Neural Networks 69 (2015) 60-79

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Review

Many regression algorithms, one unified model: A review @CmssMark

Freek Stulp >*, Olivier Sigaud '

2 Unité d'Informatique et d’Ingénierie des Systémes, ENSTA ParisTech, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex, France
b FLOWERS Research Team, INRIA, Bordeaux, France
¢ Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, F-75005 Paris, France

ARTICLE INFO ABSTRACT
Artic{e history: Regression is the process of learning relationships between inputs and continuous outputs from example
Received 19 September 2014 data, which enables predictions for novel inputs. The history of regression is closely related to the history

Received in revised form 11 May 2015
Accepted 27 May 2015
Available online 5 June 2015

of artificial neural networks since the seminal work of Rosenblatt (1958). The aims of this paper are to
provide an overview of many regression algorithms, and to demonstrate how the function representation
whose parameters they regress fall into two classes: a weighted sum of basis functions, or a mixture
of linear models. Furthermore, we show that the former is a special case of the latter. Our ambition is

g:;‘:g;g?;‘n thus to provide a deep understanding of the relationship between these algorithms, that, despite being
Locally weighted regression derived from very different principles, use a function representation that can be captured within one
Gaussian mixture regression unified model. Finally, step-by-step derivations of the algorithms from first principles and visualizations
Radial basis function networks of their inner workings allow this article to be used as a tutorial for those new to regression.
Gaussian process regression © 2015 Elsevier Ltd. All rights reserved.
Contents
1. Introduction 61
2. Linear least squares 62
2.1.  Least squares and least deviations 63
2.2. Regularized least squares 63
2.3. Adding offsets to the linear model 64
2.4. Multivariate regression 64
2.5. Batchvs. incremental learning 64
2.6. Model parameters and meta-parameters 64
3. From linear least squares to non-linear regression 65
3.1.  Locally weighted regression (LWR) 65
3.2.  Regression with radial basis function networks (RBENS) 66
3.3.  Aunified model 66
4.  Model: mixture of linear models 67
4.1.  Algorithm: locally weighted regression (revisited) 67
4.2. Algorithm: receptive field weighted regression 67
4.3.  Algorithm: locally weighted projection regression 68
44.  Algorithm: XCSF 68
4.5.  Algorithm: Gaussian mixture regression 68
4.6.  Algorithm: M5 (model tree regression) 69
47. Summary 69
5. Model: basis function network 69

* Corresponding author.
E-mail addresses: freek.stulp@ensta-paristech.fr (F. Stulp), olivier.sigaud@isir.upmc.fr (0. Sigaud).

1 Tel.: +33(0) 144 27 88 53.

http://dx.doi.org/10.1016/j.neunet.2015.05.005
0893-6080/© 2015 Elsevier Ltd. All rights reserved.


http://dx.doi.org/10.1016/j.neunet.2015.05.005
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2015.05.005&domain=pdf
mailto:freek.stulp@ensta-paristech.fr
mailto:olivier.sigaud@isir.upmc.fr
http://dx.doi.org/10.1016/j.neunet.2015.05.005

F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 61

5.1.  Least squares for basis function networks 70
5.1.1.  Design matrix 70

5.1.2.  Feature matrix 70

5.1.3.  Gram matrix (for kernel functions) 70

5.1.4. Preview 70

5.2.  Algorithm: regression with radial basis function networks (revisited) 71
5.3.  Algorithm: kernel ridge regression 71
5.4. Algorithm: Gaussian process regression 71
5.5.  Algorithm: support vector regression (SVR) 72
5.6.  Algorithm: iRFRLS 73
5.7.  Algorithm: I-SSGPR 74
5.8.  Algorithm: CART (regression trees) 74
5.9. Algorithm: extreme learning machine (ELM) 74
5.10.  Algorithm: backpropagation 75
5.10.1.  Backpropagation for SLFNs 75

5.10.2.  Backpropagation for multi-layer feedforward networks (MLFFs) 75

5.10.3.  Backpropagation for recurrent neural networks (RNNS) 76

5.10.4.  Comparison of RBENs and MLFFs 76

5.11. Summary 76
6.  The unified model revisited 76
6.1.  Classification based on special cases of the unified model 76
6.2. Meta-parameters and empirical comparisons 77
7. Conclusion 78
Acknowledgments 78
References 78

1. Introduction

Regression is the process of learning relationships between in-
puts and continuous outputs from example data, which enables
predictions for novel inputs. This relationship is represented as a
function f : X — Y, which predicts, for instance, a person’s height
from their age. Here, the input space X (age), is known as the de-
pendent variable, and the output space Y (height) as the inde-
pendent variable (Fisher, 1925). In the example, the training data
consists of concrete age and height measurements for a set of peo-
ple.

Regression is a form of supervised learning where the output
space is continuous, i.e. Y € RM. In parametric regression, one
assumes that the function f is well represented by a specific
parameterized model, for instance a linear model f (x) = a™x. With
a linear model, the model parameters are the slopes a. The aim of
parametric regression is to find the parameters of the model that
minimize some error on the training examples.

Another example of a parameterized model is a Radial Basis
Function Network (Park & Sandberg, 1993), where the function is
modeled as a weighted sum of basis functions f(x) = 25:1 We
¢e(X). If we assume that the basis functions ¢.—q. g have pre-
specified centers and widths, the model parameters that are to
be determined through parametric regression are the weights
We—1. g, See Fig. 1.

The generic scheme for parametric regression is depicted in
Fig. 2. The input to the regression algorithm is the training data
and a set of algorithmic meta-parameters, including for instance
learning rates. Each regression algorithm assumes a certain type
of model, e.g. linear least squares assumes a linear model. The
output of the algorithm is a vector of model parameters, which
are determined by minimizing an error measure on the training
data. Evaluating the model to make predictions for novel inputs
requires both the model (e.g. f (x) = a™x) and its model parameters
(e.g.a = [2 1]"). A detailed discussion of the differences between
model parameters and meta-parameters is given in Section 2.6.

In this article, we take a model-centric view on regression, which
means that we classify and analyze algorithms based on the model
they assume, rather than the algorithmic procedure that is used
to optimize the parameters of this model. Our first contribution
is to show that the models used in a wide variety of regression

algorithms (listed in Table 1) fall into two main classes: a mixture
of linear models or a weighted sum of basis functions.

Our second contribution is to demonstrate that the latter class
of models (weighted sum of basis functions) is a special case of
the former one (mixture of linear models). As a consequence, and
rather strikingly, all the algorithms in Table 1 - despite having
being derived from very different principles — use parameterized
functions that can be described by one unified model. This has been
visualized in Fig. 3. Thus, these regression algorithms should not
be thought of as using their own distinct model customized to the
algorithmic procedure, but rather as using models that are special
cases of the unified model. Such a perspective provides a deeper
understanding of the relationship between these algorithms, and
is a necessary step towards model-based machine learning, as
proposed by Bishop (2013), i.e. the idea of the automated selection
of the adequate machine learning algorithm given the formal
description of a specific learning problem.

Despite our model-centric view, we do describe and explain
the algorithmic procedures used in different regression algorithms,
including (regularized) least squares, expectation-maximization,
backpropagation, decision tree learning, and Gaussian process
regression. This is necessary to understand why an algorithm
assumes a certain type of model, and how that model relates to the
unified model we propose. These explanations however, should
not distract from the fact that our main interest is in the underlying
model that the algorithms assume (linear model, RBFN, model tree,
Gaussian mixture model, Gaussian process), and that all these
models are special cases of the unified model.

Explaining the algorithms also allows this article to be used as
a tutorial on regression; we provide an overview of many algo-
rithms, show their derivations from first principles, visualize their
inner workings so that novices may acquire an intuitive under-
standing, and provide network representations for readers with a
background in artificial neural networks. Using one unified, easy to
understand model highlights relationships between algorithms; a
key to acquiring more global understanding of regression meth-
ods. It is not our aim to be exhaustive, in terms of presenting all
regression algorithms and their variants. This would distract from
our actual aim, which is to highlight the similarities and differ-
ences between those algorithms whose underlying model is a spe-
cial case of the unified model. For further reading, we provide



62 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

£0) = L wete(x)
> O
Zp O : &%

Fig. 1. Radial Basis Function Network (RBFN) with D inputs and E radial basis
functions. Unlabeled connections have weight 1.

training data input
(inputs/targets) (novel)
Regression
meta-params 2lzontb model params
model
output

(prediction)

Fig. 2. Generic flowchart for parametric regression.

training data
(inputs/targets)

< .
55 vk men
)
22 wwnmen
s 8
oun p
22 [ i men =
5
£3 XCSF meta (novel)
€ E
HEeT
3o
¢ P
2% Momew unified model Evaluate
E + model params
— | RBFN meta
o output
5 5 KRR meta (prediction)
EB
Z 0 GPR meta GPR
%)
2, SVR meta
=
o . T
5 iRFRLS meta iRFRLS
2 c
8 &2 I-SSGPR meta I-SSGPR
g
sa ELM meta ELM
23
CART meta CART

Fig. 3. The algorithms described in this paper have a model that is either a mixture
of linear models (upper block) or a weighted sum of basis functions (lower block).
Since the former is a special case of the latter, the output of all algorithms can be
described by one unified model. Full algorithm names are given in Table 1.

references to other tutorials and books, including the work of
Bishop et al. (2006), Schmidhuber (2014), Smola and Schélkopf
(2004) and Williams and Rasmussen (2006).

The rest of this article is structured as follows. In the next
section, we present (regularized) linear least squares, the classical
algorithm for linear regression. In Section 3, we describe how
linear least squares has been extended in two different directions.
These two directions have lead to two classes of algorithms, which
generate either a mixture of linear models or a weighted sum of
basis functions. In Section 3.3, we show that these two different
classes of models can in fact be unified, the latter being a special
case of the former. Algorithms that use these two classes of models
are presented in Sections 4 and 5 respectively. In Section 6, we
discuss the impact of the unifying perspective, before concluding
with Section 7.

=

2. Linear least squares

In this section, we present linear least squares (LLS) regression.
We describe some variants of the basic algorithm, including

Table 1
List of algorithms presented in this article.

Model: mixture of linear models

LWR Locally weighted regression
(Atkeson & Schaal, 1995)
RFWR Receptive field weighted regression
(Schaal & Atkeson, 1997)
LWPR Locally weighted projection regression
(Vijayakumar & Schaal, 2000)
XCSF XCS for functions
(Butz & Herbort, 2008)
GMR Gaussian mixture regression
(Calinon, 2009; Hersch et al., 2008)
M5 Model trees

(Quinlan, 1992)

Model: weighted sum of basis functions

RBFNS Radial basis function networks
(Park & Sandberg, 1993)
KRR Kernel ridge regression
(Saunders et al., 1998)
GPR Gaussian process regression
(Williams & Rasmussen, 2006)
SVR Support vector regression
(Vapnik, 1995)
iRFRLS Incr. random features regularized least squares
(Gijsberts & Metta, 2011)
I-SSGPR Incr. sparse spectrum gaussian process regr.
(Gijsberts & Metta, 2012)
CART Regression trees

(Breiman et al., 1984)

ELM Extreme learning machine
(Huang, Zhu et al., 2006)
BProP Backpropagation

(Werbos, 1974)

different regularization methods, multivariate LLs, and recursive
least squares. The aim of the following section - Section 3 - is then
to show how linear least squares is used in the context of non-linear
regression.

First, we formalize some of the concepts related to parametric
regression, as presented in the introduction. The aim of supervised
learning is tolearnafunctionf : X — Y from N training examples®
{(xy, yn)}g’:p where Vn, X, € X Ay, € Y.Inregression, the output
space is continuous (Y < RM). Multivariable (resp. multivariate)
regression refers to input spaces X (resp. output spaces Y) with a
dimensionality of more than one.’

In the case of linear regression, the family of model functions
is linear, which means that f(x) is represented as a line (1D),
plane (2D) or hyperplane (>3D). Formally, if the data is assumed
centered so that the hyperplane goes through the origin, the
underlying model is

fx) =a'x, (1)
where a is a D x 1 vector that contains the slopes of the linear
function, as visualized in Fig. 4.

A popular method for determining a is the linear least squares
(LLs) algorithm. It uses the vertical distance between observed

values y, and the predictions f(x,), which are known as the
residuals:

Tn = Yn — f(Xn) (2)
=y, —a'x, (for linear models). (3)

The residuals are visualized as vertical lines in Fig. 5.

2 Throughout the paper, we denote scalars as lowercase symbols (x), vectors as
bold lowercase symbols (x) and matrices as bold uppercase symbols (X).

3 To facilitate presentation and visualizations, we mostly use Y < R! in this
paper, i.e. the output is 1-dimensional, and the target values y, are scalars rather
than vectors. Multivariate regression is presented in Section 2.4.



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 63

25

Fig.5. Illustration of least squares. Black dots represent the training examples, and
the thick line is the learned function f (x). Vertical lines represent residuals.

