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& 9%: Bin Fan is an Assistant Professor at the National Laboratory of
Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of
Sciences (CASIA) since July 2011. Before joined NLPR, he received his
B.E. degree from Beijing University of Chemical Technology (BUCT) in
2006, and Ph.D. degree from NLPR, CASIA in 2011 under supervision of

Prof. Fuchao Wu. Bin Fan has wide research interests in Computer Vision.
Previously, his research is mainly focused local invariant feature, which is fundamental for many
applications, such as image classification, 3D reconstruction, object recognition. He has published
over 10 scientific papers in highly ranked conferences and journals in the field, including PAMI, PR,
CVPR, ICCV, BMVC. He serves as regular reviewer for top-ranking journals and on program

committee member for several conferences. He is currently a member of IEEE.



2. ;EN: Bk #, FKEKRE

&R E: Label Distribution Learning and Its Applications in Computer Vision

W EHHE: Label distribution learning (LDL) is a novel learning paradigm. A label distribution covers
a certain number of labels, representing the degree to which each label describes the instance. LDL is
a general learning framework which includes both single-label and multi-label learning as its special
cases. It has been successfully applied to several computer vision problems, such as facial age

estimation, head posed estimation, and natural scene image labeling.
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- BRETN. IHBATENFESNTRRERLE LSRN LA M
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3. EHEN: HER, TEBZRLE A
RERRE: Visual Perceptual Learning

WEHIE: Practice makes perfect. Perceptual learning is critical for any creatures to survive in an
ever-changing external world, throughout life and across all modalities. Perceptual learning can be
specific to the trained eye, retinal location, category, orientation, task, and motion direction. Although
it has been the focus of psychological and neuroscience researches for centuries, the mechanisms of
perceptual learning still remains hot debate. In a series of studies, we investigated the properties (e.g.
magnitude, inter-ocular/task/frequency transferability, and retention) of perceptual learning of contrast
detection in normal and abnormal vision and how it can be modulated by other factors, e.g. reward.

We also constructed an Augmented Hebbian Weight-reweighting Model (AHWM) to explain why



learning a Vernier task didn’t benefit subject’s performance in a bisection task even the two tasks

shared the same input stimuli.

B v mEK, PEBEEBOEET T, T ERER A AR
e o 2006 3R H EBHEHOR KA A S & L) 2l a4, 2007
£ 2011 FFAERFE MM R0 RNFIE LA FERHTER
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Ihae BB AIHLE] 5P B i E S HR A 52 PR A @, 78 PNAS. Current Biology

4. WEN: M, FILKRZFE

wERE: Inference and Learning with Grammar Model for Visual Recognition

REHFHE: In the last ten years, computer vision and machine learning experience a resurgence of
research on stochastic grammars, which has been also relevant to several rising techniques of
broad interests such as structured prediction, deep learning, and dictionary learning. The virtue of
grammar models lies in their expressive power to represent an exponentially large number of concepts
by using a relatively much smaller vocabulary, and a few compositional rules. This talk will introduce
the basic concepts, theories, and algorithms for learning and inference with grammar models, and also
discusses several advanced progresses, particularly in visual recognition. In addition, some new trends

alone this path are also presented, e.g. new problems in higher level vision.

f& 4r: Liang Lin is a full Professor with the School of Supercomputing, Sun
Yat-Sen University (SYSU), China. He received the B.S. and Ph.D. degrees
# from the Beijing Institute of Technology (BIT), Beijing, China, in 1999 and
2008, respectively. From 2006 to 2007, he was a joint Ph.D. student with the

| Department of Statistics, University of California, Los Angeles (UCLA). He
was a Post-Doctoral Research Fellow with the Center for Vision, Cognition, Learning, and Art of

UCLA. He received several academic honors, including China National Excellent PhD Thesis Award



Nomination in 2010, Best Paper Runners-Up Award in ACM NPAR 2010, and Google Faculty
Award in 2012. He was also awarded by the “Program for New Century Excellent Talents” of
Ministry of Education (China) in 2012, and the Guangdong Natural Science Funds for Distinguished
Young Scholars in 2013. His current research interests are on the interface of computational models
for vision, statistical learning and computing, and multimedia processing. He has authored or
co-authored over 60 academic papers over a wide range of research topics. He fulfills review duties
for more than 20 journals and various conferences including IEEE TPAMI, IEEE TIP, IEEE TCSVT,
IEEE TMM, 1JCV, Neurocomputing, PR, CVPR, ICCV, and ICPR.

