubes and an affine transformation was inferred for
each one. A regularization energy term encouraged neighboring
pairs to deform similarly. In a similar fashion, Zhang et al. [162]
tackled diffusion tensor registration by taking into consideration
tensor reorientation. The images were separated into contiguous
blocks and an affine transformation was recovered for each one
of them. Regularization on the interface of regions ensured the
global smoothness of the transformation.

Pitiot et al. [163] reconstructed 30 volumes of histological
images by employing a piecewise affine transformation model.
The images were separated into independent components
through hierarchical clustering. In a subsequent step, affine
registration was performed for each pair of regions. The final
transformation was estimated by calculating the affine transfor-
mation for each region and applying a nonlinear interpolation
in between the regions. Commowick et al. presented similar
approach was presented in [164]. The main difference between
the two methods lies in the fact that a regularization step
followed to improve the smoothness in the interpolated areas.
The regularization was based on the Log-Euclidean framework
using Euclidean differences between the logarithms of the
affine transformations.

Two more recent applications of piecewise affine models
were presented in [165], [166]. Cootes et al. [165] favored the
use of piecewise affine transformations as they can be easily
inverted. Buerger et al. [166] proposed a hierarchical frame-
work to adaptively separate the images into regions. Splitting
was formulated as an energy minimization problem and three
criteria were used. The first criterion tried to group regions
with rich structural information. The second criterion grouped
regions with significant residual error in large blocks, while
the last criterion encouraged regions with similar motion to be
considered together. The second was found to perform best.

Most approaches that employ piecewise linear strategies con-
sider the affine transformations independently. As a result, sin-
gularities may occur and the transformation is not globally in-
vertible. To account for this drawback, sophisticated methods
have been introduced. Narayanan et al. proposed a transforma-
tion model that is affine at the center of a region and reduces
to identity as the distance from the center increases [167]. This
novel transformation model has a closed form and can be com-
puted efficiently. Moreover, constraints were given in the form
of bounds on the translation so that invertibility is ensured.

b) Poly-Affine Models: Arsigny et al. [168] presented a
poly-rigid/affine transformation model. the transformation is
parametrized by a set of anchor points a;, a parameter p; that
defines the importance of every point and a distance ;. Fuzzy
regions are defined by calculating the influence of an anchor
point at each position x of the image as p; * G, »,(x), Ga, o,
denotes a Gaussian function parametrized by a mean value a;
and a standard deviation ;. Given the transformation of the
set of anchor points, the global transformation at each point is
given by a distance-weighted sum of infinitesimal velocities
at the known points, integrated over time. No closed form
exists and a computationally expensive integration of ODEs
is necessary. Arsigny et al. [169] extended the poly-affine
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transformation so that its inverse is also poly-affine. Moreover,
the fusion of affine transformations was rendered invariant to
affine changes of the coordinate system.

C. Knowledge-Based Geometric Transformations

In medical image analysis, there are registration scenarios
that involve a specific well-defined task. More specifically, reg-
istration is either performed between any image and a specific
target image or involves image acquisitions of specific anatom-
ical organs. In these cases, it is possible to introduce knowledge
about the deformations one tries to recover.

Introducing knowledge regarding the deformation may be
achieved in two ways. In the case that the target domain is fixed
in registration because it exhibits desired properties (e.g., it is
manually annotated), one can learn a high dimensional statis-
tical model of deformations by performing pairwise registra-
tions between the target image and the data that one has at their
disposition. Subsequently, when a new image is to be registered
to the target image, the learned model can be used to penalize
configurations that diverge from it. The second method consists
of exploiting our knowledge about the deformability of the tis-
sues and constructing biomechanical/biophysical deformation
models that mimic their properties.

The main motivation behind creating more informed priors
is to render the registration method more robust and stable. A
registration method is characterized as robust, when its perfor-
mance does not drastically degrade for small deviations of the
input images from the nominal assumptions. In other words,
the presence of a small fraction of artifacts or outliers results
in small changes in the result. Robustness is, for example, im-
portant when encountering images of pathology (e.g., images
characterized by the presence of tumors that can be regarded
as outliers). A registration method is characterized as stable,
when small changes in the input data result in small changes
in the result. The stability of the method is, for example, im-
portant in longitudinal studies when temporal smoothness, or
stable results, can be associated to normality and differences are
attributed to temporal anatomical changes. On the other hand,
the quality of the solution is conditioned on the quality of the
learned model. Learning a high dimensional model is a chal-
lenging task that is further impeded by the limited number of
training samples.

1) Statistically-Constrained Geometric Transformations:
Statistical deformation models (SDMs) capture statistical
information about deformation fields across a population of
subjects. These methods are able to reduce the number of
degrees of freedom, and consequently the computational de-
mands of the problem, while achieving robust performance.
Nonetheless, the use of SDMs implies important assumptions.
First, one should be able to train the high dimensional statistical
model from an often limited number of subjects. Second, it is
assumed that the set of images used during the learning step is
representative of the population that will be analyzed. Hence,
a statistically-constrained registration framework is limited by
previously-observed deformations. Subsequent refinement by
conventional registration has been proposed to cope with this
limitation.
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Statistical models of variability have been applied success-
fully to many problems in medical image analysis. One of the
most prominent examples concerns statistical models of shape
variability applied to segmentation [170]. Cootes et al. [170]
studied shape variability by performing principal component
analysis (PCA) on point correspondences. Wang and Staib [35]
combined a statistical shape model over boundary points and
a physics-based regularization term in a Bayesian approach to
solve the atlas-based registration problem.

PCA has also been applied in the case of dense deformation
fields to derive priors that can be used to constrain registration.
Gee and Bajcsy [17] described a recursive way to update the
model given new observations while accounting for the limited
number of samples. Wouters et al. [171] used PCA to model
the deformation and registration was performed by adjusting
the coefficients of the principal components while maximizing
mutual information (MI).

Tang et al. [172] also used PCA to learn an SDM to accelerate
image alignment. Once the model was learned, the authors cre-
ated a set of intermediate target images by sampling along each
dimension of the estimated multidimensional Gaussian distri-
bution. The registration of a new image was performed by pro-
jecting it to the intermediate target image that is closest in in-
tensity similarity, and by refining the result with a conventional
registration method. In a similar approach, Kim et al. [173]
used support vector regression models to predict the interme-
diate target image. The regression models had learned the cor-
relations between deformations and image appearances.

Rueckert et al. [174] performed statistical analysis on the dis-
placement of the control points of the FFD grid that deforms the
image. Loeckx et al. [175] used a similar model to tackle lung
radiograph registration. The statistical model was augmented by
incorporating translation and scaling, to account for the fact that
the training set was created by manual alignment of image pairs
without prior global spatial normalization. Pszczolkowski et al.
demonstrated that the model in [174] can encode landmark po-
sition information [176].

Glocker et al. [177] also proposed a model that captures vari-
ations in the displacements of the control points of the FFD grid.
In the first place, a clustering step was performed to reveal the
co-dependencies between node displacements. Then, Gaussian
mixture models were used to represent the probability density
function (PDF) of the relative displacement of two cluster cen-
ters and thus capture information about the global nature of the
desired deformations. Similarly, PDFs were learned over the rel-
ative displacements of the cluster and its cluster members cap-
turing the local information of the desired deformations. The
learned priors were introduced as soft constraints in a discrete
Markov Random Field registration framework through the con-
sideration of appropriate pairwise interactions.

Xue et al. [178] tackled the problem of training a high dimen-
sional SDM from a limited number of samples by employing
wavelet-based decompositions and estimating the PDF of each
band by applying PCA to each one. Two SDMs were trained,
one captured variations about the deformation fields while the
second encoded information about the Jacobian determinant of
the deformation fields. The registration result was constrained
by the these models as well as a nested Markov random field
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(MRF) regularization scheme. In a subsequent work, Xue and
Shen [179] proposed the use of conventional registration to re-
fine the result of the statistically-constrained method.

Pennec et al. [23] presented a statistical framework for non-
linear registration that takes into account the means and the co-
variances of the deformation tensors by computing their Maha-
lanobis distance. Brun et al. [180] further developed this frame-
work by computing statistical priors on both the deformation
tensors and the displacement vector fields in a nonconservative
Lagrangian fluid registration algorithm. In both approaches, sta-
tistical priors were used to guide registration, instead of con-
straining it to follow the learned distribution.

Lester et al. [181] presented a modified version of the vis-
cous fluid registration algorithm that incorporated tissue infor-
mation by letting the viscosity vary according to the tissue. In
a similar context, Commowick et al. [182] proposed to intro-
duce prior knowledge regarding the stiffness of the deforma-
bility of different structures by weighting an elastic-type reg-
ularization term by a space-varying scalar or tensor field. The
computation of the scalar map of deformability was based on
the mean of the absolute value of the logarithm of the determi-
nant of the Jacobian while the stiffness tensor map was based
on the mean of the absolute value of the logarithm of the de-
formation tensor.

Yeo et al. [183] presented a conceptually complementary
approach. Instead of learning the set of admissible deforma-
tions, the weights for a weighted SSD similarity criterion were
inferred by optimizing the cross-validation error of a specific
task. One could argue that estimating these weights is implicitly
equivalent to estimating a stiffness map.

2) Geometric Transformations Inspirved by Biomechanical/
Biophysical Models: Biomechanical/Biophysical models are
also inspired by physical properties. Their difference with re-
spect to the models presented in Section II-A is that they relate
closely to anatomy and physiology. Usually, finite element
methods (FEMs) are employed to model the biomechan-
ical/biophysical properties of the tissues under consideration.

The main motivation behind using the methods of this cat-
egory is the surmise that more informed priors regarding the
biomechanical properties of the tissues will allow the reliable
estimation of complex deformation fields with the use of few
degrees of freedom. What is more, the limited search space re-
sults in improved efficiency when compared to the standard ap-
proaches. Moreover, one assumes that by creating models of
deforming organs that are consistent to their physical proper-
ties, the plausibility of the estimated deformation will improve
and registration will be able to better cope with challenges due
to the presence of outliers or large deformations. These models
are more suitable for intra-individual registration since the bio-
physical model is no longer valid in inter-individual settings.
Nonetheless, one may advocate in favor of their use in inter-in-
dividual settings on the basis that, depending on the applica-
tion, it may be meaningful to let an anatomical structure behave
realistically.

On the downside, when opting for models that aim to faith-
fully represent anatomical structures, one needs to accurately
define the material properties as well as the necessary geometry
and boundary conditions. This is a challenging procedure that is

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 7, JULY 2013

emphasized by our limited understanding of the material prop-
erties. As a consequence, the choice of the parameter values is
approximately determined, while at the same time is general and
not case-specific. The definition of the geometry requires an ac-
curate segmentation of anatomical structures as well as appro-
priately meshing the image domain. Suitable boundary condi-
tions can be specified by providing displacement constraints for
the segmented organ surfaces. Uncertainty in the specification
of these parameters may lead to undesirable bias.

a) Tumor Growth Models: Registration between normal
atlas and pathological brain images in the presence of tumors
is a problem that may profit from the existence of brain-tumor
interaction models [184]-[187]. One approach to tackle such
cases is to correct for the topological difference between the
pair of images by accounting for the tumor and its effects in
neighboring structures in the normal subject.

Kyriacou et al. [188] used a simple uniform expansion model
for the tumor. The authors simulated a tumor-free anatomy that
was subsequently used in a normal-to-normal atlas registration.
The tumor influence was taken into account in order to produce
the final deformation field. Cuadra et al. used a radial expan-
sion model of the lesion in two cases [189], [190]. In the first
case [189], the authors combined the model of lesion growth
with the Demons registration algorithm [38]. In the second case
[190], they used a variational method based on mutual informa-
tion [191]. Ganser et al. also employed a simple radial growth
model in order to perform registration between the Talairach
atlas and a subject [192]. The matching process was driven by
establishing point correspondences between segmented struc-
tures and the atlas. An RBF deformation model was used to esti-
mate the dense deformation field. Nowinski and Belov [193] re-
fined the result of a Talairach landmark registration by assuming
a radial mass-effect tumor model.