In the LLs case, the sum of the squared residuals

N
S@ =Y O —f(x))’ (4)
n=1
N
= Z(.Vn - aTXn)z (5)
n=1

is minimized, which in matrix form is
S@) = (y — Xa)'(y — Xa), (6)

with X being the N x D design matrix that combines all the input
vectors, and the N x 1 vector y combining all scalar target values:

X111 X120 X1p Y1
X211 X22 -+ X2D Y2

X=| . . sooy=| s (7)
XN1 XN2 ' XND N

where each row corresponds to one input/target example. The
slopes of the linear model that minimize (6) are

a* = arg main S(@a) (8)
= arg main (y — Xa)"(y — Xa), (9)

which is a continuously differentiable unconstrained optimization
problem. The solution of this problem is to determine when the
derivative

S'@) = 2@X'X) — X'y) (10)
is 0, which is the case when
a* = (X'X)"'XTy. (11)

Thus, given the input data in X and target data in y, the linear
function that best fits the data - in terms of minimizing the sum
of squared residuals - is f (x) = a*Tx.

Before continuing, we want to draw explicit attention to the
difference between the model used in this section - the linear
model in (1) - and the algorithm used to determine the model
parameters of the model - the computations in (11). Note that to
make a prediction for a novel input X", we need only to know the
model (linear) and its parameters (a), but not the algorithm used
to compute a.

2.1. Least squares and least deviations

The [P-norm ||z||, of a D-dimensional vector z is defined as

b \»
||z||p=(2|zd|f’) : (12)
d=1

The L?-norm is commonly known as the Euclidean distance, and
the L'-norm as the Manhattan distance.

As the name implies, linear least squares uses the sum of squares
of the residuals as the error measure to minimize. This corresponds
to the square of the L2-norm of the residuals, and we may rewrite
(9)as

*

a* = argmin (|ly — X"all»)? (13)
a
1
N 2
= arg min ( E lyn — aTxn|2> (14)
a
n=1

N
= argmin (Z [y — aTx,1|2> ) (15)

n=1

Alternatively, one may minimize the L'-norm of the residuals

*

a® = argmin ||y — X"a|; (16)
a

N
= arg min lyn — a™xy| (17)
p (S
which is known as “least absolute deviations” (Bloomfield &
Steiger, 1980). Regression with the L'-norm is more robust, but
a disadvantage is that (16) cannot be solved analytically, so an
iterative optimization approach is required.

2.2. Regularized least squares

Potential singularities in (X"X) may make it difficult to invert
this matrix, which can result in very large values in the vector
a. A solution to this issue is to explicitly penalize large weights,
which results in Regularized Linear Least Squares (RGLS), where (9)
becomes

* . & 2 1 T 2
a” =argmin | ~[la[l” + [y — X"a|” |, (18)
a \2 2

where A is a parameter that determines the trade-off between
small values in a and small residuals. Using the L?-norm for ||a||

b 2
lall, = (Zmnz) (19)
d=1

is called Tikhonov regularization. rRGLs with Tikhonov regulariza-
tion is known as Ridge Regression (RR). Using the same derivation
as for (11), the analytical solution to this least squares minimiza-
tion problem is

a* = (AL 4+ X"X)"'XTy. (20)
It is also possible to use the L'-norm
D
lalls =) lal, (21)
d=1

which has the advantage that values in a will tend to go to zero.
In the context of basis function networks (Section 5), the L' norm



64 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

can thus be used as a feature selector. Here again, using the
L'-norm does not have an analytical solution as in (20). Several
algorithms for finding solutions are described in Schmidt (2005)
and Tibshirani (1996). In the context of RGLs, the L'-norm is known
as the “least absolute shrinkage and selection operator” (LASSO).

Another norm is used in Support Vector Regression (SVR)
methods, which we discuss in Section 5.5. These three norms are
visualized in Fig. 6.

2.3. Adding offsets to the linear model

In the above, we have assumed that the data is centered, in
which case a linear model f(x) = a'x suffices. If the data is
not centered, an offset should be added so that the linear model

. . alT [x
becomes f (x) = a’x+ b, which we may rewrite as f (x) = [b] [1]
In this case, the design matrix becomes

X111 X12 xip 1
X21 X2 -+ Xp 1
X = 22)
: . : 1
XN1  XN2 xnp 1

The result of fitting a linear model with offsets to our example
data - which are sampled from the function y = 0.5x + sin(x)
- is depicted in Fig. 5, where the estimated function is f(x) =
0.11x + 1.18.

2.4. Multivariate regression

In multivariate regression, the output space is multi-dimensional
(Y € RM), where the output is thus a vector, a becomes a matrix
A, and the linear model is

f(x) = A'x. (23)

The design matrix of inputs is the same matrix X, but the targets are
now stored in a matrix Y, and the least squares solution becomes

A* = (X'X)"'XTY. (24)

This solution is decoupled between the different output variables,
and corresponds to M separate univariate least squares solutions:

a = (X'X)" X"y (25)

In the rest of this paper, we will mostly use a 1D output, for ease
of presentation and visualization. All examples are easily extended
to the multivariate case by applying (24) or (25).

2.5. Batch vs. incremental learning

Egs. (11) and (20) provide a batch method for finding the
optimal weights w*, by considering the training examples all at
once. In contrast, incremental methods are able to update the
weights (and other parameters of the model) incrementally, one
training example at a time.

Throughout this paper, we present several models for which
both batch and incremental algorithms exist. For instance, the
weights of a single-layer feedforward network can be trained
through Extreme Learning Machines (batch) or backpropagation
(incremental). The weights of a mixture of linear models can be
updated through locally weighted regression (batch) or receptive
field weighted regression (incremental).

For least squares, the batch method in (11) and (20) requires
the inversion of a matrix, which has complexity ©(N3). In fact,
incremental methods also exist for linear least squares itself. The
most well-known is the Recursive Least Squares (RLS, Plackett,

llall

-

Fig. 6. Visualization of the L', L2, and svr norm.

1950), which updates the linear model from each new example
without recomputing (11) at each step.

Alternatively, one can use the Sherman-Morrison formula,
which enables the inverse to be updated incrementally, reducing
the inversion complexity to ©(N?). However, this method is
sensitive to rounding errors; a numerically more stable option
consists in updating the Cholesky factor of the matrix using the Qr
algorithm (Gijsberts & Metta, 2012).

Another incremental approach to solving these equations
consists in optimizing the weights of a matrix that stands for
(X'X)~! using gradient methods, as in the backpropagation
algorithm for instance (see Section 5.10).

Note that the distinction between batch and incremental learn-
ing is related to, but not the same as the distinction between offline
and online learning. A batch algorithm uses all the training data at
once. An incremental algorithm updates an existing model incre-
mentally, using one training example at a time. In offline learning,
all examples are stored and accessible, whereas in online learn-
ing a training example is forgotten once it has been processed.
Batch learning is always off-line, because it needs access to all the
training examples at once, and they must thus be stored in mem-
ory. Online training always requires an incremental algorithm, be-
cause only one data example can be considered at a time, and the
algorithm must thus be able to update the model incrementally.
However, incremental learning can also be performed in an offline
setting, by providing the stored examples to the algorithm one by
one, but without deleting them from memory. The term ‘online’ is
often (inaccurately) used to denote ‘incremental’ (Wilson & Mar-
tinez, 2003).

2.6. Model parameters and meta-parameters

Fig. 2 illustrates that regression algorithms assume a certain
type of model. Each algorithm is designed to determine the optimal
values of the parameters of this model, given an optimization
criterion. Meta-parameters are algorithmic parameters that the
user has to provide as an input to the algorithm. An understanding
of linear least squares allows us to now give specific examples
for an algorithm’s model parameter and meta-parameters. This
distinction is important for later sections.

The model used in linear least squares is a linear model,
i.e. f(x) = a'x. The model parameters are thus a. If we use an
offset f(X) = a'x + b, the model parameters are a and b. Model
parameters are all the parameters that are required to make a
prediction for a novel output.

Linear least squares has no meta-parameters; there is no
parameter the user has to tune to make the algorithm work. But
in linear least squares with Tikhonov regularization, the user has
to tune the parameter A, which determines the trade-off between
having small values in a and having small residuals. The parameter
A is thus a meta-parameter of regularized linear least squares.

The important insight is that regularized LLs and ‘standard’ LLS
use the exact same model, and thus have the same aim: optimize



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

Least Squares

Weighted Least Squares

Locally Weighted Regression

65

Radial Basis Function Network slopes of the fitted

plane are the weights
of the basis functions

T

0 0 1
0.5
1 @ O TR o ey
£ Pxc,) 2
kY 0.5
two basis functions project
0 G C Cy C3 ¢ % the 1-D input data into
0 2 4 6 0 2 6 0 2 4 a 2-D feature space

X

Fig. 7. Illustration of four regression algorithms. Black dots represent the 20 training examples, and the thick (red) line is the learned function f (x). Vertical lines represent
residuals, where the thickness of these lines indicates their weight. Dashed lines represent local models. The lower row visualizes the basis functions, where for Lwr the
thin line represents the unnormalized basis functions (normalization is not necessary for the other algorithms). The right graph plots the feature space for RBFN. Each data
point in graph D3 is acquired by computing the value of both ¢ (x, ¢1) and ¢(x, c;) (which can be read from D2), and plotting y against these two values. Because the 2D
feature space ¢(x, c1), ¢(x, c3) is of a higher dimension that the 1D input space x, we now have a 3D plot. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

the values in the model parameter vector a. ‘Standard’ LLs will
always optimize a in the same way, and the values in a will
always be the same for the same training data. With regularized LLs
however, the resulting values in a depend not only on the training
data, but also on the meta-parameter A.

The main contribution of this article is to show that all the
algorithms in Table 1 use the same unified model, and they thus
all have the same aim: optimize the values in the ‘unified model
parameter vector’. These algorithms only differ in the procedure
used to determine the values of the parameters of the unified
model, and in the meta-parameters that the user must tune.

3. From linear least squares to non-linear regression

Linear least squares (LLS) regression can be extended in two
distinct ways to non-linear regression, yielding two classes of
algorithms:

e Algorithms that perform multiple weighted LLS regressions, us-
ing different input-dependent weighting functions. The result-
ing model is a mixture of linear models. This model is used in
LWR, REWR, LWPR, XCSF, GMR, and M5 (see Table 1 for full names).

e Algorithms that project the input space into a feature space us-
ing a set of non-linear basis functions, and performing one LLS
regression in this projected feature space. The resulting model is
a weighted sum of basis functions. This model is used in RBENS,
KRR, GPR, SVR, iRFRLS, I-SSGPR, CART, and ELM.

In this section, we first present two algorithms - Locally Weighted
Regression (LwR) and regression with Radial Basis Function
Networks (RBFN) - which are representative for each class. We
have chosen these two algorithms as representatives of their
class for pedagogical reasons, because they are the most straight-
forward extensions to linear least squares, and thus require only
little explanation beyond the previous section. Based on the
models used in these illustratory algorithms, we then introduce the
unified model. In Sections 4 and 5, we go through the algorithms
in Table 1 one by one, we highlight their relationships and
demonstrate how they all use the same unified model to represent
the parameterized function.

3.1. Locally weighted regression (LWR)

When performing the fitting in LLS, we may prefer to give
certain data points more weight than others. Thus, for each training

example (X,, y,), we define a corresponding weight w,,. With these
weights, the sum of residuals is now computed as

N
S@ =) wnlyn —a'xy)’. (26)
n=1

When minimizing S(a) with this weighting, it is more important to

minimize residuals that have large weights. For instance, examples

(X5, yn) that have a weight of w,, = 0 do not contribute at all.
Defining W to be an N x N diagonal weight matrix with W, =

wy, and rewriting (26) in matrix form

5@) = (y — Xa)'W(y — Xa), (27)
the weighted linear least squares solution becomes
a* = (X'WX) " IX"Wy. (28)

The weights for each sample are typically defined as a function of
the input space through a function ¢, parameterized with @

wy, = P(Xn, 0). (29)
A commonly used weighting function is the multivariate Gaussian:
¢ Xy, 0) = g(Xp, ¢, X) withf = (c, X) (30)
gx, ¢, %) =exp(—3(x— 0T '(x—0), (31)

where 6 is a tuple containing the parameters of a multivariate
Gaussian. An example of a Gaussian weighting function with
¢ = mand X 1.0 is plotted in graph of Fig. 7. In (),
the weights w, are visualized by the thickness of the vertical
lines representing the residuals. When comparing (x1) and (),
it becomes clear that weighting the examples can lead to a very
different parameterization of the linear model.

Again, we draw explicit attention to the fact that the model in
linear least squares and weighted linear least squares is exactly
the same (1); only the algorithm used to determine the model
parameters a is different, i.e. compare (11) and (28).