CiEAN: AW, REETRE

ETHE: Learning Effective Appearance Model in Visual Tracking

WEHHE: Visual tracking has long been a challenging application for two reasons. On one hand, the
target itself changes at times, like people being tracked would change their poses, which makes new
target appearances into being and the trackers should accommodate to them. On the other hand,
various factors like occlusion, illumination changes, background clutter, etc, bring disturbing changes
to the target appearance model, leading the trackers into possible drifts. Therefore how to build an
appearance model that effective in learning new target appearance yet robust to the noise is of great
interest. We explore the topic from multiple aspects, including low-level feature selection and noise

modeling, mid-level feature extraction, as well as high-level template generation and update.

& v W, o, HS, PO ER T REE B SIEE TRk b
1, 1995 4F, 1998 4T RIERE TR i 7 R34 LA L2747, 2008 4F
TRIEH TR 24 TR L2247 . H §ifH4E IEEE Transaction on SMC
Part B F|4w#5, IEEE Senior Member. ¥ EmF 54k v HAniREs:, BEMH
Pafarill, ZAIRAEE . 124 O E PR/ B AT BEPR il ERER/ AR
W 100 R4, Horp it B o it — i [ Fr s (CVPR, ICCV) Al E R T5
ZeIT] IEEE T-IP/T-CSVT £ 20 25, £ ICCV2011 E3k#3 Most Remembered Poster, 7F

ICIP2012 | 3k45 Best Student Paper Award Finalist.



6. IEN: & I, LERKF

WERME: €
WEHE: 7€

&8 4%: Yi Mawas born in Sichuan Province, China. He received Bachelors
degree in Automation and Applied Mathematics from Tsinghua University,
Beijing, China, in 1995. He received an Master degree in Electrical
| Engineering and Computer Sciences (EECS) in 1997, a second Master degree

in Mathematics in 2000, and the Ph.D. degree in EECS in 2000, all from the

University of California at Berkeley. From 2000 to 2011, he served as a
tenured associated professor of the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, where he now holds an Adjunct
Professorship. He also serves as a research associate professor both in the Decision & Control Group
of the Coordinated Science Laboratory and in the Image Formation & Processing Group of the
Beckman Institute. He was a visiting senior researcher at the Microsoft Research Asia, Beijing, China
in fall 2006 and a visiting professor at EECS Department of UC Berkeley in spring 2007. Since
January 2009, he has served as research manager for the Visual Computing Group at Microsoft
Research Asia, Beijing, China. From January 2012, he also holds a Guest Professorship at the
Univeristy of Science and Technology of China. He has served as an associate editor of the IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) from 2007 to 2011. He has also
served as the chief guest editor for special issues for the Proceedings of IEEE and the IEEE Signal
Processing Magazine in 2010 and 2011. He currently serves as the associate editors for the IEEE
Transactions on Information Theory, the International Journal of Computer Vision (1JCV), the IMA
Journal on Information and Inference, and the SIAM Journal on Imaging Sciences. He serves as an
Area Chair for NIPS 2011 and ICCV 2011 (Spain), and will be the Program Chair for ICCV 2013
(Australia), and General Chair for ICCV 2015 (Chile).



7. WEN: Wi, FEBER R SR ST

wEBHE: Visual Representation and Metrics for Classification with Image Sets

EHHE: Visual representation is the fundamental of many computer vision tasks. Historically, the
last decade has witnessed the prosperity of local features and sparse representation. And, more
recently, deep learning is blooming for learning hierarchical representation. However, most of them
focus on the representation of single image or a few images, which however is quite different from
biological vision system (BVS). During most vision tasks, BVS actually takes numerous images of
the object of interest even in a few seconds, benefiting from unconscious eye movement. In this talk, |
will introduce some of our recent works on visual representation and metrics for classification with
image sets, in which multiple images are densely sampled for the object to be recognized. In our
methods, the image set is collectively represented as a Riemannian manifold, thus forming some
interesting novel problems, including distance computation between manifolds (published in
CVPRO08/09/12),  Covariance  Discriminative  Learning  (CVPR12), and  Learning

Euclidean-to-Riemannian Metric (accepted by CVPR2014).