Richer models have also been considered. Clatz et al. [184]
refined the result of an affine registration between a normal
atlas and a patient’s image by using a coupled model that
predicts the anisotropic evolution of the tumor as well as its
mass-effect. Methods that combine sophisticated brain—tumor
interaction with deformable registration have been proposed in
[194]-[197]. Mohamed et al. [194] trained a statistical model
of the tumor-induced deformation based on a great number of
tumor model simulations. This model was used to estimate the
mass-effect in the atlas domain before applying deformable
registration. Zacharaki et al. [195], [196] also trained a statis-
tical model based on simulations of the tumor effect [185]. The
parameters of the learned model were inferred through opti-
mization that considered both deformation field information
and image similarity. Gooya et al. [197] addressed the registra-
tion between a normal subject and a subject with Glioblastoma
multiforme brain tumors. The tumor was modeled by [186]. An
expectation-maximization setting was used to jointly estimate
the parameters of the model and the warping.

b) Biomechanical Models of the Breast: Another field for
application of biomechanical models is breast imaging. Biome-
chanical modeling is important in tackling large deformations
which are typical in breast imaging applications such as image-
guided interventions [198], cancer diagnosis [199] and surgical
planning [200]. The ability of FEMs to realistically simulate
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breast deformations has led to their use for the validation of reg-
istration methods [201]-[203].

There are two main causes of breast deformation, gravity
and plate compression. When patients are imaged under dif-
ferent positions (typically prone-supine), the breast is deformed
greatly under the influence of gravity. FEMs have been used
either to register the images [200], [204] or to provide a more
appropriate initialization for standard intensity-based nonrigid
registration methods [205]-[207].

The breast is typically compressed in mammography under
the pressure of two plates in order to flatten and spread the tissue.
As a consequence, alignment between 2D mammograms and
images from other, (typically 3D), modalities is a challenging
problem. FEMs have been used to tackle this problem [198],
[208]-[212]. While these methods aim to align different im-
ages, they do not opt to optimize an image-similarity criterion.
Instead, alignment is determined by the modeling assumptions
and boundary conditions. Image driven approaches have been
proposed toward estimating subject-specific tissue properties
[213]-[215].

¢) Biomechanical Models of the Prostate: Biomechanical
models have also been used to model the prostate and its sur-
rounding organs with applications in preoperative-intraopera-
tive image registration problems [216] and treatment planning
[217]. Mohamed et al. [218] and Hu et al. used a biomechanical
model of the prostate to simulate training data to learn a statis-
tical model that was subsequently used to constrain the registra-
tion. Alterovitz et al. [219] presented a 2D biomechanical model
whose material properties and external forces were optimized
by maximizing the overlap between the segmented prostate in
both images. Crouch et al. [220] used medial shape models to
facilitate meshing and boundary condition calculation.

d) Miscellaneous: Biomechanical models span a great
range of applications. Detailing them all here is both out
of scope and impossible. Nonetheless, let us note that they
have been applied in the estimation of: cardiac movement
[221]-[226], brain shift during surgical operations [227] and
lung movement [228], [229].

D. Task-Specific Constraints

According to Hadamard’s definition of well-posed problems
[11], unregularized optimization of similarity measures for
high-dimensional deformable transformation models is, in gen-
eral, an ill-posed problem. In order to cope with the difficulty
associated with the ill-posedness of the problem, regularization
is necessary. Moreover, regularization allows us to introduce
any prior knowledge we may have regarding the physical
properties of the underlying anatomical structure and helps
optimization avoid local minima.

There are two possible ways to regularize the problem: im-
plicitly and explicitly. Implicit regularization may be achieved
by parameterizing the deformation field with smooth functions.
Explicit regularization may be achieved through the use of ei-
ther hard constraints or soft constraints. Hard constraints are the
constraints that the solution must satisfy in order for the regis-
tration to be successful. Soft constraints are introduced as ad-
ditional terms in the energy function that penalize nonregular
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configurations. Soft constraints encode our preference regarding
specific configurations, but deviations from the preferred con-
figurations are allowed if driven by the other term(s) of the en-
ergy function. Physics-based deformation models are typical ex-
amples of explicit regularization. Moreover, explicit regulariza-
tion may be used to achieve specific goals that are tailored to the
problem at hand. Such goals include (see Fig. 1): 1) topology
preservation, 2) volume preservation, and 3) rigidity constraints.
Task-specific constraints can be, and often are, used in conjunc-
tion with physics-based models (Section II-A) and interpola-
tion-based models (Section II-B).

1) Topology Preservation: One of the most important prop-
erties that a registration algorithm should exhibit is the preser-
vation of topology. The preservation of topology is equivalent
to the invertibility of the deformation field. The Jacobian of the
deformation field is very informative regarding the local prop-
erties of the deformation field. In order to avoid singularities in
the deformation field, Christensen ez al. [30] proposed to track
the values of the Jacobian. When its value dropped below a
threshold, an intermediate deformed image was created and the
registration process was reinitialized.

Another way to enforce the preservation of topology is
through the use of constraints, i.e., by including in the objec-
tive function an appropriate term that acts upon the Jacobian.
Christensen and Johnson [19] added to the objective function
a term that penalizes small and large Jacobian values for both
the forward and backward transformation. Similarly, Rueckert
et al. [138] introduced a term in the objective function that
penalizes values of the Jacobian determinant that are close to
Zero.

A different strategy is to formulate registration as a inequality
constraint optimization problem. Musse et al. derived linear in-
equality constraints so that the topology is preserved [157]. The
optimization was solved by employing a fast method that bears
a resemblance to sequential linear programming. Noblet et al.
extended the previous framework in the 3D case [158]. The au-
thors optimized the energy under the constraint that the Jacobian
will stay between user specified bounds. Interval analysis tech-
niques were used in order to solve the optimization problem.
Haber and Modersitzki [230] also used inequality constraints.
They used a variant of a log-barrier method to solve the op-
timization problem. Instead of solving the initial constrained
problem, a sequence of unconstrained ones was employed. The
weight for the barrier terms increased gradually for each uncon-
strained problem that was optimized by applying a variant of
the Gauss-Newton’s method.

Sdika [137] also proposed a constrained optimization frame-
work to ensure that the transformation is invertible. Two con-
straints were investigated for the case of a transformation model
parametrized by cubic B-splines. The first constrained the Jaco-
bian of every pixel to be greater than a threshold. This constraint
did not control the value of the Jacobian between the voxels. To
account for that, the author proposed a second constraint that
relates the Jacobian with its derivative. In that way, the Jaco-
bian was restricted to be within a range of values. Moreover,
its derivatives were constrained to be close to zero when ap-
proaching values close to the bounds. Chun and Fessler devised
a simpler penalty for the case of B-splines [231]. The penalty
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takes into account the difference between two adjacent nodes
and is memory efficient.

2) Volume Preservation: In many applications, volume
preservation is also important. Such a constraint is of particular
interest when we know that the imaged anatomical structure is
not compressible and that all changes are due to either motion
or intensity changes provoked by the action of a contrast agent.
A simple example is a rigid part of the body such as a bone
structure. More complicated cases include deformable struc-
tures that preserve their volume such as breast, myocardium
and liver.

Tanner et al. [232] proposed a sequential approach for
volume preserving deformable registration using an FFD
model. First, a standard registration was performed. Based
on its result, the areas whose volume should be preserved
were identified. Then, the control points of the FFD that
influenced these areas were grouped and restricted to move
by a constant displacement that is equal to the mean value
of their displacements during the initial registration step.
Finally, the registration was solved again for the rest of the
variables. Greene et al. also presented a sequential approach for
image-guided adaptive radiotherapy using an FFD model [233].
First, the organs of interest and the bones were segmented and
independently registered. Then, a constrained framework was
used to estimate the FFD transformation that maps from one
image to another. The displacements of the control points that
influence the segmented objects were constrained to be close
to the displacements that were calculated during the individual
object registrations.

Rohlfing et al. employed a volume preserving strategy to reg-
ister contrast-enhanced MR breast images [234]. The objective
function comprised an image matching term and a term that
penalized volume changes. The penalty integrated the absolute
logarithm of the Jacobian determinant and was zero only when
local volume was preserved. Haber and Modersitzki [235] pre-
sented a constrained optimization approach for volume preser-
vation. The proposed energy function, consisting of a matching
and regularization term, was minimized under the constraint that
the determinant of the transformation is equal to one (det(I +
Vu) —1=0).

The myocardium is known to be a nearly incompressible
material. Therefore, applications involving the deformation of
the myocardium may profit from including an incompressibility
constraint. Bistoquet et al. [236] approximated the previous
constraint with V - u = 0. This constraint was enforced by the
use of divergence-free radial basis functions as deformation
model [128]. In addition, a hard constraint was introduced
in the objective function to penalize deviations from incom-
pressibility. Dauguet et al. [237] constrained the determinant
of the Jacobian to be close to one in a predefined region
by using Lagrange multipliers. Mansi et al. took a different
approach in [50]. They constrained the velocity field v to be
divergence-free. This method was based on the fact that the
integration over time of divergence-free velocities results in
incompressible deformations.

3) Rigidity Constraints: The presence of rigid anatomical
structures in medical images motivates the incorporation of
rigidity constraints in image registration. Loeckx et al. [238]
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locally constrained a nonrigid FFD registration method by
penalizing deviations of the Jacobian from orthogonality.
Staring et al. [239] imposed rigidity by introducing three con-
ditions. The first condition required the second derivatives of
the transformation to be zero. The second condition forced the
orthonormality of the rotation matrix, while the third condition
required the determinant of the Jacobian to be equal to one.
Modersitzki [240] has also investigated local rigidity in a
variational setting. Modersitzki introduced a third term in an
objective function comprising a matching and a regularization
term. The additional term controlled the rigidity of the trans-
formation by forcing its Jacobian to be linear, orthogonal and
orientation preserving.

III. MATCHING CRITERIA

We can distinguish three groups of registration methods ac-
cording to how they exploit the available information to drive
the matching process (see Fig. 2).

On one hand, geometric methods opt for the establishment
of correspondences between landmarks. The landmarks are as-
sumed to be placed in salient image locations which are consid-
ered to correspond to meaningful anatomical locations. The un-
derlying assumption is that saliency in the image level is equiv-
alent to anatomical regions of interest. Geometric registration
is robust with respect to the initial conditions and the existence
of large deformations. The solution of the registration problem
is obtained in a relatively straightforward way once landmarks
have been extracted. However, locating reliable landmarks is
an open problem and an active topic of research. Most impor-
tantly, the sparse set of directly obtained correspondences gives
rise to the need for extrapolation. Interpolation results in a de-
crease in accuracy as the distance from the landmarks increases.
The interest regarding geometric methods has decreased during
the past decade. Nevertheless, geometric methods constitute a
reliable approach for specific applications. They are of interest
when intensity information is undermined due to the presence
of pathologies while geometric structures remain stable (e.g.,
retina registration [241]). Geometric registration has also im-
portant applications in image-guided interventions [242], [243].

On the other hand, iconic methods, often referred to as ei-
ther voxel-based or intensity-based methods, quantify the align-
ment of the images by evaluating an intensity-based criterion
over the whole image domain. When compared to the geometric
methods, this approach has the potential to better quantify and
represent the accuracy of the estimated dense deformation field.
Nonetheless, it comes at the cost of increased computational ex-
pense. Where geometric methods use a small subset of image
voxels to evaluate the matching criterion, iconic methods may
use them all. Moreover, due to the fact that salient points are not
explicitly taken into account by the matching criterion, the im-
portant information they contain is not fully exploited to drive
the registration. In addition, initial conditions greatly influence
the quality of the obtained result due to the nonconvexity of the
problem.