Locally Weighted Regression (LWR) is an extension of weighted
linear least squares, in which E independent weighted regressions
are performed on the same data (in the design matrix X), but with
E different weight matrices W,.

fore=1...E
a, = (XTW.X) " 'X"W,y. (32)

In practice, this usually means using the same type of weighting
function, but with different parameter vectors @.—;._g, for instance



66 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

asy
X
9 o1

e

2

®) O
Ap-2 2

4
JSa
i 8

1Qb;; gi)

Fig.8. Function modelinlocally weighted regression, represented as a feedforward
neural network. The functions ¢, (x) generate the weights w, from the hidden nodes
- which contain linear sub-models (a;x + b,) - to the output node. Here, ¢, is an
abbreviation of ¢ (X, 6,).

a set of E Gaussians with different centers c.—;_f, as depicted in
graph (2 of Fig. 7.

Performing weighted least squares E times for the different
weighting functions leads to E local linear models a;x + b,, which
are visualized as dashed lines in (c2). By choosing E Gaussian
weighting functions ¢.(X) = g(X, ¢, X.) with different centers
c. in the input space, each linear model is thus responsible for
fitting a different part of the data, as depicted in (c3)in Fig. 7. This
‘local responsibility’ is the reason for the name Locally Weighted
Regression.

The resulting model is a weighted sum of these linear models,
where the weights are determined by the functions ¢(x, 6.):

E
F&) =" ¢x.0) - @x). (33)
e=1
If we include the offsets b, in the linear model and use the extended
design matrix as explained in Section 2.3, we acquire the model

E

FOO =YX 0) @x+b,), (34)
e=1

which is visualized in Fig. 8.

Because each of the E local least squares regressions is per-
formed independently of the others, the summation in (33)
and (34) requires the weighting functions to be normalized, i.e.
2521 ¢(x, 8,) = 1.For instance, the normalized Gaussian weight-
ing function is:

¢(X, oe) — Eg(xv c€7 Ze)

Z g(x, Ce, Ze’)

=1
In summary, the Lwr algorithm performs several independent
weighted linear least squares regressions on the same data, but
each with a different weighting function, usually localized around
a different part of the input space. The result is a weighted sum of
linear models, where the models are linear, and where the weights
are determined by the (normalized) weighting functions.

with 0, = (c., X.). (35)

3.2. Regression with radial basis function networks (RBENS)

Instead of differently weighting each input sample - as in
weighted linear least squares and LwWR - an alternative extension
to LLS is to project each input sample into a higher-dimensional
feature space using a set of basis functions. Thus, instead of a linear
function model f(x) = a'x = Zg;l ag - X4 we now have

E
FO) =) .- p(x.0,). (36)
e=1

Here, a is no longer of size D x 1 (with D the dimensionality
of the input examples) but rather E x 1 (with E the number of
basis functions). In the literature, it is more customary to use w
(‘weights’) instead of a; a custom which we adopt in this section.

E
FO) =" we - $(X, B). (37)
e=1

This model is a weighted sum of basis functions. The term basis
function is used because the sub-functions ¢ (x, .) are the ‘building
blocks’, or ‘basis’, from which f (x) is constructed.

When the basis functions are radial, it is called a Radial Basis
Function Network (RBEN). This means that the output of the basis
function depends only on the distance to a center, i.e. ¢(||x — c||).
A frequently used radial basis function is a Gaussian function, as
in (31). Two Gaussian basis functions with centers c¢; and c, are
plotted in (>2) in Fig. 7.

In a linear model f(x) = a'x, the model is linear in the
parameters a and linear in the input x. In contrast, (37) is non-linear
in the input x, but it is still linear in the parameters w. Thus, we can
readily apply LLs to acquire the parameters w, even if the resulting
function f (x) is not linear.

To apply LLs to optimize w, we define the projected version of
the design matrix - the feature matrix - which is N x E (one column
for each basis function feature) instead of N x D as in (7):

d(X1,01)  P(X1,0) d(X1, 0¢)
D(X2,01) (X2, 0,) (X2, Op)

6= : : : (38)
$Oxn. 1) Py, 62) )

and we get the least squares solution

w'=(0'0)7'0Ty. (39)

This transforms non-linear regression in the input space into
linear regression in a feature space, where the basis functions are
responsible for projecting the input space into the feature space.
The feature space is generally of higher dimensionality than the
input space (i.e. E > D). In graph of Fig. 7, we visualize the
projection of the data from the 1D input space into a 2D feature
space using the two Gaussian basis functions. The plane which
minimizes the residuals is also shown. The slopes w of this plane
correspond to the weights of the basis functions, and wq¢(x, c1)
and wy¢ (, c;) are plotted in (o).

Note that the function can be approximated relatively well
with only these two basis functions; this is because their position
has been manually tuned for this illustratory example. Several
methods for automatically tuning the number of basis functions
and their parameters are presented in Section 5.2.

In summary, non-linear regression can be achieved by using a
set of basis functions to project the input space into a feature space,
and to perform LLs in the feature space. The result is a weighted
sum of linear models, where the models are the basis functions, and
where the weights w are determined by a single linear regression.
An example of such a model is a radial basis function network.

3.3. A unified model

When listing both models - a mixture of linear models (34) and
a weighted sum of basis functions (37) - together

E
F@) =Y. 0,) - (b + ax) (40)

e=1

E
FOO =YX, 0) - we, (41)
e=1



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 67

@ Fx) =3, ¢x.0.)(alx + be)
(IR
o1

w Qe
32
=

¢2

hAae Lo -

- ®
O o

b

>]
Q
&
<
©

. b1
o O Z
z O ——m
i ¢2
=0 c

IObE F

e .

Fig. 9. The rRBFN model is a special case of the LWR model, with model parameters
a = 0. Here, ¢, is an abbreviation of ¢ (x, 6,).

it becomes clear that (41) is a special case of (40) with a, = 0 and
b, = w,. This is also illustrated in Fig. 9.

Going from a mixture of linear models (top LWR network in
Fig. 9) to a sum of weighted basis functions (bottom RBFN network
in Fig. 9) leads to an interesting shift of interpretation. In an RBEN,
the sub-models in the hidden nodes are basis functions, whereas in
LWR, these sub-models are linear models. In an RBEN, the weights are
the (degenerate) lines (b.—1. ), whereas in LWR, these weights are
determined by the basis functions. Thus, the roles of the function
implementing the sub-models/weights are switched between the
representations. Due to this required shift in interpretation, the
relationship between the two models may not be immediately
obvious.

A closer inspection of the differences between the models also
reveals why multiple LLS regressions are necessary in LWR, whereas
only one LLS regression is required in RBEN. In (40), the model is not
linear in the parameters b, and a., and LLs cannot be applied.

In summary, the model used in LwWR is a mixture of linear
models, and in RBEN it is a weighted sum of basis functions, the
latter being a special case of the former with a = 0. In the next
two sections, we list several algorithms that yield a mixture of
linear models (Section 4) and a weighted sum of basis functions

05 intersection

height
3

@(x,c)

C C

2

I ]
range of input data

Fig. 10. Meta-parameters for Lwr: the number of weighting functions (E = 3
above) whose centers are spaced equidistantly in the range of the input data, and
the intersection height of the unnormalized weighting functions (0.35 above).

(Section 5). Throughout, it is important to keep in mind that the
model of all these algorithms are special cases of the unified model
in (40).

4. Model: mixture of linear models

In Section 3.1 we summarized that Lwr yields a function
whose underlying model is a mixture of linear models, where
the sub-models are linear, and where the weights are determined
by the (normalized) weighting functions. In this section, we
describe several algorithms which yield the same model, including
Receptive Field Weighted Regression (RFWR), Locally Weighted
Projection Regression (LWPR), XCSF, Gaussian Mixture Regression
(GMR), and M5.

4.1. Algorithm: locally weighted regression (revisited)

Before turning to other algorithms, we briefly revisit LWR to
discuss its algorithmic meta-parameters. In the Lwr algorithm
(Atkeson & Schaal, 1995), the number of linear models, and the
position and center of the weighting functions are fixed and must
be specified by the user. Assuming diagonal covariance matrices for
Gaussian weighting functions, this leads to 2-E - D parameters to be
tuned, i.e. a D-dimensional center and covariance matrix diagonal
for each of the E weighting functions.

When the dimensionality of the input space is not too large,
for instance when using LWR in the context of dynamical move-
ment primitives (Ijspeert, Nakanishi, Hoffmann, Pastor, & Schaal,
2013), it may suffice to specify the number of weighting functions
per dimension (i.e. D integers), and space the centers equidistantly
within the bounds of the input data. The diagonals of the covari-
ance matrices can be determined automatically by specifying the
height at which the (unnormalized) weighting functions should in-
tersect, see Fig. 10 for an illustration. This reduces the number of
meta-parameters for LwWR to D + 1. Alternatively, cross-validation
over the training set may be used to determine these parameters.

Although proposed almost two decades ago, LwR is still a com-
petitive, widely-used algorithm, due to its simplicity. Fitting results
may, however, become brittle if the input space dimensionality is
high and not enough data is available.

4.2, Algorithm: receptive field weighted regression

The RFWR algorithm is the incremental variant of Lwg, and
it automates the choice of several model parameters (Schaal &
Atkeson, 1997). The main differences to Lwr are:

e RFWR isincremental, rather than batch, and uses Recursive Least
Squares (RLS) instead of a batch Ls algorithm.

e New linear models and weighting functions - called receptive
fields - are added automatically by the algorithm when needed,
i.e. when some input point is not covered by any receptive field.

e The centers and covariance matrices of the receptive fields are
also adapted.



68 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

This flexibility comes at the cost of having to tune several meta-
parameters, such as thresholds for removing or adding receptive
fields as well as first and/or second order learning rates. These
meta-parameters control the dynamics of incremental learning;
these dynamics are often difficult to predict, let alone the influence
the meta-parameters have on the dynamics. Therefore, setting
these meta-parameters is not always easy nor intuitive.

4.3. Algorithm: locally weighted projection regression

The Lwpr algorithm (Vijayakumar & Schaal, 2000) is an
extension of RFWR, in which a low-dimensional affine projection is
realized before fitting the linear models. For 1-dimensional input
spaces, no such low-dimensional projection is possible, and LwPR
becomes equivalent to RFWR (Vijayakumar & Schaal, 2000). In
LWPR, linear models are fitted using an iterative version of Partial
Least Squares called NiPALs (Geladi & Kowalski, 1986).

As outlined by Sigaud, Salaiin, and Padois (2011), LWPR is
particularly interesting to perform regression when the data lies
in a limited domain - because it adds receptive fields only in this
domain - in a space with a high dimensionality—because it uses
NIPALS to infer reduced linear models. Therefore, it has often been
used to learn mechanical models of robots along trajectories, see
Sigaud et al. (2011) for a survey. LwPR has many of the same meta-
parameters as RFWR, and thus the same difficulties in tuning these
meta-parameters apply.

4.4. Algorithm: XCSF

The xcsF algorithm (Butz, Pedersen, & Stalph, 2009) also uses
a mixture of linear models. The algorithm manages a population
of classifiers that contain a condition part and a prediction part.
The condition part is usually defined as a Gaussian function
which determines the area of influence of the prediction part.
The prediction part is usually a linear model. The population
of classifiers is optimized using a genetic algorithm, and the
corresponding local linear models are learned using RLS. Once
the population of classifiers stabilizes, a condensation operator
removes all the unnecessary classifiers.

Akey feature of xcsF comes from the insight that the local linear
models and corresponding Gaussian functions do not need to be
defined over the full input space, an insight which can give rise to
much more compact models, see Sigaud et al. (2011) for details.

Additionally, LWPR uses NIPALS instead of RLS whereas XCSF can
build local linear models in a predetermined subdomain of the
input space. As LWPR, XCSF suffers from the necessity to empirically
tune several meta-parameters, though some of them can be set
more intuitively in XcsF than in LwPR. See Sigaud et al. (2011) for
further discussion and Droniou, Ivaldi, Padois, and Sigaud (2012)
for an empirical comparison.

4.5. Algorithm: Gaussian mixture regression

The underlying assumption in Gaussian Mixture Regression
(GMR) is that the data in the joint input x output space can be well
represented by a set of Gaussians, which is known as a Gaussian
Mixture Model (cmM). For an illustration of a GMM consisting of
three Gaussians, see Fig. 11.

Training: unsupervised learning. A notable feature of GMR is that the
training phase consists of unsupervised learning. It is performed
by fitting a Gaussian Mixture Model (cmMm) to the data with the
Expectation—-Maximization (EmM) (Dempster, Laird, & Rubin, 1977)
algorithm. k-means clustering is commonly used to provide a first
initialization of the centers of the Gaussians. Because EM is an
unsupervised learning algorithm, there is no distinction between

25
.
2r %, b4
L] L) o
1.5 ) .. o
> /4 ®o0?
1t
L]

0.574 GMM

0

0 2 4 6 0 2 4 6
x X

Fig. 11. Left: Gaussian mixture model (cMmM) with 3 Gaussians on the 20 example
data points. This model is acquired through unsupervised learning on the joint
input x output space. Right: Gaussian Mixture Regression, which yields the mean
and variance in the output space Y when conditioning on the input space X.

an input X, and a target y, example, and they are concatenated
into one vector z, = [X}, y.]7. The GMM represents a model of the
density of the vectors z, as a weighted sum of E Gaussian functions:

E E
p(zn) = Zﬂedv(zn; e, Xe), With Z”e =1 (42)
e=1 e=1

The EM algorithm adjusts the priors 7, and the parameters of the
Gaussian functions (the means ., and covariance matrices X.) that
define this model, see Ghahramani and Jordan (1993) for details.
The only meta-parameter of the training phase is E, the number of
Gaussians.