B Are ton, Wk, BRI, WS, Jp) T 1997 4EA 1999 4
FEMG IR TR AL R 3RA LA 524, 2004 AEAE TR RS THEA
PRk SN B e . FEN G EN . B, HLEs
AR AR . CAEEPS/E AT Bl BRSO FEAR
W 150 2%, FLH IEEE Trans. on PAMI, IEEE Trans. on Image Processing
5 E BRI SC 40 RO, RN S EPR = (CVPR, ICCV,
ECCV) ¥ 30 &£k . Google scholar &5 4900 &¥k. BALEPERTI#) IEEE Trans. on Image

Processing, Neurocomputing, IPSJ T on CVA F1 EURASIP Journal of Image and Video Processing f*]
472 (AE), Frontiers of Computer Science )5 F4mZs, AL EFREATI IJPRAL. PRL &TIHIE
JE4%E (Guest Editor) , Nig$H{T T ICPR2014, ICASSP2014, FG2013, ICPR2012, ACCV2012,
ICCV2011 [1J Area Chair J145, ACCV2014 (1] Workshop Chair, ACM ICMI2010 [ Local Chair.
S A T 5 58 U A SSTUE B B B 1118 3C 3K CVPR2008 Best Student Poster Award
Runner-up. T2 5 52 B N AR A 78 R 2005 £ FEE ZBHERED — 5538 (58 3 52N



2008 4 Z  [ERLA B R E A KRG . 2009 FEEIC TR ERE . 2009 F3K
T )i Scopus FERAKE L BRI, 2012 FFPRAGFHEET “RTF 7 LF.

CHREAN: ROK, WNLRE
REME: Deep Multi-Modal Embedding: From the Shadow Model to the Deep Model

wEHE: Nowadays many real-world applications involve multi-modal data. The retrieval, hashing
and ranking of cross-modal retrieval is imperative to many applications of the practical interest, such
as finding relevant textual documents of a tourist spot that best match a given image of the spot or
finding a set of images that visually best illustrate a given text description. The heterogeneity-gap
between multi-modal data has been widely understood as a fundamental barrier for the cross-modal
metric learning. In this talk, 1 will first overview two kinds of multi-modal embedding approaches,
namely statistical dependency modeling (e.g., canonical correlation analysis and its variants) and
probabilistic graphical modeling (e.g., Latent Dirichlet Allocation and its extensions). Then I will
introduce some of task-specific multi-modal embedding approaches, for examples, factorized/coupled
dictionary learning, the ranking-based joint model and the multi-modal hashing based methods. At

last, | will describe some remarkable advance of multi-modal embedding via deep learning.

B v R WA RN ER R AR RN R RSN 2
BRI IR R IA 5 Gvh 2 2] 5 WL R N L8 RERE 78 T Bl AT

PG BN - R TS & GHL K% BIEAT. E Rt a5
ANALRAFRINGES (2011 4E18) WL 151 AA TRE ZZEFRA
(2012 4F) o FEWHL R ERIBE BT, T 2009 4F 10 H % 2010 4 8
FAESEENMN K ZAA R R Gt RAK (Bin Yu) BS54
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9. HEHEN: B R, HEHITKZ
REEHE: SVM Based Approaches for Domain Adaptation

w5 ZE: Domain adaptation (also called transfer learning) is an emerging research topic in
computer vision. In some vision applications, the domain of interest (i.e., the target domain) contains
very few or even no labeled samples, while an existing domain (i.e., the auxiliary domain) is often
available with a large number of labeled examples. For example, millions of loosely labeled Flickr
photos or YouTube videos can be readily obtained by using keywords (also called tags) based search.
On the other hand, users may be interested in retrieving and organizing their own multimedia
collections of images and videos at the semantic level, but may be reluctant to put forth the effort to
annotate their photos and videos by themselves. This problem becomes furthermore challenging
because the feature distributions of training samples from the web domain and consumer domain may
differ tremendously in statistical properties. To explicitly cope with the feature distribution mismatch
for the samples from different domains, | will describe our SVM based approaches for domain

adaptation under different settings as well as their interesting applications in computer vision.