Hybrid methods combine both types of information in an ef-
fort to get the best of both worlds.
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Fig. 2. Classification of matching criteria.

A. Geometric Methods

Geometric methods aim to register two images by minimizing
a criterion that takes into account landmark information. Be-
fore describing any methods, let us introduce the known and
unknown variables of the problem.

The known variables consist of two sets of landmarks (K =
{K1s skt and A = {Aq, ..., Ay }). These sets of landmarks
can be created using a key-point detector strategy. The first set
of landmarks contains points belonging to the source domain
25, while the second contains points that belong to the target
one Q7. The set of unknown variables comprises: 1) the corre-
spondence, and 2) the transformation.

Three classes of methods can be separated based on which un-
known variable is estimated [244] (see also Fig. 2): 1) methods
that infer only the correspondence, 2) methods that infer only
the spatial transformation, and 3) methods that infer both vari-
ables. Let us emphasize that these are not the different com-
ponents of geometric methods. Indeed, methods that infer only
the correspondence can be used in conjunction with an interpo-
lation to establish dense correspondences between two images.
Nonetheless, these are different methods that exploit geometric
information in order to solve distinct problems.

In the remainder of this section, we are going to first give
a brief presentation of strategies for detecting point of inter-
ests. Then, we are going to continue with the presentation of
methods based on the previous classification. In this section, we
interchangeably use the terms landmarks, points of interest and
key-points.

1) Detecting Points of Interest: The first step in geometric
registration is to detect points of interest. Images that contain

Additional information used as constraint

sufficient details facilitate point detection. Medical images are
not as rich in details as natural images [4]. That is why, point
detection has mainly drawn the interest of the computer vision
community. Landmark extraction has been studied more in the
case of 2D images and less in the case of 3D images. Before
continuing, let us refer the interested reader to a recent book by
Goshtasby [10] where point-detectors and descriptors are more
extensively studied.

The detection and the matching of points of interest are in-
herently coupled with the way the landmarks are described. The
richness of the description is important in order to detect salient
points and better disambiguate between close potential candi-
dates during matching. Moreover, as the imaged objects un-
dergo deformations, the appearance of the points of interest will
vary between images. Therefore, descriptors should be invariant
to such changes in order to allow robust detection and matching
under deformations.

A detailed overview of the point detectors that have been
proposed in the computer vision literature is out of the scope
of this review. Nonetheless, let us give a brief description of
some important key-point detector methods. Harris et al. pro-
posed to identify corners by exploiting the information con-
veyed by the structure tensor A [245]. Specifically, points of
interest are determined by considering the following quantity:
det(A) — oTr(A)2. In similar lines, Shi and Tomasi [246] pro-
posed to use the minimal eigenvalue of the structure tensor in
order to track points of interest.

Many extensions to the Harris detector have been proposed
in the literature. Their main aim was to impose a certain
invariance. One may cite the approach proposed by Triggs
[247] and affine-invariant Harris and Hessian [248]. Affine
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invariance is important as it enables the detection of points
under affine transformations and a lot of efforts have been
concentrated in defining such detectors. An evaluation study
comparing the most important affine invariant detectors was
presented by Mikolajczyk et al. [249]. For review of point
detection methods, the interested reader is referred to the works
of Schmid et al. [250] and Triggs [247]. Evaluation studies of
point and corner detectors have been performed by Schmid et
al. [250] and Mokhtarian and Mohanna [251].

An alternative way to determine point of interests is by per-
forming scale-space analysis and detecting blob-like regions.
The use of the Laplacian of Gaussian has been investigated to
perform this task. The image is convolved with different scales
of a Gaussian kernel and at each level the Laplacian operator
is applied. Lindeberg proposed to track across scales the local
maxima/minima of the response of the Laplacian operator in
order to detect key-points [252]. Kadir and Brady [253] pro-
posed a multiscale approach for the detection of salient regions.
The algorithm was based on the use of local entropy to quan-
tify saliency. Matas et al. proposed a technique for blob detec-
tion [254]. A multiscale representation of image regions was
created by thresholding for different values in the intensity do-
main. These regions were tracked and selected based on their
area’s stability to change of the threshold value.

Lowe [255] proposed to use the Difference of Gaussians, that
is an approximation of the Laplacian, to create a scale-space
representation. Feature points were detected by extracting the
local minima/maxima of the this scale-space representation. The
local Hessian information was used to reject spurious points.
Lowe’s scale invariant feature transform (SIFT) algorithm to
describe key-points was based on the gradient information at
the scale a point of interest was detected. For every pixel in a
neighborhood of the key-point the gradient magnitude was com-
puted. Its value was weighted depending on its distance from the
key-point. From these values, gradient orientation histograms
were computed and normalized to account for photometric vari-
ations. Many variants of SIFT have been proposed.

Ke and Sukthankar proposed PCA-SIFT [256] where the
gradient image of the local patch is projected to lower di-
mensional space constructed by principal component analysis
(PCA). Mikolajczyk and Schmid proposed the use of gradient
location and orientation histogram (GLOH) [257]. The authors
proposed to use a log-polar pattern for the spatial sampling and
PCA to decrease the dimensionality of the descriptor. Bay et al.
[258] proposed the speeded-up robust features (SURF) that are
based on the application of the Haar wavelet in the region of
the point of the interest. Morel and Guoshen proposed an affine
invariant version of SIFT [259]. Invariance was introduced by
simulating the latitude and longitude angles.

For a comparison between the original SIFT and its variants
see [260]. For a comparison of the performance of different fea-
ture descriptors, the interested reader is referred to [257], [261].

The development of such generic approaches to extract
points of interest is less investigated in medical image anal-
ysis. Nonetheless, a number of extensions of SIFT in higher
dimensions have been proposed. Cheung and Hamarneh ex-
tended SIFT in the nD domain [262] and reported results for
the 3D and 4D case. Ni ef al. also presented an extension
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of SIFT to the 3D image domain [263]. These approaches
ignored the tilt-orientation information. Allaire et al. [264]
proposed another extension of SIFT in the 30 domain that is
fully orientation invariant. The authors proposed to create an
additional histogram to determine the tilt angle. Flitton et al.
[265] proposed the use of a tilt histogram for the full definition
of the 3D orientation when extending SIFT in the 310 domain.

Cheung and Hamarneh [262] validated their extension of
SIFT by matching landmarks between 312 MR images and
3D + t CT images. Ni et al. used 3D SIFT to 3D ultrasound
volume stitching toward panorama creation [263]. Allaire et al.
used 3D SIFT to register planning CT data to cone bean CT
data [264]. Niemeijer et al. used matched SIFT points in order
to tackle rigid registration between optical coherence tomog-
raphy (OCT) images [266]. Han extended the SURF descriptor
[258] to 3D and used it in a hybrid registration framework
[267]. Yang et al. used salient the scale invariant features [253]
to tackle geometric registration that infers both the correspon-
dence and the spatial transformation [268]. Toews and Wells
used 3D scale invariant features for rigid model-to-image
registration [269]. We are going to discuss in more detail these
methods in the section that is more related to each one of them.

To the best of our knowledge, feature detection in medical
image analysis is performed in a task specific manner, usually as
product of a segmentation preprocessing step. Pennec et al. ex-
tracted points and lines in surfaces through the use of differential
geometry for rigid brain registration [270]. In brain image reg-
istration, sulci information has been used in [89], [271]-[273].
The cortical surface information has also served as feature in
[273]1-[275].

Retina image registration is another application where ex-
tracting geometric cues has been investigated. The intensities
in the nonvascular part of the image are homogeneous, while
important information is conveyed by the vasculature. Can et
al. used the branching and crossover points of the blood vessel
structure as feature points [276]. Stewart et al. additionally used
the centerlines of the segmented vasculature [241]. For each
centerline point, its location, tangent direction and width were
retained. Vascular structures are also important in brain sift cor-
rection [277], pulmonary CT images [278] and liver registration
[279]. That is why a number of task-tailored detectors have been
devised [280]-[283].

Lastly, fiducial markers are also used to guide image registra-
tion. Some resent studies regarding the errors in the process are
given in [284]-[286].

2) Methods That Infer Only the Correspondences: Methods
that belong to this class aim to solve only the correspondence
problem. In other words, these methods aim to assign every
point ; € K to its corresponding point A; € A. Establishing
solely correspondences can be useful when they are used in
combination with an interpolation-based transformation model
to estimate dense displacements between the two images. Hy-
brid registration (see Section III-C) is another case where such
methods are of interest. One uses the sparse geometric corre-
spondences along with an iconic criterion to improve the esti-
mation of the spatial transformation.

Having established a discriminative and ideally deformation
invariant description of the key-points, correspondences may be
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established either by 1) relying solely on the closeness of the
descriptions, or 2) by incorporating structural constraints. For a
different classification as well as the presentation of some earlier
works in the field, the interested reader is referred to [244].

a) Matching by Descriptor Distance. In the first case, the
information contained by the descriptor is used to determine
the correspondences. There is an implicit assumption that the
descriptors are constructed so that the use of the Euclidean dis-
tance is sufficient to rank potential matches. This construction
can be achieved by appropriate rescaling of the feature vector
values. Based on an established ranking, different matching
strategies may be considered.

The simplest strategy is thresholding; points that exhibit a
similarity higher than a threshold are matched. The definition
of the threshold can be achieved by studying the receiver
operating characteristic (ROC) curve. A different strategy is to
assign each point to its closest candidate. Closeness is defined
based on the Euclidean distance in the descriptor space. As
the probability of detecting a false positive is significant, a
threshold is still needed to control it. The third strategy is
to take into account the ratio between the distance with the
nearest and the second nearest neighbor in the feature space.
For an evaluation of these strategies, the interested reader is
referred to [257]. A fourth strategy consists of verifying the
uniqueness of the matching by evaluating the third criterion in
both the forward and backward direction [262], [266], [267].
A point a is matched to b if and only if « is the best match for
b, and b is the best match for a.

While being intuitive and efficient, these matching ap-
proaches discard any information regarding the spatial location
of the key-points in the image. The incorporation of such
knowledge aims to better constrain the matching problem and
further reduce the number of erroneous correspondences.

b) Matching Through Geometric Constraints: A popular
way to introduce structural constraints is by formulating the
problem as graph matching. Leordeanu and Hebert [287]
proposed a spectral technique to solve the matching problem.
Pairwise constraints were used to preserve pairwise geometry.
Berg et al. [288] formulated the problem of recovering feature
correspondences as an integer quadratic programming problem.
Changes in the length and the direction of vectors defined by
pairs of features were penalized. Torresani et al. also employed
pairwise constraints to model local spatial coherence [289].
Moreover, the authors showed that is possible to handle outliers
during the optimization.

Despite the success pairwise constraints have had in many
applications, they are limited with respect to the relations
they can model. Recently, a number of researchers have
tried to tackle the graph matching problem with higher order
constraints. Duchenne et al. [290] generalized the spectral
matching method [287] to higher order constraints. A tensor
power iteration method was employed to solve the matching
problem. Zass and Shashua in [291] proposed a similar formu-
lation, while using a different optimization method. Wang et al.
[292] proposed a higher-order graph matching formulation that
incorporates learned structural constraints in a segmentation
framework. The inference was performed by a dual decompo-
sition based method [293].
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3) Methods That Infer Only the Spatial Transformation: The
aim of these methods is to estimate the spatial transformation
that, when applied, will align the two sets of landmarks K and
A. These methods do not aim to explicitly establish correspon-
dences between the two landmark sets. The output of the algo-
rithm is the spatial transformation that relates the two point sets
and not an explicit assignment of the every point x; € K toa
point A; € A.