Regression: conditioning on the input. As noted by Ghahramani and
Jordan (1993), the learned density can be exploited in several ways,
since we can estimate § = f(x), X = f~!(y), or any other relation
between two subsets of the elements of the concatenated vector
(X} yal™

In regression, we are interested in predictingy = E(y|X), the
expectation of y given x. To do so, f, and X, can be separated in
input and output components as follows:

T T T | Zex  Xexy
Re = [ng,xa ﬂe,y] and X, = I:Ee,YX Ze.Y:| . (43)
For instance, if the dimensionality of the input space X is 2, and
that of the output space Y is 1, then X, x is a 2 x 2 sub-matrix, and
%,y would be a scalar. The matrix X, would then be of size 3 x 3,
being the covariance matrix of the full input x output space.

Given the decomposition in (43), the expected output y given
an input X is then computed as

E
y= Z he (%) (pe,y + Ze,yxze_’}((x — Mex))s (44)
e=1
with:
edv X5 e x» Ee
he(x) = il ( Hex ’X) . (45)

E

S mN (X fyxs Tix)
i=1

As a Bayesian method, an advantage of GMR over other LWR
methods is that the variance can also be computed in the estimate
of y with, see Calinon, Guenter, and Billard (2007):

E

var(¥) = Y he(®)? (Zey — TexTox Zpyy) - (46)
e=1

Relationship to the unified model. When we rewrite (44) for the

univariate case and set a; = ze!yxz;)l( and b, = ey —
—1
2:e,YX Ee,xﬂe,x we get

E
= ¢ @x+b). (47)
e=1



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 69

P (x)

0.5

Fig. 12. Relationship between MM and the unified model. The basis functions are
the (normalized) projections of the Gaussians in the MM on the input space. The
linear models have slopes a, = X, yx Z‘;} and offsets by = fley — Xevx Z‘e_)} e x-

where h.(X) = ¢ (X, 6.) are normalized Gaussian functions

& (X, Ce, Xe)
E
Z e g (X, Cor, Ter)

=1

P, 0.) = (48)

as in (35), with the centers, widths and priors stored in the
parameter vector #, = (¢, X, 7.). The model in (47) is equivalent
to the unified model in (40). The relationship between the MM and
the unified model is illustrated in Fig. 12.

Note that when representing GMR with the unified model,
we can no longer compute the variance var(y) or the resulting
confidence interval. This is because the matrices required to do
50 (X, x, X x and X, yx) have been compiled into a, and b,. Thus,
for performing the regression from x to y the unified model is
sufficient to capture the expected output of the cmm, but not to
compute var(y).

Incremental GMR. Cederborg, Li, Baranes, and Oudeyer (2010)
present a fast and incremental version of GMR named ILO-GMR.
They add to GMR a dedicated structure for storing all the data points
so as to quickly access the points that are close to a query point. The
idea consists in performing local regression at the query point on
demand, using only a small set of close points to build a small GMR
model with only 2 or 3 Gaussian features. The resulting algorithm,
ILO-GMR, iS as accurate as GMR yet performs faster.

4.6. Algorithm: M5 (model tree regression)

Model trees are decision trees which do not have class labels
in their leaves, but rather linear models (Quinlan, 1992; Wang &
Witten, 1997). The classical algorithm for growing model trees is
M5 (Quinlan, 1992). In each input dimension, it defines a decision
boundary between each pair of adjacent input examples in that di-
mension. If there are N data points and the input dimensionality is
D, there are D(N — 1) decision boundaries. Each decision bound-
ary splits the original set S into two subsets T; and T,. From these
boundaries, the boundary that minimizes the standard deviation
reduction is selected with

SDR = std(S) — Z % x std(T;), (49)

where std denotes the standard deviation and | ... | denotes the
cardinal of a set. Eq. (49) is similar to the information gain crite-
rion used to grow decision trees. This splitting procedure continues

25
2
15
>
1
0.5
0
1
~ N m
S 5| % | %
° 05
s ] (] ]
= = =
0
0 2 4 6

X

Fig. 13. Model tree representation, with linear models (top), and non-overlapping
box-car weighting functions (bottom), one for each leaf in the tree.

recursively until a given halting condition. After growing the tree,
it may optionally be pruned to reduce its size. Each of E leaves in
the tree is associated with a different disjoint subset T.—;._f of the
original training set S, i.e.S = Ule T and VeT, C S.

Within our unified model, the weighting functions of a model
tree are not Gaussian, but rather box-car functions, which are 1
if the condition in the leaf holds, and 0 otherwise. A visualization
of the model tree function representation for the example data is
shown in Fig. 13.

As Fig. 13 illustrates, there may be discontinuities when going
from one linear model to the next. This is a consequence of using
discontinuous weighting functions, i.e. the box-car functions. To
avoid discontinuities, a smoothing procedure is usually applied
when querying a model tree (Quinlan, 1992; Wang & Witten,
1997).

One of the main advantages of a model tree is that its function
representation is a tree, which can be easily visualized and
interpreted. But this advantage holds mainly with trees of limited
size, and with a large input space with many irrelevant features
(Stulp & Beetz, 2008).

The main meta-parameters for growing model trees with M5
are the minimum number of training examples per leaf (n),
a splitting threshold on the ratio of the standard deviation of
the entire dataset and the standard deviation of the leaf under
consideration (o), and whether the tree should be pruned or not
(P). Finally, a smoothing parameter k determines how much the
output is smoothed when querying the model tree.

4.7. Summary

A mixture of linear models is used in LWR, RFWR, LWPR, XCSF,
GMR, and M5. Thus these algorithms only differ in the way they
tune the weighting functions and the linear models, and in the
meta-parameters the user has to provide as an input to the
algorithm.

In this family, LwWR is at one extreme, as all the parameters of the
weighting functions are predetermined by the user and the local
linear models are learned with a one batch least squares method,
whereas in LwPR and XcSF the number of linear models and
their weighting functions are adaptive but constrained through
algorithmic meta-parameters.

5. Model: basis function network

In Section 3, we described two directions in which standard
least squares has been extended. One extension leads to a model



70 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

that consists of a mixture of linear models; algorithms that yield
this model, Lwr amongst others, have been discussed in the
previous section.

In this section we turn to algorithms that yield a weighted sum
of basis functions. This model is a special case of a mixture of linear
models with a = 0, as demonstrated in Section 3.3 and repeated
below in (50).

E
F&) =) ¢x.0.) - we. (50)
e=1

In Radial Basis Function Networks (RBFNs), presented in
Section 3.2, the basis function ¢ (x, 6.) is constrained to be radial,
i.e. the output of ¢ depends only on the distance to a center:
¢(]|x — c||). We refer to the most generic case - when there are no
constraints on ¢ - as a Basis Function Network (BFN). The different
models presented in this section are all BENs, but with different
basis functions: RBFN uses radial basis functions, neural networks
use mostly sigmoid or hyperbolic functions, iRFRLS uses cosine
functions, KRLS and GPR use kernel functions, and regression trees
use box-car functions.

Because the basis function weights in all these regression
methods can be found through least squares, in Section 5.1 we first
describe three types of design matrices used in the least squares
solution. Treating them in a separate section avoids repeating these
formulae for each of the algorithms; they are essentially the same
for all.

5.1. Least squares for basis function networks

For all algorithms in this section, least squares regression can
be used to learn the weight associated with each basis function.
The standard and regularized solutions to the least square problem
from Section 2 are repeated in (51) and (52):

w* = (Z'2)"'Z'y (51)
w' = (M +Z2'Z)"'Z'y (regularized). (52)

We now describe three forms that Z may take: the design
matrix, the feature matrix, or the Gram matrix.

5.1.1. Design matrix

In linear least squares, the matrix Z is of size N x D, i.e. each
row contains one input example, with each column representing
a different dimension of the input space. Informally, Z may be
considered as containing the ‘raw’ input data.

X111 X12 -+ X1D
X211 X22 -+ X2D

Z=X= . . . . . (53)
XN, XN2  XND

5.1.2. Feature matrix

As discussed in Section 3.2, projecting the input space into a
higher dimensional feature space with E basis functions, yields an
N x E feature matrix (one column for each basis function feature)
to which Eq. (51) or (52) is readily applicable.

o(X1,01)  @(xq,02) o (X1, 0F)
o(X2,01) ¢(x2,0,) o (Xz, OF)

Z=0X) = : : : (54)
S 01 DXy, 0:) (X 0)

Table 2
Design of all weighted basis function algorithms (FM: feature matrix, RBFs: radial
basis functions).

Algorithm Features? Size of Z? Regularized?
RBFN RBFs FM (E x N) Yes
KRR kernels Gram (N x N) Yes
GPR kernels Gram (N x N) No
iRFRLS cosine FM (E x N) Yes
I-SSGPR cosine FM (E x N) Yes
ELM sigmoid FM (E x N) No

5.1.3. Gram matrix (for kernel functions)

A kernel is a special type of basis function which relates two
elements of the input space to each other, see Williams and
Rasmussen (2006) for their mathematical properties. In this case,
Z = K(X, X) is of size N x N, because the kernel is evaluated on all
combinations of input examples. This matrix is known as the Gram
matrix.

k(x1,X1)  k(X1,X2) k(x1, Xn)
k(x2,X1)  k(X2,X3) k(x2, Xn)

Z=KX X) = : : . : - (55)
k(xN., X1) k(xN., X3) k(xN., Xy)

Note that the same kernel function k is used for all entries of
the Gram matrix. For convenience, we therefore drop the kernel
parameters 6.

Because the Gram matrix is symmetrical, (51) can be simplified
as

w* = (K'K)"'K'y (56)
=Ky, (57)

where we use K as an abbreviation for K(X, X). The same is possible
for the regularized case, if we replace the general Z matrix with the
kernel matrix K in (52), after some algebra we get

w = I+ K)ly. (58)

For more details about this computation, and in particular for a
discussion about using the kernel trick (Saunders, Gammerman, &
Vovk, 1998) in this context, see Williams and Rasmussen (2006).

5.1.4. Preview

Table 2 provides a preview of the algorithms presented in this
section, listing which type of basis functions they use, the type of
matrix used for linear least squares, and the least squares variant
they use for batch regression. This table does not list incremental
methods for learning the model parameters.

Meta-parameters and model complexity. Table 2 already gives some
insight into the types of meta-parameters these algorithms have.
For instance, in KRR and GPR each data point is the center of one
kernel. Thus, these centers depend on the training data alone, and
must not be set as meta-parameters. When applying linear least
squares to RBENS Or in iRFRLS, I-SSGPR or ELM on the other hand, the
placement of basis functions is arbitrary, and must thus be chosen
in advance.

There are several strategies for choosing the centers of the ba-
sis functions: (1) setting them manually; (2) equidistantly spacing
in the range of the input instances along each dimension; (3) ran-
domly sampling from the input range. (4) randomly sampling from
the input instances; (5) clustering the input examples and using
the cluster centers as basis function centers; In the first strategy,
the centers c.—;_f are part of the meta-parameters, and must be
set by the user. In the other cases, only E is a meta-parameter, and
the centers are determined automatically. Similar strategies exist
for cosine basis functions (iRFRLS and I-SSGPR choose the phases



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 71

Fx) =N wadn(x)

Wy
Ws Y
w6

Fig. 14. The function model used in KRR as a network.

randomly) and sigmoid basis functions (ELM chooses the bias ran-
domly).

The choice of the number of basis function E affects the
complexity of the model, and thus bias/variance trade-off. KRR
and GPR take an extreme position on model complexity, by using
all the training data as part of the model, thus letting the “data
speak for itself”. For this reason, such algorithms are known as
non-parametric regression methods (Williams & Rasmussen, 2006).
Although this article focuses on parametric regression, we have
nevertheless included KRR and GPR because of their similarity to
RBENs and other basis function networks presented in this section.
The disadvantage of this approach in GPR and KRR is that letting
each data point speak requires patience when there is a lot of data;
it in\golves the inversion of a N x N matrix, which has complexity
O(N>).

5.2. Algorithm: regression with radial basis function networks
(revisited)

Before turning to other algorithms, we briefly revisit regression
with RBENS to discuss its algorithmic meta-parameters. In RBENS,
the basis functions ¢ are chosen to be symmetric around some
center ¢,, which is therefore always a parameter of ¢, i.e.
¢ (X, Ce, ...). Commonly used radial basis functions (RBFs) include
the Gaussian (31). Different strategies for choosing these centers
were presented in the previous section. Each of these versions
yields a slightly different algorithm, and they do not all have the
same meta-parameters. Although these algorithmic variations all
use the exact same model, the algorithms may tune the values of
the model parameters in different ways, as discussed in Section 2.6.