& 4v: Dong Xu is currently an associate professor with School of Computer
Engineering at Nanyang Technological University. He is an active researcher
working on computer vision, multimedia and machine learning. He has

published more than 50 papers in IEEE Transactions (including 8 papers in

J’ T-PAMI) and more than 30 papers in top tier conferences CVPR, ICCV,
ECCV, ICML, ACM MM and MICCAI. He was the co-author (with his former PhD
student Lixin Duan) of a paper that won the Best Student Paper Award in CVPR 2010. His
publications have been cited more than 4000 times in Google Scholar. He is on the editorial boards
of IEEE Transactions on Pattern Analysis and Machine Intelligence and IEEE Transactions on Neural
Networks and Learning Systems. He is currently serving as a program co-chair of ICME 2014. He has
served as an area chair of CVPR 2012, a program co-chair of PCM 2012, and guest editors of special

issues in IJCV, T-CSVT, T-SMC-B and ACM TOMCCAP.

11 39



10 EN: R, ERELRIERE

wETE: Sparsity-Constrained Optimization: Hard-Thresholding Algorithms and Applications in

Data Mining

WEMWE: In the past decade, sparsity models have received broad research interests in
high-dimensional statistical learning and signal processing. A basic assumption of sparsity models is
that the datasets need to be processed exhibit certain low-dimensional structure, which can usually
been captured by imposing sparsity constraint on the model parameter space. Therefore it is crucial to
develop robust and efficient computational procedures to solve sparsity-constrained optimization
problems. Inthis talk, I’'m going to introduce several hard-thresholding methods for
sparsity-constrained optimization problems including sparse principle component analysis, sparse
logistic regression and sparse SVMs. The main theme of our greedy selection methods is to truncate
the intermediate outputs during the iteration to successively approximate the positions of non-zero
entries and estimate their values. Theoretical guarantees on these methods are provided. Extensive
experiments on several large scale text mining and graph mining tasks demonstrate the competitive

performance of our methods.

f& 4Y: Xiaotong Yuan received a B.A. in computer science from Nanjing
University of Posts and Telecommunications in 2002, a M.E. in electrical
engineering from Shanghai Jiao-Tong University in 2005, and a Ph.D. in

pattern recognition from Chinese Academy of Sciences in 2009. After

“ graduation, he held various appointments as postdoctoral research
associate working at the Department of Electrical and Computer Engineering at National University
of Singapore, the Department of Statistics and Biostatistics at Rutgers University, and the Department
of Statistical Science at Cornell University. In 2013, he joined the School of Information and Control
at Nanjing University of Information Science & Technology where he currently is a professor of
information science. His main research interests include machine learning, data mining, and computer
vision. He has authored/co-authored more than 40 technical papers over a wide range of research

topics. He received the winner prize of the classification task in PASCAL VOC ’10.

12 39



1nwREN: K &, FBEIRE

wETHE: Sparse Representation and Low Rank Methods for Image Restoration and Classification

WEHE: Sparse representation and low rank techniques have shown promising results in image
processing and computer vision. In this talk 1 will discuss why sparse representation and low rank
work for image restoration, and briefly introduce the nonlocally centralized sparse representation
(NCSR) model and the weighted nuclear norm minimization (WNNM) model we recently developed.
Sparse representation has also been attracting significant attention in image classification tasks such
as face recognition. However, it is still not clear what a kind of classifier it is and why it can improve

classification performance. In this talk, I will also show our recent findings along this line.

f& 4T: Lei Zhang received the B.Sc. degree in 1995 from Shenyang Institute
of Aeronautical Engineering, Shenyang, P.R. China, the M.Sc. and Ph.D
degrees in Control Theory and Engineering from Northwestern Polytechnical
University, Xi’ an, P.R. China, respectively in 1998 and 2001. From 2001 to
2002, he was a research associate in the Dept. of Computing, The Hong Kong

Polytechnic University. From Jan. 2003 to Jan. 2006 he worked as a

Postdoctoral Fellow in the Dept. of Electrical and Computer Engineering,
McMaster University, Canada. In 2006, he joined the Dept. of Computing, The Hong Kong
Polytechnic University, as an Assistant Professor. Since Sept. 2010, he has been an Associate
Professor in the same department. His research interests include Image and Video Processing,
Computer Vision, Pattern Recognition and Biometrics, etc. Dr. Zhang has published about 200 papers
in those areas. Dr. Zhang is currently an Associate Editor of IEEE Trans. on CSVT and Image and
Vision Computing. He was awarded the 2012-13 Faculty Award in Research and Scholarly Activities.