Two different classes of methods can be distinguished ac-
cording to whether the correspondences are known or not.
The case of known correspondences is briefly presented for
completeness reasons. We focus more on the case of unknown
correspondences because it is more challenging and there is a
number of recent algorithms that have been proposed to tackle
the problem.

a) Known Correspondences: Two categories of methods
should be considered (see Fig. 2). The first one assumes that
the correspondences are known in an exact or inexact way. This
problem is known as exact or inexact landmark matching. In the
exact case, a smooth transformation is sought so that the cor-
respondences are respected exactly or a regularization energy
is optimized under correspondence constraints. In the inexact
case, a compromise between matching and smoothing the de-
formation is preferred.

Procrustes analysis is a popular method for shape analysis and
is useful when homologies between point-sets are given [165],
[294]-[296]. In Procrustes analysis, a least-squares distance is
minimized. Given the correspondences, a solution that consists
of translating, rotating and scaling can be analytically calculated
[295].

Given the correspondences, one may estimate nonrigid trans-
formations by adopting an interpolation strategy (Section II-B).
Radial basis functions are able to produce dense deformation
fields for any spatial distribution of points. Moreover, approxi-
mating splines are able to account for the uncertainty in the esti-
mated correspondences [110], [131]. Guo ef al. has presented a
solution for both the exact and inexact landmark matching prob-
lems for the case of diffeomorphic deformations [297]. Glaunes
et al. have extended this method to the case where the domain
is a sphere [82].

b) Unknown Correspondences: The second subclass opts
to estimate the transformation without concerning itself with the
establishment of correspondences. These methods are more ro-
bust to missing correspondences and outliers. One may distin-
guish two different subclasses depending on the nature of the
transformation that is estimated. The methods that belong in the
first category estimate a global linear transformation, while the
methods in the second category estimate a nonrigid transforma-
tion. For the description of some of the methods that belong
to the first class, we refer the reader to [244]. Because the aim
of this review is to describe the recent advances in deformable
registration, we are going to focus here on the second class of
methods.

The estimation of nonrigid transformations was achieved
through the use of alternative representations of the geometric
information. One possibility is to represent the point sets as
probability distributions. In this case, the nonrigid transforma-
tion is estimated by minimizing a distance measure between
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the two distributions. Glaunes et al. [84] extended the large dif-
feomorphic deformation framework in the case of distributions
and unlabeled point sets. Point sets were modeled as a weighted
sum of Dirac measures and a kernel-based error measure was
used. Tsin and Kanade [298] proposed to register point sets
based on a measure called kernel correlation. The proposed
measure is proportional to the correlation of two kernel density
estimates. Singh et al. presented a similar approach based on
kernel density correlation [299].

Gaussian mixture models (GMMs) are a common way to
model distributions. Jian et al. [300] modeled each point set
using GMMs and used a Lo distance to compare them. My-
ronenko and Song [301] recast registration as a probability
density estimation problem. The points of the first set were
considered as the centroids of the GMMs which were fitted to
the data (or points of the second set) by likelihood maximiza-
tion. Special care was taken so that the centroids move in a
coherent way. Roy et al. [302] modeled each feature of each
shape as GMM. A mixture model was used to represent the
shape by assuming that features are independent and identically
distributed. A closed-form distance between the two distribu-
tions was used. Wang et al. used a similar model to tackle the
problem of the simultaneous registration of multiple point sets
[303]. Jensen-Shannon divergence was used as the similarity
metric. The drawback of this approach was that the problem
could not be solved in closed-form. Instead, a computationally
and memory demanding estimation based on the law of large
numbers was required. In a subsequent work, Wang et al.
[304] alleviated this shortcoming by using the generalized
Ls-divergence that allows for a closed-form solution. Tustison
et al. also used a GMM with the difference that the Gaussians
were not isotropic [305]. The Havrda—Charvat—Tsallis (HCT)
divergence was used to compare the two distributions.

Another way to perform nonrigid registration of shapes
and points without caring to establish correspondences is by
adopting a representation of the geometric information based
on the use of signed distance functions. In this case, the geo-
metric primitives (e.g., landmarks or shapes) are assigned to
zero distance, while the rest of the image elements are assigned
a signed value based on their euclidean distance from the
geometric primitives. Based on this representation, the optimal
transformation can be estimated by performing standard inten-
sity-based registration.

Paragios et al. embedded shapes to the higher dimensional
space defined by the signed distance transform and register them
by evaluating the sum of squared differences criterion over a
narrow band around the shapes [306]. Huang et al. used the
same shape representation and investigated the use of Mutual
Information to globally align them [307]. The sum of squared
differences was used to nonrigidly register the shapes. Savinaud
et al. represented both silhouettes and landmarks using the Eu-
clidean distance transform [308]. Leow et al. used implicit rep-
resentation to tackle brain warping [83], [85]. Leow et al. for-
mulated the energy minimization problem as a curve evolution
problem motivated by the geodesic active contours [309].

4) Methods That Infer Both the Correspondences and the
Transformation: The last class of methods aims to estimate the
correspondences and the transformation at the same time. This
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is usually performed in an iterative way. First, one component
is estimated, and then the other component is refined based on
this estimation.

One of the most well-known approaches is the iterative
closest point (ICP) method proposed by Besl and McKay
[310]. Simplicity and speed are the main characteristics of this
method. Correspondences are defined based on a closest (in a
geometric sense) neighbor principle. Based on this estimation,
the transformation is calculated. Then, a new closest neighbor
is assigned to each key-point and the process continues until
convergence. ICP has drawn a lot of attention and a number of
researchers have tried to improve the method over the years.
Rusinkiewicz and Levoy reviewed different variants of ICP
[311]. Liu has reported an overview of the improvements over
ICP [312]. Pottmann et al. presented a study of the convergence
properties of the ICP algorithm [313].

Penney et al. [314] proposed to add Gaussian noise to the
positions of the points in one set before each iteration of the
original ICP. The magnitude of the noise was decreased as the
process advanced. The motivation behind this strategy was to
improve the precision and robustness of the algorithm. Granger
and Pennec [315] proposed an approach named multi-scale
EM-ICP. The method is similar to standard ICP with a Maha-
lanobis distance. The principal difference lies in the estimation
of the transformation step where multiple matches weighted by
Gaussian weights were considered. The problem was solved in
an expectation-maximization fashion. Sharp et al. [316] inves-
tigated the use of shape features in addition to the positional
information when estimating the correspondences.

Stewart et al. [241] proposed a dual-bootstrap ICP method to
register retinal images. The method operated initially on small
regions where accurate correspondences could be obtained.
Based on these correspondences low order transformations
were estimated. In the subsequent steps, the size of the regions
as well as the order of the transformation model were refined.
The region refinement was based on the uncertainty of the
transformation. Liu [312] used collinearity and closeness con-
straints in order to increase the robustness and accuracy of the
algorithm for free form deformation. Estepar et al. [317] al-
lowed for anisotropic noise in both target and source point sets
in order to render the algorithm more robust. The problem was
cast in the form of a Generalized Total Least Square problem.
Maier-Hein et al. [318] recently proposed a related work that
accounts for localization error.

Let us note that ICP method, as well as its variants presented
here, estimate a global linear transformation. An important
extension to nonrigid scenarios was proposed by Chui et al.
[244]. The proposed thin-plate spline robust point matching
(TPS-RPM) algorithm iterates between estimating the cor-
respondence with the softassign method and computing the
transformation with a TPS model. Chui et al. [273] further
refined the latter approach by iteratively solving a clustering
and matching problem.

B. Iconic Methods

In iconic methods, the matching term integrates the evalua-
tion of a dissimilarity criterion that takes into account the inten-
sity information of the image elements. Devising an appropriate
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criterion is an important and difficult task. The criterion should
be able to account for the different physical principles behind
the acquisition of the two images and thus for the intensity re-
lation between them. Moreover, the properties of the similarity
function (e.g., its convexity) may influence the difficulty of the
inference and thus the quality of the obtained result.

An ideal dissimilarity criterion would take low values
when points belonging to the same tissue class are examined
and high values when points from different tissue classes are
compared. Moreover, an ideal criterion should be convex,
allowing for accurate inference. There is an important balance
that should be struck between the convexity and ability to
distinguish between points belonging to different tissues.
On the one hand, convexifying the objective function will
facilitate the solution of the problem. On the other hand, it
may lead to a less realistic problem because the problem is
nonconvex in its nature.

At this point, two cases should be distinguished regarding
the iconic methods (see also Fig. 2): 1) the mono-modal case,
involving images from one modality, and 2) the multi-modal
one, involving images from multiple modalities.

1) Mono-Modal Registration: In the mono-modal case, the
same imaging device is used to capture the same type of infor-
mation for both volumes.

a) Intensity-Based Methods: Different matching criteria
can be devised depending on the assumptions about the inten-
sity relationship between the images. In the case that the same
anatomical structures are assumed to correspond to similar in-
tensity values, the sum of squared or absolute differences (SSD
and SAD, respectively) can be used as a matching criterion. The
choice between the two depends on the assumption regarding
the noise that corrupts the image intensities. In the case that a
linear relation is assumed between the signal intensities, the op-
timal criterion is cross correlation (CCor) and correlation coef-
ficient (CCoef) [1], [78], [319].

b) Attribute-Based Methods: Intensity information may
lead to ambiguous matching and local minima in the objec-
tive function when pixels of the same anatomical structure take
similar intensity values [119]. A number of researchers have
proposed to increase the dimensionality of the feature space in
order to cope with this shortcoming. A way to augment the fea-
ture space is by introducing local information through the use
of attributes that represent the geometric structure of the under-
lying anatomy. These approaches are referred to as feature- or
attribute-based ones. These approaches focus on a different way
to represent image information, while they use standard simi-
larity measures.

Shen and Davatzikos [119] proposed the use of an attribute
vector including geometric moment invariants in an attempt to
capture local anatomical information at different spatial scales.
The motivation was that a rich enough attribute vector would be
able to differentiate voxels that would be considered the same
based only on their intensity information. Thus, fewer local
minima would be present and better accuracy may be achieved.
To further reduce the effect of the local minima, they proposed a
hierarchical scheme that successively approximated the objec-
tive function by progressively increasing the number of voxels
where the matching criterion was evaluated.
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The previous method requires a presegmentation step in order
to introduce local spatial information. Xue et al. proposed the
use of Daubechies wavelets to populate the attribute vector in
order to remove the requirement for segmentation [320]. The
attribute vector was constructed in a multiscale fashion to be
translation and rotation invariant. Shen proposed to tackle the
above shortcoming by using local histograms and boundary in-
formation as attributes [321]. Wu et al. [322] proposed to use
a learning approach in two ways. First, the authors proposed to
learn the optimal scale for the geometric features for each voxel.
Second, they proposed to learn which voxels should be used to
drive the registration process. They proposed to take into ac-
count the saliency and the consistency of the description of the
voxels across the training data.

Local information may also be incorporated by exploiting the
local frequency representations obtained as response to Gabor
filters [323], [324]. Gabor features have proven successful for
both mono-modal and multi-modal image registration as they
are able to capture information across different scales and ori-
entations. Ou et al. [323] optimized the Gabor features to be
more distinctive and employed the notion of mutual saliency to
let the most reliable points drive the registration process. How-
ever, Liao and Chung [325] argued that frequency spectra of
MRI brain images often exhibit non-Gaussian behavior and thus
the choice of Gabor filters is not optimal. They proposed the
use of symmetric alpha stable filters and showed experimentally
that they outperform Gabor features in nonrigid MRI brain reg-
istration. Liao and Chung proposed a new feature for nonrigid
registration in [326]. The feature is a uniform spherical region
descriptor and is invariant with respect to rotation as well as
monotonic gray-level transformation. Thus, it is able to account
for the presence of a bias field. Myronenko and Song proposed
to use residual complexity (RC) to account for complex spa-
tially-varying intensity distortions [327]. This method attempts
to register two images by minimizing the number of basis func-
tions that are required to code the residual image.