For the relationship between RBFNs, regularization networks,
generalized splines, and dimensionality reduction, we refer to the
work by Poggio and Girosi (1990).

5.3. Algorithm: kernel ridge regression

In Kernel Ridge Regression (KRR), also called Kernel Regularized
Least Squares, the basis functions ¢ are generated from a kernel
function k(x, x), which takes two vectors from the input space as
input. Kernel functions are such that their output is maximal when
x = X and decreases as the distance ||x — X/|| increases, which
provides a locality property. An example of such a function is the
Gaussian kernel.

Using these kernel functions, regression consists in finding the
weights w of the function

N
FOO = wn-kx, xy). (59)
n=1

To perform the regression with this approach, we first compute the
Gram matrix in (55), and then perform regularized ridge regression
with (58).

How does (59) relate to the unified model in (41)? KRR turns out
to be a special case where the number of basis function is identical
to the number of data points, and where each data point is the
center of a basis function. The corresponding network model is
depicted in Fig. 14. Thus, while RBFN allows arbitrarily placed basis
function centers, KRR centers one basis function around each data
point.

5.4. Algorithm: Gaussian process regression

In Gaussian Process Regression (GPR), the key idea is that the
output datay = {y1,...,¥n}, or any subset of the output data,
can be thought of as one sample from a multivariate (n-variate)
Gaussian function (Ebden, 2008; Williams & Rasmussen, 2006).
Often, it is assumed that the mean of this distribution is 0, i.e. the
Gaussian Process is represented as

y~ N, X). (60)

The covariance matrix X is determined by the covariance function
or kernel. A typical choice is the Gaussian function

k(x,x') = of2 exp (—1(x —x)"'W'(x — X)) (61)

ofg(x, X, W), (62)

as for smooth functions, we expect in general higher covariance
between points that are closer. Here, o represents signal variance,
and W the covariance matrix of the Gaussian kernel. The Gaussian
function g, was previously defined in (31).

For a given covariance function k and N training points
{(Xp, yn)}ffﬂ the corresponding Gaussian Process is

y ~ N(0,K(X, X)), (63)

where K is again the Gram matrix, as in (55).
Predicting y, for a novel input X, is done by assuming that the
novel output y, is also sampled from a multivariate Gaussian with

Yy KX, X) Kk(xg, X)T
|:Yq] N (0’ |:l((xq, X) kX, Xq)]) , and (64)
k(xq, X) = [k(Xq, X1), ..., k(Xg, Xp)]. (65)

Conditioning this joint distribution to predict y, given X, y, and X,
yields another multivariate Gaussian (Ebden, 2008), which predicts
the probability of observing a certain y,:

ValX, ¥, Xg ~ N (k(xg, X)KX, X)y,
k(Xq, Xg) — K(Xg, X)K(X, X) ™ 'k(x4, X)7). (66)

Thus, the best estimate for y, is the mean, and the uncertainty in
Yq is captured by the variance as

¥y = k(xg, X)KX, X) "'y (67)

var (y¥q) = k(Xq, Xg) — K(Xq, X)K(X, X)’lk(xq, X)T. (68)

Fig. 15 visualizes the mean y, and variance var (y,) of the Gaussian
process over the input domain, given 10 and 20 data points of our
example training data. We see that for areas where no training data
is available, the mean tends to go towards zero (i.e. to the mean of
the Gaussian Process) and the variance goes up. When all 20 data
points are known, the variance is very low.

The open parameters of a Gaussian Process, e.g. the parameters
af2 and W in (62), are known as the hyperparameters. In our
terminology, these correspond to the meta-parameters of the GPR
algorithm for regression. Rather than tuning the hyperparameters
by hand, it is customary to tune them automatically by minimizing
their log likelihood on a training dataset, i.e. argmin, log p(y|X, 0),
where 6 contains all the hyperparameters. For a zero-mean



72 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

25

1.5

0.5

-0.5

Fig.15. Mean and standard deviation (y,=+./var(y,)) of the Gaussian process given
10 (left) or 20 (right) example data points.

25

2

15

- 1
05 A\

0 /N

-0.5

| \ \
05 \ \ \
W 1A
0 > 4 6

@,(x)

0 2 4 6 0

Fig. 16. Repetition of Fig. 15, this time emphasizing that the mean in GPR is also a
weighted sum of basis functions.

Gaussian process with Gaussian kernel as in (61) for instance,
6 contains afz and W. In this case, the only meta-parameters of
the GPR algorithm are those related to the optimization of the
hyperparameters of the Gaussian process.

Relation to the unified model. When computing the meany,, K(X, X)
and y depend only on the training data, not the novel input X,.
Therefore, K(X, X)~'y can be compacted in one weight vector,
which does not depend on the query X;. This substitution of
K(X, X)~ 'y with w* corresponds exactly to the linear least squares
solution in (57). The substitution yields

¥y = k(xg, KX, X) "y (69)
= kx4, X) - w* apply (57) (70)
= [k(Xq, X1) . . . k(Xg, Xn)] - W* (71)
N
=) wn - k(Xg. Xy). (72)
n=1

Thus, we see that the mean of the GPR is the same weighted sum
of basis functions as in KRR (see (59)), and the same network
representation as in Fig. 14 applies. As KRR, GPR may thus be
considered as a special case of RBFN, where each data point is
the center of one basis function, and each basis function has the
same width, determined by the covariance function. Such links
have been previously made by Neal (1996), Williams (1998) and
Williams and Rasmussen (2006). Therefore, GPR is also a special
case of the unified model in (41). From this perspective, the only
difference between KRR and GPR is that the former uses regularized
least squares, and the latter standard least squares (with A = 0).

Fig. 16 is a repetition of Fig. 15, except that we now visualize
the basis functions (bottom row) and weighted basis functions (top
row), just as was done for RBEN in Fig. 7 (o) and (2).

As GPR is a Bayesian method, it provides an estimate of the
variance var(y,). However, representing the PR model with the
unified model means that we can no longer compute the variance

var (y). This is because the matrices required to do so K(X, X) and
y have been reduced to the vector w*. Thus, for performing the
regression from X to y the unified model is sufficient to capture
the GPR model, but to compute var(y) or the confidence interval, it
is not. The same holds for GMR, see Section 4.5.

Non-zero mean function. Prior knowledge about a function may be
introduced in the mean of the Gaussian process. For instance, if
we know the average outside temperature at a specific location
is 20 °C, we may rather set the mean of the Gaussian process to
i = 20. The mean itself may depend on the input, so we write
u(X), which leads to a Gaussian Process:

y uX) | | KX X)) kxg, X)T
~ N , , 73
[yq} ([u(x@ k(g X) k(g X) (73)
which, when conditioned on X, y, and X, yields (the variance
estimate stays the same)

g = 1(Xg) + K(Xq, X)KX, X) ™' (y — p(X)). (74)

Note the similarity for computing the most likely estimate of in
Gaussian mixture regression in (44). In the unified model, adding a
non-zero mean to the Gaussian process thus means the weights
w* become K(X, X)~'(y — (X)), and a bias 1(Xq) needs to be
added.

Sparse and online versions of GPR. Given the cubic computation
cost in the number of examples n due to the inversion of K(X, X),
GPR is often not applicable online. There are two approaches to
avoiding the full inversion of K(X, X). The sparse approach consists
in limiting n by adequately choosing the points to remember
and forgetting the rest. A good overview of this approach can be
found in Quifionero Candela and Rasmussen (2005). For instance,
it has been recently used in Sparse Online Gaussian Processes (SOGP),
in the context of learning control policies from demonstrations
(Grollman & Jenkins, 2008).

The mixture of experts approach rather consists in splitting the
global domain of the function into smaller regions, as done in
the Lwr family of methods. Such combination of ideas from both
families are taken in Local Gaussian Process Regression (Nguyen-
Tuong, Seeger, & Peters, 2009), see Sigaud et al. (2011) for details,
and more recently in Meier, Hennig, and Schaal (2014).

5.5. Algorithm: support vector regression (SVR)

The L! and I? loss functions penalize any residual that is
larger than 0. In Support Vector Regression (SVR) a more tolerant
approach is taken. Any residual r, = y, —f (X,) that is smaller than
a given threshold |r,;| < € is not penalized. The region in which the
residuals are zero, visualized in Fig. 17, is called the e-insensitive
tube. This leads to the e-insensitive loss function

0 ifr <e

[r| —e ifr >e. (75)

Le(r) = {

This loss function cannot be minimized analytically, and the
problem is rather stated as a constrained optimization problem
(Smola & Schélkopf, 2004)

N
minimize } [l + C Y "(&F +£,). (76)
n=1
T <e+gF
subjectto { —r, <e+§, (77)

TE >0



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 73

L(r)

Iminimize

I

I
1

@ support vector

e--

O not a support vector

™
+
™

X

Fig. 17. Linear support vector regression. Data points within the e-insensitive tube
have zero penalty, and are gray. Those outside are the support vectors, which are

black.
Source: Adapted from Smola and Schélkopf (2004).

which uses the slack variables* & and &, which represent
the distance above or below the e-insensitive tube, cf. Fig. 17.
Informally, this problem can be formulated as “Try to find small
slopes a, such that the distances above & or below &, the tube
are minimal; ideally points lie within the tube, because this leads
to &t = 0and & = 0, and thus zero penalty for that point”. C
plays the same role as A in Tikhonov regularization; it determines
the trade-off between minimizing the residuals and minimizing
the norm of a.

This constrained optimization problem is solved by defining a
Lagrange function that incorporates both the term to be minimized
and the constraints (see footnote 4). The final result for linear svr,
in which the underlying model is f (x) = a™x + b, is:

N
a= ;(a; — @)X, (78)

where o;F and o, are the Lagrangian multipliers in the Lagrange
function for the first two constraints in (77). With this solution, the
linear function becomes:

fx) =ax+b (79)

N T
(Z(a; - ozn_)xn) X+b (80)
n=1

N
= Z(a;_a;)<xn,x>+b. (81)
n=1

The slopes a are thus represented® as a linear combination of the
training examples X,—1._ n.

Note that the data points inside the e-insensitive tube do not
contribute to the computation of (80), because «," and «;, are 0
for these points, and (0 — 0)x, will thus always be 0, independent
of the values in the vector x,. Since only the examples outside the
tube contribute to (81), i.e. only the example input vectors support
it, they are known as support vectors.

Using the I? norm in KRR and GPR leads to a dense represen-
tation, in which all example data points are required to make a
prediction, and must be stored in the model parameters. Using the
L. norm leads to a sparse representation, in which only a limited

4 The full understanding of the solution requires knowledge of “slack variables”
and “Lagrangian multipliers”. Explaining these concepts is beyond the scope of
this article, and we refer to the tutorial by Smola and Schélkopf (2004) for the full
derivation.

5 Methods for computing b are presented in Smola and Schélkopf (2004).

number of data points - the support vectors - must be stored. Thus,
only the support vectors are part of the model parameters.

Linear least squares is readily extended to non-linear regression
by projecting the input space into a feature space, as explained in
Section 3.2. When applying this approach to svr by using a basis
function ¢y—1_x (X) to project in the feature space (and using w
rather than a to denote weights instead of slopes), the solution
becomes

N
we =Y (@ — a7 )(Xn), (82)
n=1
K N
f@zimipqﬂmmmﬁmw+b (83)
k=1 \n=1

[
M=

(@ — o) (%), (X)) + b (84)

1

3
Il

[
M=

(of — a;)k(Xp, X) + b. (85)

n=1

This last step is the “kernel trick”, which is based on the following
insights: (1) svr only requires dot products in the feature space
(p(Xn), P(X)). (2) certain types of kernels k(x, X') - see Smola and
Scholkopf (2004, Section 2.3) for their properties - correspond
to a dot product in a feature space. (3) (¢(X,), ¢(x)) may be
replaced with k(x, x"), which avoids computing the potentially
high-dimensional feature vector ¢(x) explicitly.

The representation in (85) is compatible with the unified model
n (37) with E = N (every data point X, is the center of a basis
function ¢p—,) and w, = (« — ). The offset b can be pulled into
the weight vector by defining wy = b and ko(.) = 1.

The meta-parameters of svr are the tolerance parameter €
and the trade-off parameter C. An additional parameter v can be
introduced to deal with the trade-off between the value of € and
model complexity, giving rise to the v-svr algorithm (Scholkopf,
Smola, Williamson, & Bartlett, 2000).

5.6. Algorithm: iRFRLS

To circumvent the kernel expansion problem present in KRR and
GPR, Rahimi and Recht (2007) propose to approximate the Gram
matrix K with a set of random features, giving rise to Random
Features Regularized Least Squares (RFRLS).