More information can be found in his homepage http://www4.comp.polyu.edu.hk/~cslzhang/.

13 39



12. HEN: K E, BEXREF
IREFE: Bayesian Learning with Rich Side Information

R EHEE: Bayesian methods represent one important school of statistical methods for learning,
inference and decision making. At the core is Bayes' theorem, which has been developed for more
than 250 years. The last decades have also seen the substantial developments of nonparametric
Bayesian methods in statistics, machine learning, and many application areas. In this talk, | will
introduce some recent developments on extending Bayes' theorem to incorporate rich side information,
which can be the large-margin property we like to impose on the model distribution, or the domain
knowledge collected from experts or the crowds. The generic framework to do such tasks is called
regularized Bayesian inference (RegBayes). | will introduce the basic ideas of RegBayes as well as

several concrete examples.

B v RE, BRI EN ARG BEAEFIW. 40T 2005 4/
2009 fFEFRIE LR AT HHL LA 22407, 2009 F) 2011 FEAE L F KN
MR S, 2011 SEENERTHBES . EBEFR T AN
MR AL DI e vt S AR RR 3200 . UG AL B U N - 72
PrIZE 21 (ICML. NIPS. SIGKDD. WCAI %) 5#F] (JMLR, PAMI

U ) REWSOR 50 . SR ICML2014, UAI2014, NIPS2013 £ 17 %%
] B2 1 AT S B IR R B, FHAE ICML2014 A A £ . Aik IEEE Intelligent
Systems [E FrZ EIFEK) Al s 10 to Watch (2013) g K2 221 FEREF 7T A A 1% (2012) ,

FIRE R ARBF R ERMAEERE S (2013) , FPETFENFSEER YK (2013) , FH
HHHLESMR B (2009) , PLURBMECEEE (2007) %,

14 39
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COfE e ARE, WK RN R, MRS, ERAHE
FRVEEEE A . 2000 FHAML WL RZEHENLR, R L5AL
| 2005 FEERNE T 2ZNERR S, SR A . 2005 4 10 H NS EHELR
WHFEle, AEERBEFE Y, ST SRS L TIE. 2007 FAENA
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AR ILR R 60 REIFHRIE 1 7 BISRERUER], Hr 3 BICSRMBIRA, 0303
i A 51FH 3000 AR IK.
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T8 Av: 2500, VORAT E R 3T B2 AR b 5 2 > 0 (OPTIMAL)
FAE. BB RIBOR, gk b, MAERgE . SUB IR S AL EL
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Mlo IEEEJCF 120+, SCI 5] F] 3000+, H#5%( 40+, FJ# 60+, PC 300+,
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Demo 4: Saliency Detection and Its Application in Image/Video Resizing
. TR (FIE TR

fi741: Our demo shows the saliency detection results and its application in image/video resizing.

Different from traditional methods, we focus on the high quality resizing.
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fii41: Soft tissue tracking in dynamic surgical environment is currently a challenging problem for
minimally invasive surgery (MIS) navigation. Tissue feature are usually embedded into spatial
context. And spatial context information is often ignored in soft tissue tracking. We propose a novel
framework for tracking soft tissue during MIS by using a soft tissue appearance online learning
approach and spatial context estimation. Our approach performs an auxiliary feature selection by
the linear correlation. It selects the auxiliary features which has same motion pattern with the
target feature. By this, the position of the target feature can be estimated even when its
appearance is changed or invisible. The results show that these novel approaches can be used to
improve the performance of soft tissue tracking in dynamic surgical environments, resulting in very

stable tracking results under challenging MIS conditions
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