2) Multi-Modal Registration: Multi-modal registration is
more challenging as the choice of an appropriate matching
criterion is a harder task. Two main approaches have been
proposed to solve the problem (see also Fig. 2): 1) use of infor-
mation theoretic measures, and 2) reduction of the multi-modal
problem to a mono-modal problem. The latter can be achieved
by either 1) simulating one modality from another, or 2) map-
ping both modalities to a common domain. Here, we are going
to focus primarily on information theoretic approaches as they
constitute the most frequently used way to tackle the challenges
posed by multi-modal registration. Reduction techniques will
also be briefly discussed.

a) Information Theoretic Approaches: Information theo-
retic approaches were popularized by two different groups, one
in US [328], [329], and one in Belgium [330], [331]. Both teams
investigated the use of mutual information (MI) in multi-modal
image registration. The difference between their approaches is
the way entropy is estimated. Wells et al. [328] and Viola and
Wells [329] used a nonparametric estimator. Collignon ef al.
[330] and Maes et al. [331] used histograms instead. An im-
portant property of MI is its generality. MI does not assume
any relationship between the image intensities. For a survey on
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MI-based registration methods, the interested reader is referred
to the review by Pluim et al. [332].

The widespread use and study of MI has revealed some of
its shortcomings. Primarily, it is not overlap invariant. Thus, in
certain cases it may be possible for mutual information to be
maximized when the images get misaligned. Studholme et al.
proposed a Normalized version of mutual information (NMI) in
order to remedy this shortcoming [333]. Recently, Cahill et al.
elaborated upon the idea of overlap invariance and showed that
neither NMI, MI, CR, CCor, nor CCoef are invariant to changes
of overlap and proposed appropriate invariant versions of the
previous similarity measures in [334].

The success of MI paved the way for the introduction of an
important number of statistical criteria in image registration.
Roche et al. [335] argued that the generality of mutual infor-
mation can be a drawback when a reasonable hypothesis can be
made regarding the relationship between the intensities. They
proposed to use the correlation ratio (CR) as the appropriate
similarity measure when the assumption of functional depen-
dence between the image intensities is valid.

Pluim et al. [336] compared the performance of a number of
f-information measures (including MI) in medical image reg-
istration. In the context of registration, f-measures quantify the
difference between the joint distribution of the intensities and
the joint distribution that would arise if images were indepen-
dent. The most important finding of the study was that there are
f-measures that were able to perform better than MI at the cost
of more difficult inference.

The idea to use divergence measures to compare joint
intensity distributions has attracted significant attention
and different divergence measures have been proposed for
multi-modal image registration. Chung et al. [337] and Guetter
et al. [338] used Kullback-Leibler divergence (KLD) to reg-
ister multi-modal images. The joint intensity distribution was
either learned from aligned pairs of images or by segmenting
corresponding anatomical structures. Images got aligned by
minimizing the divergence between the observed and estimated
distributions. Liao et al. used Jensen-Shannon divergence (JSD)
to compare learned distributions in [339]. JSD is symmetric,
bounded and true metric.

Another family of information theoretic approaches is built
upon Renyi Entropy (RE) [340]. Let p be a random variable
with 7 possible outcomes, then RE is defined as R,(p) =
(1)/(1 — o) log(>oi—; p?), 0 > 0 and v # 1. p; denotes the
probability of the outcome 7. Based on this entropy, the Jensen-
Renyi divergence can be defined. It is symmetric, convex for
« € (0,1) and is maximum when the distributions are degen-
erate. He et al. proposed its use for image registration [341].
Neemuchwala et al. [342] used a minimum spanning tree (MST)
to estimate the RE. Spanning graphs were also used by Sabuncu
and Ramadge [343]. Martin and Durrani introduced a gener-
alization of KLD in [344]. The new divergence measure was
based on modified Bessel functions of the second kind and al-
lowed for an efficient recursive computation. The generalization
of KLD was shown to perform better than the standard measures
of divergence.

Most of the aforementioned approaches share a common
drawback; they are based on a single pixel joint probability
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model. As a consequence, by changing the positions of the
pixels in a random way and evaluating the statistical criterion,
the same similarity is obtained [345]. This extreme case demon-
strates that when spatial information is ignored, registration
may fail because the matching criterion is not able to quantify
the difference between the two images. Shading artifacts pose
a more reasonable challenge where information theoretic mea-
sures may fail [345]. To rectify this shortcoming, local context
can be introduced in the used criterion.

One way to relax the way statistical criteria are globally taken
into account consists of computing them locally, thus coping
with the fact that the relation between the two image intensities
is nonstationary. This approach was investigated by Hermosillo
et al. [191] and Karagali [346]. Hermossilo et al. derived the
Euler-Lagrange equations for MI, CR, and CCoef based on lo-
cally estimated probability distribution functions. Karagali fol-
lowed a deterministic rationale to express the mutual informa-
tion, joint entropy and the sum of marginal entropies over small
spherical regions in closed form.

Local evaluation of mutual information has also been pro-
posed by other researchers. For instance, Studholme et al. [347]
investigated the use of Regional Mutual Information (RMI). The
proposed similarity function is a linear weighted sum of local
evaluations of MI and aims to reduce the error caused by local
intensity changes. Sundar et al. proposed a robust way to com-
pute MI [348]. The authors proposed to adaptively parcel late
the image using octrees. The size of the octants is proportional
to the homogeneity of the underlying image. These octant de-
fine the sampling strategy that is used to estimate the entropy.
More samples are taken in regions where the density of octants
is higher. In this case, the octree parcelation changes when ob-
jects move in the image and thus the estimation of the entropy
changes. The method was applied in rigid registration. Loeckx
et al. [349] proposed to condition the evaluation of MI upon
the position. More recently, Zhuang et al. used locally evalu-
ated MI in combination with standard global MI [350]. Under
their approach, the local evaluation of the probability distribu-
tion function assesses pixels relatively to their distance from the
FFD control points.

An alternative way to introduce local context is by inserting
spatial information. This has been mainly achieved by incorpo-
rating additional features that capture local geometric informa-
tion, which results in higher order entropic measures.

Pluim et al. [351] used the intensity image gradient as an ad-
ditional cue. The proposed algorithm sought not only to max-
imize NMI but also intensity gradient information. This was
simply achieved by multiplying NMI with a measure that takes
into consideration both the intensity gradient magnitude and its
orientation. This measure encourages the alignment of strong
intensity gradients.

Rueckert et al. [345] proposed to use second-order MI to
encode local information by considering co-occurrences of in-
tensities between neighboring voxels. That approach requires a
4 D-histogram to estimate the information measures. To account
for the high dimension of the histogram and the curse of dimen-
sionality, the number of bins was kept reasonably small.

Russakoff et al. [352] proposed Regional Mutual Informa-
tion that pushed forward the previous idea by taking into ac-
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count co-occurrences between regions. Moreover, an efficient
way to deal with the curse of dimensionality was presented. As-
suming a high-dimensional distribution, the data points were
transformed so that they were independent in each dimension.
Then, the entropy was estimated by summing the distributed 1.0
entropies. Bardera et al. [353] investigated NMI between blocks
of image elements. The high-dimensional NMI was estimated
using random lines and a reduced number of bins. Recently, a
similar approach was presented by Yi and Soatto [354]. Their
approach is based upon learning a dictionary of image patches.
Each image patch is represented by the label of its closest dic-
tionary element. Then, higher-order mutual information can be
estimated by using this label representation while accounting for
the euclidean transformation that maps the patch to the label.

Instead of explicitly taking into account neighboring voxels,
another way to consider local information is by extracting fea-
tures that concisely describe regional characteristics. Holden
et al. [355] employed Gaussian scale space derivatives and
incorporated them as an additional information channel in a
higher dimensional MI criterion. Gan et al. also employed a
multi-dimensional NMI criterion [356]. The authors proposed
to construct a new feature field by considering the average
rate of intensity change between any two points in the images.
The proposed feature, named maximum distance-gradient,
is calculated for a set of special points placed in important
gradient areas by finding for which point the average rate of
intensity change is maximized. This feature contains informa-
tion regarding the local edge content, the maximum rate of
intensity change as well as the direction in which this change
happens. The magnitude of the MDG vector field formed the
supplementary channel, while its orientation was used as a
second element in the similarity function.

The approaches that employ a higher dimensional statistical
criterion are troubled by the curse of dimensionality. There are
not enough samples to accurately calculate higher dimensional
statistical criteria. To be able to handle such calculations, most
researchers resort to crude implementation approximations such
as limiting the number of histogram bins. Nevertheless, ways
to estimate high dimensional entropies have been proposed and
used to perform image registration.

Sabuncu and Ramadge [357] introduced spatial information
through the construction of feature vectors. The resulting high
dimensional entropy was estimated with the use of the MST
estimator. Neemuchwala et al. used entropic graphs to tackle
high dimensional ci-MI registration of ultrasound images [358].
Both approaches coped with global linear registration. Staring et
al. tackled deformable registration of Cervical MRI using high-
dimensional MI in [359]. Features were used to describe local
geometric information and a k-nearest neighbor graph was used
to estimate the multi-dimensional MI.

Spatial information is not the only type of information that
can be used to endow registration with increased robustness and
accuracy. Assuming that a prior step of segmentation has been
performed, tissue classification information may also help dis-
ambiguate between voxels that belong to different tissues but
share common appearance properties.

Studholme et al. [360] segmented regions by thresholding
and labeling connected components. The labels were used as an
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additional image and the matching criterion took into account
the difference between the entropies of each image and the joint
entropy.

Knops et al. [361] performed a k-means clustering before
registration. Based on this clustering, voxels that shared similar
intensity profiles but belonged to different anatomical structures
were mapped to different intensity bins during the construction
of the histogram. The new remapped intensities along with the
initial one contributed to an NMI-based similarity criterion.

D’Agostino et al. [362] took into account voxel class proba-
bilities in the matching criterion in order to tackle the labeled-to-
labeled and intensity-to-labeled image registration. For the la-
beled-to-labeled case, KLD was used to compare the distribu-
tion of the joint classes. For the intensity-to-labeled registration,
a version of MI was used with the difference that one of the fea-
tures is a class probability and not intensity.

b) Reduction to Mono-Modal Registration: An alternative
way to proceed with multi-modal registration is to reduce the
problem to a mono-modal one. By this reduction, one aims to
simplify the problem and facilitate its solution. There are two
possible ways to perform such a task. First, one can simulate
one modality from another so that at the end both images come
from the same modality. Second, one can map both images to a
third domain where the registration will take place.

Simulating one modality from another can be achieved by
taking advantage of the available knowledge regarding the
physical properties of the imaging device. In this case, the
goal is to model the imaging process. An alternative way is
to exploit available co-registered pairs of images. In this case,
machine learning techniques can be used to capture the relation
between the intensities.

Roche et al. [363] tackled ultrasound (US) to MR rigid reg-
istration by simulating an US image from the MR one. The
authors exploited MR intensities and MR gradient magnitude
information in order to predict US intensities. Complex phe-
nomena such as US signal attenuation and speckle were ne-
glected. As a consequence, the simulated images roughly resem-
bled actual US images. Wein et al. [364] simulated an US image
in order to tackle the problem of CT-to-US rigid/affine registra-
tion. In order to simulate the US image, the authors employed a
model that was based on the physical principles of ultrasound.
A locally evaluated statistical criterion was used to drive the
registration.

Michel and Paragios [365] used the mixture of experts
methods to learn the conditional probability of the target in-
tensity given a source patch. The conditional probability was
then used to drive a Markov Random Field to regularize the
simulated image.