Gijsberts and Metta (2011) present an incremental version of
RFRLS, named iRFRLS hereafter and I-RFRR in Gijsberts and Metta
(2012). Though the authors present their algorithm starting from
KRR, from the perspective of this paper the relationship to RBFNs
is stronger. Indeed, with respect to RBENS, the key idea behind
iRFRLS is that any function can be approximated arbitrarily well
as a weighted sum of cosine functions, as outlined by the theory
underlying the Fourier Transform (see Droniou, Ivaldi, Stalph, Butz,
& Sigaud, 2012 for a presentation of iRFRLS based on its relationship
to Fourier Transform). Thus, instead of using Gaussian kernels as in
RBENS, f (X) is as a set of E cosine functions

E
FO) =Y we - p(X, @e, Ye) (86)
e=1
E
= > w, - cos(@X + V). (87)
e=1

The basis functions are defined by randomly drawing their
multidimensional frequency @ and phase v using ® ~ ~ (0, 2yI)
and ¢ ~ U(0, 2m).



74 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

25
L]
2 T hd
L] S .
15 . e re
> .— :.
1
L]
0sfy
0
1
=
& 05
0
0 2 4 6

X

Fig. 18. Regression tree model, with degenerate linear models (top), and box-car
basis functions (bottom).

As in all other RBEN-like methods, the main meta-parameter in
iRFRLS is the number of features E, that is easy to tune considering
a trade-off between the model accuracy and the time complexity.
The other two meta-parameters of iRFRLS are A, the regularization
parameter and y, the variance over the period of the random cosine
features. Experiments on several databases confirm that RFRLS and
iRFRLS can be set close to KRR with a small enough processing time.
Indeed, iRFRLS shows interesting practical performances (Droniou,
Ivaldi, Padois et al., 2012) and its computation time is independent
of the learning data.

To summarize, iRFRLS is a basis function network approach that
uses randomly sampled features, as ELM and certain variants of
RBEN do. But it uses cosine features instead of radial or sigmoid
features.

5.7. Algorithm: I-SSGPR

In order to approximate a function, KRR uses (59) whereas GPR
uses (67). A quick way to describe 1-SSGPR is to say that it applies to
GPR the same idea that iRFRLS applies to KRR: instead of using one
kernel per data point, it draws a collection of random cosine feature
functions and then it solves the resulting - non-regularized - linear
least square problem into the projected domain. Actually, 1-SSGPR
also inherits from the GPR framework the capability to optimize
most of meta-parameters using the marginal likelihood (Williams
& Rasmussen, 2006), so the only meta-parameter that remains to
be tuned is E.

5.8. Algorithm: CART (regression trees)

Regression trees (Breiman, Friedman, Olshen, & Stone, 1984)
are a special case of model trees for which the slopes of the
linear model are zero (a = 0), i.e. the leaf contains only one
continuous value (b). Thus model trees and regression trees follow
our classification between a mixture of linear models (model
trees), and a weighted sum of basis functions (regression trees),
the latter being a special case of the former with degenerate linear
models with a = 0 (see Fig. 18).

Because model trees and regression trees are grown using very
similar algorithms (M5 and “CART learning”, respectively), and
have essentially the same advantages and disadvantages, we refer
to Section 4.6 for the full discussion.

Orr et al. (2000) use regression trees to initialize a radial basis
function network, thus highlighting the similarity between these
two representations.

&
ml
O

?}21 i
D@

V2D

. N2
& :
ToR Y
2

Fig. 19. Single-Hidden Layer Feedforward Network with D inputs and E hidden
nodes. A bias may be introduced by adding an input neuron with input 1, but it has
been left out for clarity.

5.9. Algorithm: extreme learning machine (ELM)

The Extreme Learning Machine (ELm) is a batch regression
algorithm for training the weights of a Single-Hidden Layer
Feedforward Network (SLFN) (Huang, Wang, & Lan, 2011; Huang,
Zhu, & Siew, 2006). An SLFN is an Artificial Neural Network (ANN)
that has one input layer, one hidden layer, and one output layer, as
depicted in Fig. 19. The representation® of an SLEN is

E D
FO) =Y weyr [ D veara ) . (88)
e=1 d=1

|
M-

wer (Ze) , (89)

e=1

where z, = Zg;l VegXq 1S the input to the activation function v,
which is often chosen to be sigmoid (¥ (z.) = (1 4+ e %)~ 1) or
hyperbolic (r(z.) = tanh(z.)). The model is easily extended to
have multiple output nodes (Bishop, 1995).

The ELM algorithm for determining the weights of the SLFN is
essentially the same as when using RBFNs for regression, i.e. they
both perform batch linear least squares on a projected feature
space. In the ELM approach, the basis function parameters ve_;_g
are first set randomly, and are then used to generate the feature
matrix ®(X) (Huang, Zhu et al., 2006). Least squares (39) is then
used to determine the parameters w.

Some extensions to ELMs include growing the number of hidden
nodes incrementally (Huang, Chen, & Siew, 2006) - whereby
hidden nodes may be pre-selected from a random set (Huang &
Chen, 2008) - or extending them to the complex domain (Huang,
Li, Chen, & Siew, 2008).

The sLFN model (88) used in ELMs is readily made compatible
with the unified model by pulling the weights from the input layer
to the output layer into the activation function, i.e.

E
FO) =) wep(x, Vo). (90)
e=1

Thus, from the model-centric perspective taken in this paper, a
SLEN is a special case of a basis function network’ (and thus the

6 We follow the convention by Bishop (1995), where wj; denotes the weight from
layer i to layer j. For consistency with the rest of the paper, we use d for the input
layer, e for the hidden layer, and use only one output node for ease of presentation.
Furthermore, we use different symbols for the weights in the different layers (v for
input — hidden, w for hidden — output) to facilitate the explanation of applying
least squares to learning w.

7 The relationship between radial basis function networks and multi-layer
feedforward networks is further discussed in Section 5.10.4.



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 75

up

<
¥
ISR
SIES
E-N
®
7
S

D
Zj =20 Witk

Fig. 20. Detailed view of one node in a artificial neural network. If the neuron is in
a hidden layer, the output of the neuron o; will be the input for another neuron.

unified model), where the basis function must have the form

D
PX, V) = ¥ (Z vedxd> =¥ ((Ve, X)), (91)
d=1
where (v,, X) denotes the inner product between v, and x.

5.10. Algorithm: backpropagation

An incremental approach to optimizing the connection weights
in an artificial neural network (Rosenblatt, 1958) is the backward
propagation of errors (Werbos, 1974), or simply backpropagation.
This algorithm first propagates an input x, forwards through the
network (from the input to the output layer), and computes the
error %(yn — f(x,))? at the output node. It then propagates this
error backwards through the network, and updates the weights in
each layer through gradient descent. Although backpropagation
is usually associated with artificial neural networks that use
sigmoid or hyperbolic activation functions, the algorithm is also
applicable to radial basis function networks (Poggio & Girosi, 1990;
Schwenker, Kestler, & Palm, 2001a).

In Fig. 20, we depict one neuron of an ANN, agnostic of whether
it is in a hidden or an output layer. The local rule for updating one
weight of one such neuron is:

Wji <— Wji + Ol(SjUj (92)

where §; is the error between the actual output of the neuron and
the target output, u; is the input from neuron i to neuron j, and o
is the learning rate. This rule is acquired® by computing the partial
derivative of the error of the neuron w.r.t. the weight %‘;

If the node is an output node, the error §; depends on the
residual r, = y, — f(x), i.e.

8] = 1»[fj/(zj)(yn —f(%n)). (93)

If the node is a hidden node, §; is defined in terms of errors §y of
neurons in the subsequent layer, i.e.

K
§=/z) ) Swy. (94)
k=1

This recursive rule for computing é is what propagates errors from
the back (where the errors correspond to the residuals at the
output neuron) to the front of the network (the input layer).

So far, we have presented backpropagation as an incremental
algorithm, i.e. it is able to update the weights incrementally with
(92), one training example at a time. However, a batch version
exists also, which updates the weights at once, given all the
available data:

N
wji < wji + o Z Onjun,i (batch version). (95)

n=1

8 For a full derivation of the backpropagation rules, we refer to Bishop (1995).
Here, we provide only a brief summary of the resulting rules.

In mini-batch learning, the weights are updated with (95), but
using sub-batches of size K < N (Wilson & Martinez, 2003). In-
cremental and standard batch training can thus be seen as special
cases with K = 1 and K = N respectively. Wilson and Martinez
(2003) show that using batch or mini-batch for backpropagation on
a speech recognition task provides no advantage over incremental
learning in terms of learning accuracy or speed.

5.10.1. Backpropagation for SLFNS

In the sLEN depicted in Fig. 19, there is only one hidden layer,
and the output node does not have an activation function (it is
identity, and thus ¥'(z.) = 1). When applying the local update
rule (92) to update the weight w,, we have § = y,, — f(x,) from
(93), and u, = 23:1 VedXq, Which results in

D
We < We + &(¥n = (X)) Y veaXa. (96)

d=1

If we keep the weights v._;_[ fixed, and only the weights to the
output are thus to be trained, (96) is an incremental gradient-based
alternative to the batch least squares used in ELM.

For the weights from the input layer to the hidden layer, §; =
¥’ (z4)8.w, and uy = x4, which yields the update rule

Ved <= Ved + Olw'(la)&wexd- (97)

Comparison of ELM and Backpropagation. Huang et al. (2011) show
that training ELMs with random features and least squares is much
faster than with backpropagation. It has lower computational cost
than using gradient back-propagation, despite the cubic cost of
computing the inverse (X"X)~!.

Rahimi and Recht (2008) analyze the advantages of using ran-
dom features instead of backpropagation. They show that, al-
though being much easier to obtain, random features can generate
close to optimal solutions if numerous enough. This analysis is also
at the heart of the design of iRFRLS and I-SSGPR (see Sections 5.6 and
5.7). A complementary analysis comes from Widrow, Greenblatt,
Kim, and Park (2013), who examine under which conditions train-
ing a network benefits from backpropagation or not. Schwenker
et al. (2001a) use a combination of both least squares batch learn-
ing and incremental backpropagation.

References to empirical comparisons between ELM, backpropa-
gation, and other algorithms are given in Section 6.2.

5.10.2. Backpropagation for multi-layer feedforward networks
(MLFFS)

The network visualized in Fig. 19 is easily extended to
incorporate more than one hidden layer. Following the notation
by Poggio and Girosi (1990), the function representation of such
multi-layer feedforward networks (MLFFs) is

E D C
Fo =Y wey (Z VeaVr ( Y (Z udcxc> . )) . (98)
e=1 d=1 c=1

An advantage of the backpropagation algorithm is that it
optimizes all of the weights in the network from output to
input with the generic update rule (92), and thus readily extends
to multi-layer networks. In the multivariate, high-dimensional
case, Friedman and Stuetzle (1981) propose an advanced gradient
descent algorithm for networks with several layers. In contrast, the
least squares approach used in ELMs can only be used to tune the
weights from the final hidden layer to the output layer, because
these are the only weights which are linear with respect to the
output.

Deep Neural Networks (DNN) (Bengio, 2009) are networks,
typically feedforward, that have many hidden layers. This allows



76 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

more abstract features to be represented in the hidden layers.
Gradient backpropagation is also used for tuning the weights
of the network, though a first stage of unsupervised learning is
commonly used to preshape those features (Bengio, Courville, &
Vincent, 2013; Schmidhuber, 2014), to avoid the vanishing gradi-
ent problem (Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001).
DNNs are more commonly used for classification, where they
outperform their shallow counterpart. Whether this superiority
extends to regression is still an open question. Even for classifica-
tion, understanding the reasons for the superiority of DNNs is an
active topic of investigation. Researchers who address these ques-
tions tend to use elementary basis functions that are piecewise lin-
ear rather than nonlinear, because it provides a better grip on their
composition (Pascanu, Monttfar, & Bengio, 2013). These investi-
gations are too recent to be properly covered in this review, so the
reader is referred to Alain and Bengio (2013), Dauphin et al. (2014)
and Pascanu et al. (2013) for more references to this quickly evolv-
ing domain.

Our unified model can in principle be used to represent a DNN,
if we consider all the layers up to the final layer of a DNN to be
the implementation of a rather complex basis function (consisting
of weighted compositions of the basis functions in preceding
layers). However, this shallow perspective does not capture the
dynamics of learning the weights in preceding layers through
backpropagation, nor does it provide insight in the relations to
other types of regression algorithms.

5.10.3. Backpropagation for recurrent neural networks (RNNS)

In feedforward networks, only connections to nodes in
subsequent layers are allowed. Recurrent neural networks do not
have this constraint, and connections to nodes in previous layers
or nodes within a layer are possible. This leads RNNs to have
an internal state, which changes over time even if the input
does not change. Backpropagation through time is a generalization
of backpropagation, enabling this gradient-based method to be
applied to RNNs (Werbos, 1988). Due to the cycles in RNNs, and the
internal state that arises from them, RNNs cannot be captured by
the unified model.