In the second case, both modalities are mapped to a common
space. As both modalities image the same anatomical structure,
the assumption can be made that the local geometry would be
helpful to establish meaningful correspondences. Thus, in prin-
ciple, most methods apply filters to extract geometrical infor-
mation. This information is subsequently used in a mono-modal
registration setting.

Maintz et al. [366] tackled rigid multi-modal registration by
using morphological tools to create new gray-value intensity
images. The proposed method applied morphological opening
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and closing to extract edge information and then cross-correla-
tion to align the images. It resembles a surface registration with
the difference that instead of having binary values, real ones
were used.

Droske and Rumpf [26] proposed an approach that was mo-
tivated by the mathematical morphology theory that states that
an image can be characterized uniquely by the entity of its level
sets. The common space was defined by mapping every point to
its normalized intensity gradient. The registration was formu-
lated in a variational framework where a morphological, con-
trast invariant, matching criterion was minimized under the in-
fluence of an appropriate regularization term. Haber and Moder-
sitzki [367] assumed that borders of anatomical structures cor-
respond to intensity changes and thus opted to exploit intensity
gradient information. An intermediate image domain was cre-
ated by taking into account the normalized intensity gradient
field. This field conveys purely geometric information and ac-
counts for the fact that the gradient magnitude may vary among
different modalities. The similarity function was based on the
difference in angles between the normalized gradient vectors.

Butz and Thiran [368] investigated the use of edge related
information to cope with affine multi-modal registration. They
used an edgeness operator that takes into account the local edge
variance to map both images to a common space. Mutual infor-
mation driven registration was then performed coupled with a
multi-scale genetic optimization. Depending on the nature of the
images, other operators may be applied. Penney et al. used the
probability of vessel presence along with normalized cross-cor-
relation to rigidly register MRI with ultrasound images [369].

Gabor filtering has also been used to map the images to a
common domain because of their ability to capture local edge
and texture information [370]. Liu et al. used local frequency
representations to tackle rigid/affine multi-modal registration
[324]. These representations are robust to edge strength and con-
trast differences. They were estimated by calculating the local
phase gradient of the most significant Gabor filter response.
Then, the integral squared error was chosen as the matching
criterion. Jian et al. used local frequency maps for deformable
registration [371]. The authors used the Riesz transform to es-
timate the local frequency information. Ou et al. used Gabor
filters in deformable image registration [323]. Specifically, the
responses of the filters were used to construct a rich vector de-
scriptor. The images were aligned by minimizing a weighted
sum of the vector differences.

Andronache et al. tackled the problems related to the estima-
tion of MI in small patches in [372]. Their strategy consisted of
identifying the patches where the estimation of MI becomes un-
reliable and then mapping them to a common pseudo-modality.
The pseudo-modality depicted only common structures in both
images and was constructed by decreasing the variance of the
mapped intensities. In the intermediate domain, simpler criteria
may be used to drive registration.

Recently, Heinrich et al. [373] presented a new descriptor for
multi-modal registration. The driving idea behind the new de-
scriptor is the use of similarities between neighboring patches
as features. This idea is borrowed from the image denoising lit-
erature. Once the descriptor is constructed a vector-difference
can be used as a matching criterion. Wachinger et al. [374] pro-
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posed two techniques that derive from information theory and
manifold learning to create the intermediate structural represen-
tation. The first one used the entropy of a patch centered around
the voxel to assign a new intensity value. The second method
used Laplacian Eigenmaps to embed the patches in a lower-di-
mensional manifold that preserves local distances.

Lee et al. presented a supervised technique to learn the sim-
ilarity measure for multi-modal image registration [375]. The
approach was formulated in a discriminative setting where the
goal is to optimize a similarity function so that correct corre-
spondences are assigned high values and erroneous ones low.
Support vector machine regression was employed to learn the
metric.

Bronstein et al. presented a supervised technique whose aim
was to learn a similarity metric that discerns between corre-
sponding and noncorresponding points [376]. This technique
maps both modalities to a Hamming metric space where true
correspondences are likely to have the same code, while wrong
ones are not. The embedding was constructed by using Ad-
aBoost. Michel et al. investigated the application of the previous
method to the problem of 3D deformable registration [377].

It should also be noted that some of the techniques that were
previously presented under the information theoretic class of
methods learn a similarity measure. The difference is that a
generative framework is employed. Given co-registered data,
the joint distribution of the intensities is learned. Then, either
a maximum likelihood approach [378] or a divergence criterion
[337]-[339], [343] is used to compare the estimated and learned
distributions.

C. Hybrid Methods

Iconic and geometric registration methods each bear certain
advantages while suffering from shortcomings. Hybrid methods
try to capitalize on the advantages of each by using comple-
mentary information in an effort to get the best of both worlds.
Among hybrid methods, the following subclasses may be dis-
tinguished based on the way the geometric information is ex-
ploited, that is (see also Fig. 2): 1) as initialization, 2) as con-
straint, or 3) in a coupled fashion.

1) Additional Information Used Independently: In the first
subclass, each type of information is taken into account in a sep-
arate and sequential way. Registration is decomposed into two
independent steps, each one acting on a different type of infor-
mation. Typically, geometric registration precedes, resulting in
a rough alignment of the two images. Subsequently, iconic reg-
istration is performed to refine the result.

a) Exploiting Landmarks Information: Johnson and Chris-
tensen initialized their consistent intensity algorithm with the
result of a consistent landmark approach in [379]. The land-
mark and intensity registration were solved independently in
an iterative way until a criterion on the number of iterations
was met. Paquin et al. proposed a multiscale approach for hy-
brid image registration [380]. The authors identified bony struc-
ture landmarks and used them to coarsely align the images. In
the finer levels, intensity-based deformable registration was per-
formed. Yin et al. [381] inferred the optimal displacements of a
cubic B-spline FFD model by alternately minimizing the sum
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of squared intensity differences and the distance between corre-
sponding landmarks.

b) Exploiting Surface Information: Liu et al. [274] pro-
posed a hybrid algorithm that combined surface and volume in-
formation to register cortical structures. The algorithm was ini-
tialized with the result of a volumetric approach [119] and was
subsequently refined using a surface warping method. Postel-
nicu et al. [382] started from the geometric registration, propa-
gated the result to the whole volume using a biophysical model
of the brain and refined it with a nonlinear optical flow registra-
tion algorithm. Gibson et al. [383] presented an approach where
brain images are initially registered using an intensity-based
method [67] and the result is refined by cortical surface registra-
tion [57]. Auzias et al. investigated the use of the diffeomorphic
sulcal-based cortical registration (DISCO) [92] in collaboration
with an intensity method (DARTEL [97]). The methods were
used in a sequential manner.

¢) Exploiting Segmented Structures Information: Camara
et al. [384] presented an approach where the result of the regis-
tration of segmented structures is refined by iconic registration.

2) Additional Information Used as Constraint: Using one
type of information independently of the other to initialize the
following step usually results in an increase of the robustness of
the registration procedure. However, there is no guarantee that
the correspondences that were established during the previous
step will be preserved. To overcome this limitation, a number
of researchers have proposed to use the correspondences that
were estimated during the first step to constrain the estimation
of the correspondences during the following step. The spatial
influence of these constraints varies from point-wise to global.

a) Additional Information Used as Soft Constraint:
The Hellier and Barillot proposed to couple dense and land-
mark-based approaches for nonrigid brain registration in [272].
In a first step, sulci were extracted and modeled as active
ribbons. Then, a matching point algorithm was used to estab-
lish geometric correspondences. These correspondences were
subsequently used in a robust function as constraints with local
spatial support. Hartkens et al. combined normalized mutual
information with geometric cues to tackle brain registration in
[385]. Two kinds of geometric cues were employed, landmarks
and surfaces. The correspondences for the landmarks were
fixed while the surface correspondences were estimated in
an ICP fashion. The ratio between the iconic and geometric
terms was calculated automatically based on their derivatives.
Papademetris et al. [386] used sulcal constraints to constrain
iconic registration. A robust point matching method was used to
establish correspondences between the sulcal landmarks while
accounting for outliers. The matching criterion comprised an
intensity similarity term and a term ensuring that the estimated
deformation field adhered to the point correspondences.

Rohr et al. [387] used the local correlation coefficient
as intensity similarity criterion along with the adherence to
point correspondences to register 2D electrophoresis images.
Avants et al. [91] added a landmark inexact matching term
in the LDDMM framework in order to compare human and
chimpanzee cortices. Landmarks were provided manually
to establish either anatomical or functional correspondences
between the two species.
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Azar et al. proposed a user-guided registration method [388].
The proposed algorithm iterated between estimating the trans-
formation W that maps one image to another and the estimation
of two dense deformation fields. The landmark-based deforma-
tion field was initialized by using the user provided landmark
correspondences and TPS interpolation. In subsequent iterations
it was estimated by taking into account the landmark correspon-
dences and the transformation W of the previous iteration. The
intensity-based deformation field was estimated by minimizing
an intensity based similarity criterion while taking into account
the transformation W of the previous iteration. The transforma-
tion W was given as an adaptive combination of the intensity-
and landmark-based deformation fields. Landmark information
was weighted more in their vicinity of landmarks. This method
was able to incorporate any intensity-based algorithm though it
could not guarantee convergence.

Worz and Rohr proposed a spline-based registration frame-
work that uses both intensity and landmark information [389].
The authors proposed to estimate a dense deformation field by
using a set of corresponding landmarks and their localization
uncertainties. The solution of the registration problem was a
compromise between matching the image data, being regular
and being close to the landmark-based deformation field. Bies-
dorf et al. presented a similar approach in [390]. The difference
was that a local measure of mutual information was used as
an intensity criterion. Lu et al. [391] incorporated landmark in-
formation in the diffeomorphic Demons registration algorithm
[99]. The authors proposed to include the sum of squared land-
mark Euclidean distances in the matching criterion along with
point-wise mutual information [392].

b) Additional Information Used as Hard Constraint:
While most methods establish geometric correspondences
and then encourage the intensity driven deformation field to
comply with them without guaranteeing their preservation,
Joshi et al. [393] imposed geometric correspondences as hard
constraints. First correspondences were established between
the cortical gray/white matter and gray/CSF surfaces using
sulcal constraints. The correspondences were then propagated
to the whole cortical volume with the use of an harmonic map.
Following that, the dense deformation field was refined by
considering image intensity information under the hard con-
straint that the deformation is zero for the previously registered
surfaces.

3) Coupled Approaches: In the previous approaches, the in-
formation flows in one direction. By formulating the problems
in a decoupled way, iconic registration may profit from geo-
metric methods either by being initialized closer to the solu-
tion or by being driven by an extra force of adherence to cor-
respondences. However, geometric registration does not benefit
from iconic registration because its solution is independently
obtained. In this class of methods, the two problems are unified
and solved by minimizing a single objective function simulta-
neously. As a consequence, the solution of each problem takes
advantage of the information coming from the other problem,
and the final solution of the registration is consistent with both
types of information.

Cachier et al. [271] proposed such a universal energy func-
tion for the problem of deformable registration. The coupling
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of the two problems was performed through the introduction of
an auxiliary smooth deformation field. The authors proposed
to extract sulci modeled as point distributions and use them in
the coupled formulation to accomplish brain registration. The
problem was solved by iterating between three steps: 1) solving
for the deformation that minimizes the iconic criterion, 2)
solving the geometric problem by establishing correspondences
between the closest points of the geometrical structures, 3)
and finally opting for a smooth deformation that respects both
iconic and geometric constraints.

Joshi et al. [394] proposed an approach to couple surface- and
intensity-based registration. An approach to tackle surface reg-
istration is to map both surfaces to a sphere and perform registra-
tion there. Joshi et al. proposed to additionally map the interior
brain volumes to the interior of the spheres through harmonic
maps. Then, correspondences can be established by involving
the complete sphere domain, or both the surface and iconic in-
formation at the same time.