5.10.4. Comparison of RBENS and MLFFS

Bishop (1995, Section 5.8) summarizes some of the differences
between RBFNS and MLFFS. RBENS use radial basis functions, which
take the distance to a center as an input. Each basis function is
thus a localized representation, and only a few basis functions
are active for a given input. In contrast, an MLFF is a distributed
representation, because the sigmoid function - which splits the
input space into an active and inactive spaces - activates many
of the hidden units. Furthermore, RBFNs typically have only one
layer of hidden units, whereas MLFFs often have many hidden
layers (Bishop, 1995). Finally, RBFNs weights are typically trained
in two phases - randomly setting or preshaping features and
then performing batch least squares - although backpropagation
has been applied also (Poggio & Girosi, 1990; Schwenker et al.,
2001a). On the other hand, MLFFs are typically trained with
backpropagation, because least squares can only be applied to the
last layer of MLFFs. Dorffner (1994) discusses these differences
in greater detail, before introducing a more general class of
conic basis functions that encompasses radial basis functions and
sigmoid activation functions. The paper also discusses the interest
of combining both families of functions in the same approximator,
as in Cohen and Intrator (2002).

Apart from standard activation functions such as Gaussian,
hyperbolic or sigmoidal functions, many other families of basis
functions can be used. One can even evolve the activation
function of neurons with evolutionary techniques, sometimes
leading to higher performance than sigmoidal activation functions

(Augusteijn & Harrington, 2004). However, as noted by Dorffner
(1994), finding the right class of activation functions might be very
problem dependent or give rise to the curse of dimensionality. One
can also use neural units whose activation function is of higher
order than a sigmoidal function applied to a weighted sum of
inputs. The representational power and learning complexity of
several instances of this family of networks, such as product unit
networks, is studied in Schmitt (2002).

5.11. Summary

All the algorithms listed in this section use the same function
model

E
FOO =) ¢ 0) - we, (99)
e=1

which is a special case of the unified model in (41) witha = 0.
However, different algorithms use different instantiations of (99),
as listed in Table 2.

In KRR and GPR, the number of basis functions is taken to be N
whereas in all other algorithms this is an arbitrary parameter E.
Additionally, in GPR and KRR, the basis functions are centered on the
data points whereas in RBENS, they can be either regularly placed to
pave the input space or drawn randomly. In all models but ANNs,
iRFRLS and I-SSGPR, it is standard to use Gaussian basis functions
(that combine the kernel and radial basis function properties),
whereas iRFRLS and I-SSGPR use cosine basis functions and ANNs
more often use sigmoids or hyperbolic functions.

Some types of ANNs are special cases of the unified model
(sLEN) and some are not (RNNs). The backpropagation algorithms
are applicable to all ANNs, whereas least squares is only applicable
to SLENs. The latter case, known as the ELM, is very similar to
training RBENS. For further connections between these methods,
the reader is referred to Smola and Schélkopf (2004), who examine
the relationship between svr and ANNs.

6. The unified model revisited

All the algorithms discussed in this paper use the same generic
function model in (41), but different algorithms use special cases of
this generic model. In this section, we reconsider the relationships
between the two main classes of models. Furthermore, we list, for
the different algorithms, which model parameters must be pre-
specified by the user, and which are determined by the algorithm
itself.

6.1. Classification based on special cases of the unified model

Fig. 21 presents a classification of the regression algorithms
presented in this paper, based on what type of special case of
the unified model they use. Note that this perspective considers
only the model used to represent the function, and treats the
algorithmic process as a black-box. For instance, least squares and
weighted least squares output the exact same representation (one
linear model), even if they use different methods to compute it, and
may thus yield different parameterizations of this model.

This model-based perspective on the algorithm leads to several
observations, some straightforward, and some rather intriguing.

e Least squares is special case of weighted least squares, with
w=1.

e Weighted least squares is a special case of Locally Weighted
Regression with E = 1.

e Gaussian process regression, which uses standard least squares,
is the Bayesian interpretation of KRR, which rather uses
regularized least squares.



F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 77

Linear model
() =aTx +b

E£1

Mixture of linear models
(unified model)

E ov°
760 = Ly 9(x, 62 (abx+be) o
sub-models: alx + b, Any BFs
weights: ¢(x,0.) -
BOX—car BFs
ax0

Weighted sum of basis functions

1) =30 6, 6c) - be
sub-models: ¢(x, 6.) 2
weights: b,

LLS (Linear Least Squares)
(Weighted Linear Least Squares)

‘ GMR (Gaussian Mixture R.)

LWR. (Locally Weighted R.)

RFWR (Receptive Field Weighted R.)
LWPR (Locally Weighted Projection R.)
XCSF

M5 (Model Trees)

‘ RBFN (Radial Basis Function Network)

_c\)
Radhe e KRR (Kemel Ridge R.)
Kernel ¢(x,x") GPR) (Gaussian|Process|R)
Cosine iRFRLS
S 2%-cy, -SSGPR
g,%/d " Bk
QS(Q. CART (Regression Trees)
n,

ELM (Extreme Learning Machine)
Backpropagation

Fig. 21. Classification of regression algorithms, based only on the model used to represent the underlying function.

Table 3

Gray: meta-parameters of the algorithms (partial model specifications in columns 3-5 and further algorithmic parameters in column 6) which the user must set. White: model
parameters that the algorithm determines itself. Abbreviations: adap. = adapted, indiv. = from individual training examples, rand. = randomly sampled, CO = constrained

optimization.
Algorithm Linear model estim. Number of BFs (E) Position of BFs (c,) Size of BFs (X,) Algorithmic parameters
Model: Mixture of linear models
LWR LS fixed fixed fixed
RFWR RLS adap. indiv. adap. many
LWPR NIPALS adap. indiv. adap. many
XCSF RLS adap. adap. adap. many
GMR EM fixed adap. adap.
M5 LS adap. adap. adap. n,o,P,k
Model: Weighted sum of basis functions
RBEN LS fixed fixed fixed
KRR (RG)LS indiv. indiv. fixed A
GPR LS indiv. indiv. fixed k(.)
SVR Cco adap. indiv. fixed €
iRFRLS RLS fixed rand. rand. Y, A
1-SSGPR RLS fixed rand. rand.
CART LS adap. adap. adap. n,o,P, k
ELM LS fixed rand. rand.
BPrOP N/A fixed adap. adap. o

e The model used in Gaussian process regression is a radial basis
function network with a potentially infinite number of hidden
basis functions (Neal, 1996; Williams, 1998).

e iRFRLS is a basis function network that uses (non-radial) ran-
domly generated cosine basis function. Its excellent perfor-
mance in practice raises interesting questions, because iRFRLS
differs from all other algorithms in this paper but artificial neu-
ral networks in two important ways: it uses global (cosine)
rather than local (radial) basis functions, and it generates their
parameters randomly, rather than from the data.

e regression trees are to RBENs (both using a weighted sum of
basis functions) what model trees are to Lwr (both using a
mixture of linear models), except that the trees use box-car
basis functions. Thus, even though regression and model trees

are learned using the same algorithm, the underlying model
they learn belongs to a different class.

6.2. Meta-parameters and empirical comparisons

Regression algorithms differ in the number of meta-parameters
that need to be set. For instance, for LwRr, the number of basis
functions, as well as their centers and widths, must be specified
by the user. For GMR, GPR and I-SSGPR, on the other hand, only the
number of basis functions must be set. For completeness, Table 3
summarizes the meta-parameters for the different algorithms. The
first column lists the regression algorithms, and the second column
the underlying algorithm used for the linear model estimation(s).
Columns 3-5 list the model-parameters related to the number,



78 F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79

Table 4
List of articles, and the algorithms between which they make empirical
comparisons.

Reference Algorithms compared
Atkeson and Schaal (1995) LWR, MLFFS

Schaal and Atkeson (1997) RFWR, MLFFS, LS
Vijayakumar and Schaal (2000) LWPR, RFWR

Schwenker et al. (2001a)

Williams and Rasmussen (2006)
Grollman and Jenkins (2008)
Nguyen-Tuong et al. (2009)
Cederborg et al. (2010)

Lammert et al. (2010)

Huang et al. (2011)

Gijsberts and Metta (2012)
Droniou, Ivaldi, Padois et al. (2012)
Munzer et al. (2014)

ELM, BPRrOP, SVR

LWPR, GPR, LS

SOGP, LWPR

LGP, LWPR, SVR, GPR

LGP, LWPR, GMR, SVR, GPR
LWR, MLFFS

ELM, BPRrOP, SVR

GPR, LWPR, I-SSGPR

XCSF, LWPR, iRFRLS

LWR, GMR, RBEN, iRFRLS

position, and size of the basis functions. Model-parameters that
must be pre-specified by the user - and are thus also meta-
parameters of the algorithm - are highlighted in gray. Model-
parameters that are automatically determined by the algorithm
are left white. For example, in ELM the number of basis functions
is a meta-parameter that must be specified by the user (gray
cell), whereas the centers of the basis functions are determined
automatically through random sampling (white cell). The final
column lists any further meta-parameters which are used for
training, but not stored in the model parameters.

The settings of these meta-parameters can greatly influence
the result of fitting, and they often depend on properties of the
data. Exhaustive empirical comparisons are beyond the scope of
this paper; our aim is to show that a wide variety of algorithms
use different instances of the same unified model. In Table 4, we
provide references to papers in which comparisons between the
algorithms presented in this article are made.

7. Conclusion

In this article, we have described two main classes of models
that regression algorithms use - a weighted sum of basis functions
and a mixture of linear models - and shown that the former is
a special case of the latter. Therefore, rather than viewing every
algorithm as using a different model, we see them as variations
on a common theme, whereby these variations include the use of
different basis functions, or using degenerate linear models with
a = 0. This view thus forms a strong bridge between seemingly
disparate regression algorithms in the field of machine learning,
among which many ANN models.

Going from a weighted sum of basis functions and a mixture of
linear models requires a shift of interpretation. In the former, the
sub-models are basis functions, and the weights are (degenerate)
lines. But in a mixture of linear models, the sub-models are linear
models, and the weights are determined by the basis functions. Due
to this shift in interpretation, it may not be immediately obvious
that the two models are the same.

A further insight is that, in a mixture of linear models, both the
basis functions ¢ (X;, #.) and the linear model a;x + b, depend on
X. Since we cannot regress against both at the same time. This is
why LWR must perform multiple weighted linear regressions. By
contrast, with a sum of weighted basis functions, the weights are
linear with respect to the output of the basis functions, and can
thus be learned in one least squares regression.

What are the implications of having a unified model for all these
algorithms? First of all, it allows us to clearly separate questions
about models from those about algorithms. As to the models, is
it better to use global (e.g. sigmoid, cosine) or local (e.g. radial)
features? When is it better to assume local linearity — and thus use
a model based on locally weighted lines - or use weighted basis

functions? Which types of models are easier to optimize in online
learning, e.g. through backpropagation or reinforcement learning?
What is the effect of mixing different types of basis functions
(Augusteijn & Harrington, 2004)? Orthogonal question related only
to algorithms are: How should features be generated (Rahimi
& Recht, 2008)—should they be randomly generated, preshaped
through unsupervised learning, or optimized through constrained
optimization or backpropagation? In which context should we use
which norm? This work provides a conceptual framework in which
to address these questions more clearly.

From our perspective, research topics whose full potential has
not yet been explored include

e using weighted linear models with global features for weight-
ing,

e deriving a locally weighted regression variant of Support Vector
Regression based on its specific norm, which does not seem to
exist,

e mixing initial batch learning with subsequent incremental
learning, as done by Schwenker, Kestler, and Palm (2001b),

e and investigating which types of regression algorithms yield
models instances that are easily optimized in a reinforcement
learning context (Munzer, Stulp, & Sigaud, 2014).

This latter topic is highly relevant to robotics, where skill
learning is often split in two phases: (1) imitation: initializing a
model of human motion from observations of human movement
(Calinon, 2009; Stulp, Theodorou, & Schaal, 2012) through offline
batch regression and (2) reinforcement learning: optimize the
model (incrementally or with mini-batch) with respect to a
cost function through trial and error exploration (Marin, Decock,
Rigoux, & Sigaud, 2011; Stulp et al., 2012).

A very pragmatic advantage of a unified model arose whilst
implementing several of the algorithms presented here. The classes
representing the models of the different algorithms became so
similar that it was an obvious step to implement a routine for
casting them all to a unified model, which greatly simplified the
code, and made it easier to exchange algorithms. This is not merely
alow-level implementation advantage though. On a more abstract
level, such modularity is an important pre-condition for realizing
the vision of model-based machine learning (Bishop, 2013).

Acknowledgments

This work was partially supported by the European Commis-
sion, within the CoDyCo project (FP7-ICT-2011-9, No. 600716),
and has received funding from the European Unions Horizon 2020
research and innovation programme under grant agreement No.
640891. We thank Vincent Padois, Nicolas Perrin, Ryan Lober and
Mathieu Lefort for proofreading earlier versions of this article.

References

Alain, G., & Bengio, Y. (2013). What regularized auto-encoders learn from the data
generating distribution. arXiv:1211.4246v4.

Atkeson, C. G., & Schaal, S. (1995). Memory-based neural networks for robot
learning. Neurocomputing, 9(3), 243-269.