Sotiras et al. [148] presented a coupled approach that aims to
simultaneously estimate the correspondences between two land-
mark sets, and a dense displacement field parametrized by cubic
B-splines that maps one image space to another. The problem
was formulated as a first-order Markov Random Field described
by a two-layer undirected graph. The graph nodes represent the
latent variables (displacement parameters and landmark cor-
respondences), while the edges represent the relationships be-
tween the variables. The first layer of the graph modeled the
iconic registration problem, while the second layer modeled the
geometric correspondence problem. Inter-layer edges imposed
the consistency between the two problems by approximating a
coupling constraint.

Some of the limitations of this work were addressed in sub-
sequent attempts. Honnorat et al. [395] used the exact Lo dis-
tance to couple the geometric and iconic information for the
problem of guide-wire tracking. The inner product was devel-
oped to allow its modeling by pairwise relations. Kurkure et al.
[396] used learned higher-order potential for the layer of the
graph that models the geometric problem. As a consequence,
the requirement for a global linear registration was reduced.

Siless et al. [397] proposed a coupled approach based on the
diffeomorphic Demons algorithm [99]. The authors proposed
to define the update field as the addition of an intensity-based
update field and a geometric-based update field. The intensity-
based update field was calculated as in [99]. The geometric-
based update field was estimated by minimizing the squared Eu-
clidean distance between each point and its closest one. In a sub-
sequent work, Siless et al. extended log-domain diffeomorphic
demons [47] to take into account geometric information repre-
sented in the space of currents [398]. Cifor et al. [399] also ex-
tended [47] to take into account geometric information.

IV. OPTIMIZATION METHODS

The aim of optimization is to infer the optimal transforma-
tion (see Section II) that best aligns two images according to an
objective function comprising a matching term (see Section III)
and a regularization term [see (1)]. As a consequence, the choice
of the optimization methods impacts the quality of the obtained
result.
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Optimization methods may be separated into two categories
based on the nature of the variables that they try to infer (see
Fig. 3): 1) continuous, and 2) discrete. The first class of methods
solves optimization problems where the variables assume real
values. On the contrary, methods in the second class solve
problem the variables take values from a discrete set. Both
classes of methods are constrained with respect to the nature of
the objective function as well as the structure to be optimized.
Heuristic and metaheuristic methods do not bear the previous
constraints. However, they do not enjoy theoretical guarantees
regarding the optimality of the solution.

A. Continuous Optimization

Continuous optimization methods are constrained to prob-
lems where the variables take real values and the objective func-
tion is differentiable. Image registration is a problem where
the application of continuous optimization methods has been
studied. Continuous optimization methods estimate the optimal
parameters following an update rule of the following form:

Oip1 =60 + ce2:(0) ©
where # denotes the vector of parameters of the transforma-
tion, ¢ indexes the number of iteration, «, is the step size or
gain factor, and g defines the search direction. The search di-
rection is calculated by taking into account both the matching
and the regularization term. Therefore, it should be written as
g (M(8,) + R(,)). Nonetheless, we prefer the use of g,(8;)
in order to reduce the clutter of unnecessary notation.

There are various ways to define the previous parameters. For
example, the step size may be constant, decrease with each iter-
ation or such that it minimizes the objective function along the
search direction (exact or inexact line search). The search direc-
tion can be specified by exploiting only first-order information
or, for example, by also taking into consideration second-order
information. It is the choice of these parameters that distin-
guishes different methods.

Commonly used methods include (see also Fig. 3): 1) gra-
dient descent (GD), 2) conjugate gradient (CG), 3) Powell’s
conjugate directions, 4) Quasi-Newton (QN), 5) Leven-
berg-Marquardt (LM), and 6) stochastic gradient descent. Klein
et al. [400] reported a study comparing optimization strategies
in image registration using mutual information as similarity
metric and cubic B-spline FFDs as deformation model.

1) Gradient Descent Methods: An approach to optimize the
objective function is by following the direction that decreases
the energy, or its negative gradient. In other words, the direc-
tion is given as g = —Vy(#). Klein ef al. [400] studied two
variants of gradient descent. The first employed a function of
the step size that decayed with each iteration, while the second
was based on the inexact line search algorithm of Moré and
Thuente [401]. Other line strategies include keeping the step
size fixed, monotone line search [402], line search and golden
section search [403].

Gradient descent has been used to solve various registration
problems. In the LDDMM framework, usually posed in a varia-
tional setting, gradient descent is often used to solve the problem
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Fig. 3. Classification of optimization methods.

[67], [72], [80]. Johnson and Christensen’s consistent registra-
tion approach [379] as well as Rueckert ef al.’s FFD registration
algorithm [135] were also based on a gradient descent optimiza-
tion scheme. Without trying to give a full account of all registra-
tion methods that employ gradient descent, let us also cite two
more variational approaches [26], [307].

2) Conjugate Gradient Methods: Techniques that have
better convergence rates than gradient descent have also been
tested. Conjugate gradient descent methods try to exploit the
knowledge conveyed by the previous gradients and propose a
search direction that does not follow the new gradient but is
conjugate to the previous direction. Thus, the direction now
is given as g; = f(Vy(0:), 1), where f usually denotes a
linear combination, g; = —V(8;) + 3:g:_1. Different ways
to define the weighting factor ;. Among the well-known
formulas for (3;, one may cite the Fletcher-Reeves [404],
the Polak-Ribiére [405], the Polak-Ribi¢re-Polyak [406] and
the Hestenes-Stiefel [407]. For a review on CG methods,
the interested reader is referred to the work of Hager and
Zhang [408].

Some examples of registration methods that use conjugate
gradient descent as an optimizer are [71], [82], [382], [393].
An interesting approach tailored for FFD image registration
using a preconditioned gradient scheme was presented in
[409]. Tustison et al. [409] observed that problematic energy
topologies appear in the standard gradient schemes for FFD
image registration. This is caused by the nature of the uniform
B-splines that leads to disproportionate weighting of the con-
trol points. The authors proposed an approach to account for
this fact by normalizing the gradient based on the spline basis
functions.

Sec. IV-C2

3) Powell’s Conjugate Directions Method: Powell’s opti-
mization approach or the Direction Set method [403] is an-
other method that has been used in image registration. Powell’s
method aims to minimize the objective function by following
conjugate directions. Contrary to the CG methods, the conju-
gate directions are calculated without the use of gradient infor-
mation. The basic procedure that Powell proposed sets the initial
direction to the basis vectors g' = e’,i = 1,..., N; optimizes
along each parameter axis independently from the rest; performs
the replacement g! = gzﬂ while adding g¥ = 8, ; — @, and
iterates until convergence.

Powell’s method is gradient free and has been applied in low
degrees of freedom registration tasks e.g., [331], [336], [337],
[351], [356]. A drawback of Powell’s method is that it tends
to find search directions that are linearly dependent [403]. As
a consequence, the optimization fails even for moderate scale
problems.

4) Quasi-Newton Methods: Another class of optimization
methods that has been tested in registration applications is
that of Quasi-Newton (QN) methods [403]. This class of
methods aims to accumulate information from the previous
iterations and take advantage of it in order to achieve better
convergence. More specifically, these methods aim to esti-
mate the inverse Hessian matrix 7/ ~1(#) and use it to define
the search direction. Thus, the search direction is defined as
g = —H1(8)V4(8), where the"denotes that an approximation
is used (the true Hessian is used in the case of Newton’s or
the Newton—Raphson method). Two main algorithms exist
in this category, the Davidon—Fletcher—Powell (DFP) and
the Broyden—Fletcher—Goldfarb—Shanno (BFGS). BFGS is
considered to be more efficient than DFP [410], [411].
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A version of BFGS that uses less memory (L-BFGS) was
tested in [400]. Other efforts where researchers have investi-
gated the use of Quasi-Newton methods in image registration
can be found in [100], [152], [303], [349].

5) Gauss-Newton Method: An optimization method of the
same family is the Gauss-Newton (GN) algorithm. It is devised
to solve optimization problems involving sum of squared func-
tion values. This is of particular interest for image registration
as this type of objective function is common when aligning im-
ages of the same modality. This algorithm does not require the
computation of second derivatives. Instead, the Hessian is ap-
proximated by ignoring derivatives higher than first order with
H = 2J7 J where J denotes the Jacobian. The search direction
is now givenas g = —(J1(6)J(6)) 1V4(8).

The Gauss-Newton optimizer has been used in [79], [230],
[240]. The Gauss-Newton algorithm is frequently used in the
Demons registration framework to optimize the similarity mea-
sure when tackling mono-modal registration [41], [44], [56],
[571, [99]. In the demons registration setting, an extension of
Gauss-Newton by Malis [43] was employed to derive the sym-
metric demons forces [47], [50]. This algorithm exploits more
knowledge with respect to the problem at hand. More specif-
ically, it takes advantage of the fact that when the images are
aligned, the gradient of the source can be approximated by the
gradient of the target. Recently, Zikic et al. [412] proposed a
preconditioning scheme that improves the convergence speed
of registration algorithms. The scheme is based on normalizing
the length of the point force vectors.

6) Levenberg-Marquardt Algorithm: A method related to the
previous one that has been applied to the problem of image reg-
istration is the Levenberg-Marquardt algorithm. The search di-
rection in this case is given by: g = —(H () +(I)Vy(0).Tis
the identity matrix and ¢ is a weighting factor that regulates the
performance of the optimizer with respect to its speed and sta-
bility. By decreasing its value, greater speed may be achieved.
At the limit, when ¢ equals to zero, we fall to the previous al-
gorithm. On the contrary, when its value increases, the stability
increases as well.

For some applications of the LM approach the interested
reader is referred to [97], [136], [155], [156]. Based on the LM
algorithm, Thevanez and Unser [413] proposed an efficient
optimizer for mutual information driven registration. Kybic and
Unser [136] compared the LM algorithm with GD, GD with a
quadratic step size estimation and CG to find that it performs
the best for an FFD registration task.

7) Stochastic Gradient Descent Methods: The aforemen-
tioned techniques cover the deterministic gradient methods
that are used most often to solve the optimization problems
that arise when tackling image registration. In medical image
registration, the computation of the derivative information can
be computationally demanding because of the great dimension-
ality of both the data and the search space. Thus, to alleviate the
computational burden, researchers have investigated the use of
stochastic gradient approaches. Their update rule is based on
an approximation of the gradient, or 6;11 = 6; + ;8.(0:).

The variants of the stochastic gradient approach differ
with respect to how the gradient is approximated. In [400],
three approaches were discussed. The first one, referred to as
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Kiefer-Wolfowitz (KW), approximates the gradient by a finite
difference scheme. The second one, known as Simultaneous
Perturbation (SP), estimates the gradient by perturbing it not
along the basis axis but instead along a random perturbation
vector A whose elements are independent and symmetrically
Bernoulli distributed. The last method was proposed by Rob-
bins and Monro (RM). It is more general, in the sense that it
only assumes that an approximation of the gradient exists. This
method uses a step-size that decreases with time in order to
decrease the inaccuracy. [400] estimated the gradient by using a
subset of the image voxels sampled uniformly. The conclusion
of [400] is that the RM method performs best.

The RM method was extended in two subsequent works by
employing adaptive image-driven strategies. Klein et al. [414]
presented an adaptive step mechanism, while Bhagalia et al.
[415] proposed an edge-driven importance sampling to im-
prove the gradient approximation. Stochastic gradient descent
schemes have been applied in image registration settings that
employ lower degrees of freedom deformation models (e.g.,
global linear or cubic B-spline FFDs). For some applications
of stochastic gradient see [147], [328], [329], [359].

8) Constrained Optimization Methods: All the previous ap-
proaches aim to solve an unconstrained optimization problem.
As discussed in Section II-D, constrained optimization prob-
lems arise when trying to impose task-specific conditions on the
deformation field. The solution of such optimization problems
is more challenging. The optimization strategies that are usu-
ally employed transform the constrained to an unconstrained
one that can be solved efficiently. For example, a log-barrier
method was used in [230]. Another way to solve the problem
is by augmenting the dimensionality of the problem using the
method of Lagrange multipliers [235], [237].

B. Discrete Optimization

Discrete optimization methods are constrained to problems
where the variables take discrete values. Recently, discrete
MRF formulations have been investigated to tackle image
registration.

An MREF is a probabilistic graphical model represented by
an undirected graph G, consisting of set of vertices V and a
set of edges £ (G = {V,€}). The set of nodes encodes the
random variables, while the set of edges represents the relation-
ships between the variables. The random variables take values
in a discrete label set £. The corresponding energy is the sum
of all unary potentials ¢/, of the nodes p € V (i.e., data cost)
along with the pairwise potentials P, (i.e., regularization cost)
modeled by the edges connecting nodes p and ¢ (i.e., pg € ).
Minimizing the previous energy results in an assigning to each
random variable p an optimal label /7.

Discrete optimization methods can be classified according
to the techniques they employ into three categories (see also
Fig. 3): 1) graph-based methods, 2) message passing methods,
and 3) linear-programming (LP) approaches.

1) Graph-Based Methods: The first class of methods is based
on the max-flow min-cut principle [416] that states that the max-
imum amount of flow that can pass from the source to the sink
is equal to the minimum cut that separates the two terminal
nodes. The two terminal nodes are defined as source and sink
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depending on the direction of their edges. The cost of a cut is
given by the sum of the weights of the edges that were removed.

Greig et al. [417] showed how to calculate the exact max-
imum a posteriori estimation for the case of the Ising model
through a single graph cut computation. Boykov et al. [418]
proposed the «-expansion algorithm that extended [417] to the
multi-label case. This algorithm starts from an initial labeling
and then checks every label to see if the energy may be de-
creased by allowing any set of nodes to change their label to
the one under study. The optimal labeling at each iteration is
estimated by performing a single graph cut.

In medical image registration, ai-expansion is the optimizer
used by Tang and Chung [419], So et al. [420]-[422] and Liao
and Chung [326]. The authors constructed a graph the size of the
image assuming a 6-connectivity scheme and densely sampled
the solution space resulting in a large set of candidate solutions.
The size of the graph as well as the large label set resulted in
important computational times.

2) Belief Propagation Methods: Belief propagation (BP)
methods [423] constitute the second class of methods. These
methods are based on local message exchange between the
nodes of the graph and then backtracking to recover the best
solution to the problem. Belief propagation methods can pro-
vide an exact inference for chain and tree-structured graphs. In
the case of graphs that contain loops, Loopy Belief propagation
methods have been shown to converge to satisfactory solutions
[424], [425].

A drawback related to the messages is the large storage re-
quirement when a large set of solutions is involved. Yang et al.
[426] proposed a constant space (1) BP method that does not
depend on the number of labels. The basic idea of the method
was to a apply a coarse-to-fine strategy to the solution space so
that the overall complexity remains constant. The numbers of
labels decreased from coarser to finer levels by keeping only
the ones for whose the cost was the smallest. Heinrich et al.
[427] applied this technique in a discrete registration setting to
recover respiratory motion.

Shekhovtsov et al. [428] proposed an efficient MRF deforma-
tion model for nonrigid 210 image matching by decomposing
the original grid graph into two isomorphic layers. The nodes
of each layer modeled the displacement along each axis. Nodes
placed at corresponding positions in each layer were connected
with an edge that modeled the data matching term. Intra-layer
edges encoded the regularization term. This decomposition re-
duced the number of operations required to update the messages.
Lee et al. extended this model to the 37) case [429]. The graph
was decomposed into three layers and ternary interactions were
used to model the data cost.

Liu et al. [430] used the 21 decomposed model [428] along
with loopy BP to match SIFT-descriptors along the flow vectors.
Kwon et al. proposed a similar approach that matches dense
local descriptors using a higher-order smoothness prior [431].

3) Linear-Programming Approaches: The last class of
methods comprises techniques that are based on Linear Pro-
gramming. These approaches aim to solve an LP relaxation of
the original problem that is in general N P-hard. Komodakis
et al. [432], [433] cast the original problem as a linear integer
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program and proposed a method (FastPD) that takes into
account the primal and dual LP relaxations.

Glocker et al. [434], [435] used FastPD to infer the displace-
ments of a grid-based deformation model in image registration.
Hard constraints on the set of solutions, imposed through the
construction of the label set, enforced the diffeomorphic prop-
erty on the deformation field despite the use of a simple first-
order regularization term. Glocker et al. extended this method to
tackle atlas-based registration in [436], and to knowledge-based
registration with the use of learned pairwise relations in [177].
Ou et al. [323] used it to solve feature-based registration, while
Sotiras et al. to solve diffusion tensor registration [437] and
symmetric iconic registration [145].

Sotiras et al. used this optimizer to tackle group-wise reg-
istration [438], [439]. Savinaud et al. extended this method
to multi-channel images [440]. These methods modeled the
registration problem with the use of an n-layer graph where
intra-layer edges encoded a smoothing term and inter-layer
edges encoded the data matching term. Zikic et al. [441] tackled
linear registration by using FastPD to perform inference in a
graph where each node encoded a different parameter of the
transformation, while the edges relating them modeled their
interactions.

TRW-S or sequential tree-reweighted message passing is also
based on an LP relaxation. The algorithm aims to solve the dual
of the relaxation that provides a lower bound of the optimal
MREF energy. The goal is to maximize the lower bound that is
given by a convex combination of trees.

Shekhovtsov et al. [428] used it to optimize their efficient
decomposed MRF deformation model. Kwon et al. [442] used
TRW-S to perform inference in a factor graph that models
higher-order spatial smoothness constraints for image regis-
tration. Sotiras et al. used it to perform hybrid registration
[148]. Lee et al. [443] used TRW-S to solve the optical flow
estimation problem based on an adaptive convolution kernel
prior.

C. Miscellaneous

The continuous and discrete methods are limited regarding
what objective functions and structures they can optimize.
Heuristic and metaheuristic methods, on the contrary, can
handle a wide range of problems and explore large solution
spaces. Nevertheless, they are not able to provide any guarantee
with respect to the optimality of the solution.

1) Greedy Approaches: Making at each step the locally op-
timal choice is an approach that has been used in image reg-
istration. This greedy strategy requires the definition of a set
of plausible solutions and a score function. Being gradient free
and intuitive, it was applied to tackle the problem of feature-
driven image registration. The candidate sets were constructed
in a multi-resolution fashion while a standard similarity measure
was used. More information about the practical implementation
of this strategy can be found in [119], [274], [320]-[322].

2) Evolutionary Algorithms: Evolutionary algorithms have
been used in medical image registration to mainly tackle linear
registration [444]. These algorithms derive from the theory of
evolution and natural selection. They start from an initial set of
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solutions that are ranked according to a fitness measure and a
subset of them is chosen in a stochastic fashion to generate a
new set of solutions. The new set of solutions is generated by
adapting the current set following a nature-motivated strategy
such as mutation. In [400], the covariance matrix adaptation
method was investigated [445] and found to converge slowly.
For a more elaborated presentation and comparison of state-of-
the-art evolutionary methods for image registration the inter-
ested reader is referred to the work of Santamaria et al. [444].

V. DISCUSSION

Deformable registration is a mature field that has been exten-
sively studied. As a consequence, an important body of research
work has been devoted to its improvement and application in
clinical settings. In this review, we have made an effort to pro-
vide a comprehensive survey of the recent developments in the
field of deformable medical image registration. Our approach
was structured around the three core registration components,
1) deformation models, 2) matching criteria, and 3) optimiza-
tion methods. For every component, particular emphasis was
placed on classifying the methods appertaining to it according
to their theoretical foundations. We focused our presentation on
giving an account of recent approaches that have not be be cov-
ered in previous reviews. Let us now summarize the contents of
this paper.

In Section II we have presented the transformation models
for deformable image registration. We discussed physics-based
models (see Section II-A) which provide transformations that
comply with a physical model. The transformation is estimated
through the solution of a PDE that can be computationally
demanding. Interpolation-based methods were presented in
Section II-B). These models do not assume, in general, that the
deformed object behaves according to a natural law. Instead,
they exploit interpolation and approximation theory to construct
the deformation field. In Section II-C we discussed knowl-
edge-based approaches that exploit our knowledge regarding
the problem through the use of more informed priors at the cost
of being constrained to well-defined settings. We concluded
this section by presenting constraints (see Section II-D) that
have been devised to enforce certain properties on the resulting
transformation.

In Section III we have classified similarity criteria based on
the type of information they exploit. We have presented in-
tensity-based matching criteria in Section III-B according to
whether they tackle mono-modal or multi-modal registration
problems. In the mono-modal case, the use of standard sim-
ilarity criteria (e.g., SSD or SAD) involving either intensities
or multi-channel data extracted from the image through the ap-
plication of filters is well-accepted by the community. In the
multi-modal case, the use of information theoretic measures has
become the prevalent solution. In Section III-A, we presented
registration approaches that exploit geometric information. The
presentation was organized according to the unknown variables
the methods estimate. We concluded the section by presenting
coupled approaches that opt to bridge the gap between the iconic
and the geometric methods (see Section I1I-C).
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The third component of registration, optimization, is dis-
cussed in Section IV. Registration is an inherently continuous
problem. As a consequence, continuous optimization methods
have been the main driving force behind registration algo-
rithms. These methods are presented in Section IV-A. Recently,
discrete optimization techniques have been proposed to tackle
deformable registration. We discuss these approaches in
Section IV-B. Heuristic and metaheuristic approaches are
briefly introduced in Section IV.C.

Image registration is a particularly active field of research.
New methods, spanning all aspects of registration, are devised
that tackle the shortcomings of the existing ones resulting in
a fluid research domain. In this review, we opted to map the
research field by reporting the recent advances related to the
methodological aspects of registration.

An important topic that was not covered is the evaluation of
registration methods. Evaluation of registration methods is a
particularly difficult problem because of the lack of a “ground
truth.” The absence of knowledge of correspondences between
images makes the quantitative validation of the registration
performance a challenging task. Moreover, because of the
different requirements of the applications that are based on
deformable registration, the notion of correspondence should
vary according to application context, aiming to properly
characterize error [446].

Nonetheless, the increasing availability of annotated data
sets (e.g., the LONI Probabilistic Brain Atlas [447], the Internet
Brain Segmentation Repository - IBSR [448], the CUMC12
dataset? acquired at the Columbia University Medical Center,
the MGH 10 dataset? scanned at the MGH/MIT/HMS Athinoula
A. Martinos Center for Biomedical Imaging) has made possible
evaluation studies like the one by Klein ef al. [449]. Moreover,
the development of evaluation projects for image registration
(i.e., nonrigid image registration evaluation project—NIREP
[450]) and the increasing understanding regarding the use of
surrogate measures for the measurement of the accuracy of
registration [451] will further facilitate the comparison between
different algorithms.

Landmark correspondences can also be used for the eval-
uation of registration accuracy. Manual identification and
matching of landmarks across scans is a tedious task. As a
consequence few datasets are available providing such refer-
ence standards. One may cite the POPI model [452] containing
40 landmarks in every frame of a 4D lung CT acquisition,
or the 4D CT dataset made available by Castillo et al. [453]
with landmarks in the maximum inhale and exhale phase. The
development of dedicated methods for reference standard con-
struction [454] and the organization of registration challenges
[455] create the necessary conditions for objective comparison
of registration methods.

The increased availability of data along with the publication
of the source code of the methods will lead to evaluation studies
that will allow us to quantify the performance of the registration
components and draw conclusions regarding their applicability
in specific registration settings.

2http://www.mindboggle.info/papers/evaluation_ Neurolmage2009/data/
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