Augusteijn, M. F., & Harrington, T. P. (2004). Evolving transfer functions for artificial
neural networks. Neural Computing & Applications, 13(1), 38-46.

Bengio, Y. (2009). Learning deep architectures for Al. Foundations and Trends in
Machine Learning, 2(1), 1-127.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and
new perspectives. I[EEE Transactions on Pattern Analysis and Machine Intelligence,
35(8), 1798-1828.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University

Press.

Bishop, C. M. (2013). Model-based machine learning. Philosophical Transactions of
the Royal Society A, 371, 1-17.

Bishop, C. M., et al. (2006). Pattern recognition and machine learning. Vol. 1. New
York: Springer.


http://arxiv.org/1211.4246v4
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref2
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref3
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref4
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref5
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref6
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref7
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref8

F. Stulp, O. Sigaud / Neural Networks 69 (2015) 60-79 79

Bloomfield, P., & Steiger, W. (1980). Least absolute deviations curve-fitting. SIAM
Journal on Scientific Computing, 1(2), 290-301.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression
trees. Monterey, CA: Wadsworth and Brooks.

Butz, M. V., & Herbort, 0. (2008). Context-dependent predictions and cognitive
arm control with XCSF. In Conference on genetic and evolutionary computation
(pp. 1357-1364). ACM.

Butz, M. V., Pedersen, G. K. M., & Stalph, P. 0. (2009). Learning sensorimotor
control structures with XCSF: redundancy exploitation and dynamic control.
In Conference on genetic and evolutionary computation (pp. 1171-1178). ACM.

Calinon, S. (2009). Robot programming by demonstration. EPFL/CRC Press.

Calinon, S., Guenter, F., & Billard, A. (2007). On learning, representing, and
generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 37(2), 286-298.

Cederborg, T., Li, M., Baranes, A., & Oudeyer, P.-Y. (2010). Incremental local online
Gaussian mixture regression for imitation learning of multiple tasks. In IEEE/RS]
international conference on intelligent robots and systems (pp. 267-274).

Cohen, S., & Intrator, N. (2002). A hybrid projection-based and radial basis
function architecture: initial values and global optimisation. Pattern Analysis
& Applications, 5(2), 113-120.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014).
Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Advances in neural information processing systems
(pp. 2933-2941).

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 1-38.

Dorffner, G. (1994). A unified framework for MLPs and RBFNs: Introducing conic
section function networks. Cybernetics and Systems, 25(4), 511-554.

Droniou, A, Ivaldi, S., Padois, V., & Sigaud, O. (2012). Autonomous online learning of
velocity kinematics on the iCub: A comparative study. In Intelligent robots and
systems, IROS, 2012 IEEE/RS] international conference on (pp. 3577-3582).

Droniou, A, Ivaldi, S., Stalph, P., Butz, M., & Sigaud, O. (2012). Learning velocity
kinematics: Experimental comparison of on-line regression algorithms. In
Proceedings robotica (pp. 15-20).

Ebden, M. (2008). Gaussian processes for regression: A quick introduction. Tech. rep.
Department on Engineering Science, University of Oxford.

Fisher, R. (1925). Statistical methods for research workers. Oliver & Boyd.

Friedman, J. H., & Stuetzle, W. (1981). Projection pursuit regression. Journal of the
American Statistical Association, 76(376), 817-823.

Geladi, P., & Kowalski, B. (1986). Partial least squares regression: A tutorial.
Analytica Chimica Acta, 185, 1-17.

Ghahramani, Z., & Jordan, M. L. (1993). Supervised learning from incomplete data
via an EM approach. In Advances in neural information processing systems, Vol. 6
(pp. 120-127).

Gijsberts, A., & Metta, G. (2011). Incremental learning of robot dynamics using
random features. In IEEE international conference on robotics and automation
(pp. 951-956).

Gijsberts, A., & Metta, G.(2012). Real-time model learning using incremental sparse
spectrum Gaussian process regression. Neural Networks.

Grollman, D., & Jenkins, O. C. (2008). Sparse incremental learning for interactive
robot control policy estimation. In IEEE international conference on robotics and
automation (pp. 3315-3320).

Hersch, M., Guenter, F., Calinon, S., & Billard, A. (2008). Dynamical system
modulation for robot learning via kinesthetic demonstrations. IEEE Transactions
on Robotics, 24(6), 1463-1467.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow
in recurrent nets: the difficulty of learning long-term dependencies. In Kolen
Kremer (Ed.), A field guide to dynamical recurrent neural networks. IEEE Press.

Huang, G.-B,, & Chen, L. (2008). Enhanced random search based incremental
extreme learning machine. Neurocomputing, 71(16-18), 3460-3468.

Huang, G.-B., Chen, L, & Siew, C. K. (2006). Universal approximation using
incremental constructive feedforward networks with random hidden nodes.
IEEE Transactions on Neural Networks, 17(4), 879-892.

Huang, G.-B., Li, M.-B., Chen, L., & Siew, C. K. (2008). Incremental extreme learning
machine with fully complex hidden nodes. Neurocomputing, 71(4-6), 576-583.

Huang, G.-B., Wang, D. H,, & Lan, Y. (2011). Extreme learning machines: a survey.
International Journal of Machine Learning and Cybernetics, 2(2), 107-122.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and
applications. Neurocomputing, 70(1), 489-501.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical
movement primitives: learning attractor models for motor behaviors. Neural
Computing, 25(2), 328-373.

Lammert, A.C,, Goldstein, L., & Iskarous, K. (2010). Locally-weighted regression
for estimating the forward kinematics of a geometric vocal tract model. In
INTERSPEECH (pp. 1604-1607).

Marin, D., Decock, J., Rigoux, L., & Sigaud, O. (2011). Learning cost-efficient control
policies with XCSF: generalization capabilities and further improvement.
In Proceedings of the 13th annual conference on genetic and evolutionary
computation (pp. 1235-1242). ACM.

Meier, F., Hennig, P., & Schaal, S. (2014). Local Gaussian regression. ArXiv Preprint
arXiv:1402.0645.

Munzer, T, Stulp, F., & Sigaud, O. (2014). Non-linear regression algorithms for motor
skill acquisition: a comparison. In Proceedings JFPDA (pp. 1-16).

Neal, R. M. (1996). Bayesian learning for neural networks. Springer-Verlag.

Nguyen-Tuong, D., Seeger, M., & Peters, ]. (2009). Model learning with local gaussian
process regression. Advanced Robotics, 23(15), 2015-2034.

Orr, M. J. L., Hallam, J., Takezawa, K., Murray, A. F., Ninomiya, S., Oide, M.,
et al. (2000). Combining regression trees and radial basis function networks.
International Journal of Neural Systems, 10(6), 453-465.

Park, ], & Sandberg, I. W. (1993). Approximation and radial-basis-function
networks. Neural Computing, 5(2), 305-316.

Pascanu, R., Monttfar, G., & Bengio, Y. (2013). On the number of inference regions of
deep feed forward networks with piece-wise linear activations. ArXiv Preprint
arXiv:1312.6098.

Plackett, R. L. (1950). Some theorems in least squares. Biometrika, 37, 149-157.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings
of the IEEE, 78(9).

Quinlan, R. J. (1992). Learning with continuous classes. In 5th Australian joint
conference on artificial intelligence (pp. 343-348). Singapore: World Scientific.

Quifionero Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research,
6, 1939-1959.

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines.
In Advances in neural information processing systems (pp. 1177-1184).

Rahimi, A., & Recht, B. (2008). Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning. In Advances in neural information
processing systems, Vol. 21 (pp. 1313-1320).

URL: http://books.nips.cc/papers/files/nips21/NIPS2008_0885.pdf.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6), 386-408.

Saunders, C., Gammerman, A., & Vovk, V. (1998). Ridge regression learning
algorithm in dual variables. In Proceedings of the 15th international conference
on machine learning (pp. 515-521). Morgan Kaufmann.

Schaal, S., & Atkeson, C. G. (1997). Receptive field weighted regression. Tech. Rep. TR-
H-209. ATR Human Information Processing Laboratories.

Schmidhuber, ]J. (2014). Deep learning in neural networks: An overview. ArXiv
Preprint arXiv:1404.7828.

Schmidt, M. (2005). Least squares optimization with [1-norm regularization. Tech. rep.,
CS542B Project Report.

Schmitt, M. (2002). On the complexity of computing and learning with
multiplicative neural networks. Neural Computation, 14(2), 241-301.

Schoélkopf, B., Smola, A., Williamson, R., & Bartlett, P. (2000). New support vector
algorithms. Neural Computing, 12(5), 1207-1245.

Schwenker, F., Kestler, H. A., & Palm, G. (2001a). Three learning phases for radial-
basis-function networks. Neural Networks, 14(4-5), 439-458.

Schwenker, F., Kestler, H. A., & Palm, G. (2001b). Three learning phases for radial-
basis-function networks. Neural Networks, 14(4), 439-458.

Sigaud, O., Salaiin, C., & Padois, V.(2011). On-line regression algorithms for learning
mechanical models of robots: a survey. Robotics and Autonomous Systems, 51,
1117-1125.

Smola, A. ., & Scholkopf, B. (2004). A tutorial on support vector regression. Statistics
and Computing, 14(3), 199-222.

Stulp, F., & Beetz, M. (2008). Refining the execution of abstract actions with learned
action models. Journal of Artificial Intelligence Research (JAIR), 32, 487-523.
Stulp, F., Theodorou, E., & Schaal, S. (2012). Reinforcement learning with sequences
of motion primitives for robust manipulation. IEEE Transactions on Robotics,
28(6), 1360-1370. king-Sun Fu Best Paper Award of the IEEE Transactions on

Robotics for the year 2012.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society (Series B), 58, 267-288.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.

Vijayakumar, S., & Schaal, S. (2000). Locally weighted projection regression: An
O(n) algorithm for incremental real time learning in high dimensional space.
In Proceedings of the seventeenth international conference on machine learning:
Vol. 1 (pp. 288-293).

Wang, Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous
classes. In Poster papers of the 9th European conference on machine learning.
Springer.

Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences. (Ph.D. thesis), Harvard University.

Werbos, P. ]. (1988). Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1(4), 339-356.

Widrow, B., Greenblatt, A., Kim, Y., & Park, D. (2013). The no-prop algorithm: A
new learning algorithm for multilayer neural networks. Neural Networks, 37,
182-188.

Williams, C. K. I. (1998). Computation with infinite neural networks. Neural
Computation, 10(5), 1203-1216.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning.
MIT Press.

Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training for
gradient descent learning. Neural Networks, 16(10), 1429-1451.


http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref9
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref10
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref11
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref12
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref13
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref14
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref16
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref17
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref18
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref19
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref22
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref23
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref24
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref25
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref26
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref28
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref30
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref31
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref32
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref33
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref34
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref35
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref36
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref37
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref39
http://arxiv.org/1402.0645
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref42
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref43
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref44
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref45
http://arxiv.org/1312.6098
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref47
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref48
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref49
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref50
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref51
http://books.nips.cc/papers/files/nips21/NIPS2008_0885.pdf
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref53
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref54
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref55
http://arxiv.org/1404.7828
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref57
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref58
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref59
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref60
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref61
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref62
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref63
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref64
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref65
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref66
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref67
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref69
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref70
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref71
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref72
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref73
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref74
http://refhub.elsevier.com/S0893-6080(15)00118-5/sbref75

	Many regression algorithms, one unified model: A review
	Introduction
	Linear least squares
	Least squares and least deviations
	Regularized least squares
	Adding offsets to the linear model
	Multivariate regression
	Batch vs. incremental learning
	Model parameters and meta-parameters

	From linear least squares to non-linear regression
	Locally weighted regression (lwr)
	Regression with radial basis function networks (rbfns)
	A unified model

	Model: mixture of linear models
	Algorithm: locally weighted regression (revisited)
	Algorithm: receptive field weighted regression
	Algorithm: locally weighted projection regression
	Algorithm: XCSF
	Algorithm: Gaussian mixture regression
	Algorithm: M5 (model tree regression)
	Summary

	Model: basis function network
	Least squares for basis function networks
	Design matrix
	Feature matrix
	Gram matrix (for kernel functions)
	Preview

	Algorithm: regression with radial basis function networks (revisited)
	Algorithm: kernel ridge regression
	Algorithm: Gaussian process regression
	Algorithm: support vector regression (svr)
	Algorithm: irfrls
	Algorithm: I-SSGPR
	Algorithm: CART (regression trees)
	Algorithm: extreme learning machine (elm)
	Algorithm: backpropagation
	Backpropagation for slfns
	Backpropagation for multi-layer feedforward networks (mlffs)
	Backpropagation for recurrent neural networks (rnns)
	Comparison of rbfns and mlffs

	Summary

	The unified model revisited
	Classification based on special cases of the unified model
	Meta-parameters and empirical comparisons

	Conclusion
	Acknowledgments
	References


