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背景知识

因果发现

• 什么是因果发现

• 经典方法：基于约束的方法、基于因果函数的方法

• 研究进展：隐变量问题、非独立同分布问题

• 应用探索：故障检测

因果性学习



什么是因果发现
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什么是因果关系发现？

 因果发现：回答“为什么？”
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为什么
苹果
会往

地上掉？

实验

观察

假设



如何发现因果关系？基于干预实验的方法

 基于实验的方法：干预原因，结果会发生改变
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 基于观察数据的方法：观察数据+因果假设⇒因果模型

如何发现因果关系？基于观察数据的方法
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因果发现

因果假设

+



经典方法
 基于约束的因果发现方法

 基于函数的因果发现方法

 混合型因果发现方法
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Structural Causal Models and Graphical Causal Models

 The structural causal model (SCM) is a framework that can be used for multivariate analysis, 

which can be used to describe the real-world related variables and their interactions.

 𝑋𝑖 = 𝑓𝑖 𝑝𝑎𝑖 , 𝐸𝑖 , 𝑖 = 1,2, … , 𝑛

• 𝑝𝑎𝑖 : parents of 𝑋𝑖

• 𝐸𝑖 : exogenous variables / errors / disturbances

• Each equation represents an autonomous mechanism

• Describes how nature assigns values to variables of interest
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𝑋1 𝑋2

𝑋3

𝑋4

SCM

𝑋 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}, 𝐸 = {𝐸1, 𝐸2, 𝐸3, 𝐸4}, 𝐹 = {𝑓3, 𝑓4}

𝑋1 = 𝐸1
𝑋2 = 𝐸2
𝑋3 = 𝑓3 𝑋1, 𝑋2, 𝐸3
𝑋4 = 𝑓4(𝑋3, 𝐸4)

Graphical Causal Model: Directed Acyclic Graphs (DAG)

𝑁𝑜𝑑𝑒𝑠: 𝑋1, 𝑋2, 𝑋3, 𝑋4

𝐸𝑑𝑔𝑒𝑠: {𝑋1 → 𝑋3,

𝑋2 → 𝑋3,

𝑋3 → 𝑋4}



Constraint-based methods: assumptions

 Causal Markov Assumption: A variable 𝑋 is independent of every other variable (except 𝑋's

effects) conditional on all of its direct causes.

 Causal Faithfulness Assumption: for all observed variables, 𝑋𝑖 is independent of 𝑋𝑗 conditional

on variables 𝐙 if and only if the Markov Assumption for 𝒢 entails such conditional independencies.

𝑥1

𝑥4 𝑥5

𝑥7

𝑥2

𝑥6

𝑥3 𝑥4⫫ 𝑥3, 𝑥6, 𝑥5 ∣ {𝑥1, 𝑥2}⇔
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Constraint-based methods

 (Conditional) Independence Test

x1 x2 x3

x1 x2 x3

x1 x2 x3

G1

G2

G3

𝑥1 ⫫ 𝑥3|𝑥2

𝑥1 ⫫ 𝑥3
𝑥1 ⫫ 𝑥3|𝑥2

x1 x2 x3G4

Inferring

Inferring
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Constraint-based methods: PC

 PC (Peter-Clark from CMU)

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓

-1.1 1 1.3 0.2 -0.7

2.1 2 3.1 -1.3 -1.6

3.1 4.2 -2.6 0.6 2.1

2.3 -0.6 -3.5 0.8 2.3

1.3 -1.7 0.9 2.4 -1.4

-1.8 0.9 -1.3 0.9 0.7

… … … … …

𝑋1 ⫫ 𝑋5|𝑋3
𝑋2 ⫫ 𝑋4|𝑋1
𝑋2 ⫫ 𝑋5|𝑋3
𝑋4 ⫫ 𝑋5|𝑋3

𝑋1 ⫫ 𝑋3|{𝑋2, 𝑋4}

(a) 数据 (b) 条件独立性

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.
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？

(c)  因果结构



Constraint-based methods: PC

𝑋1 ⫫ 𝑋5|𝑋3
𝑋2 ⫫ 𝑋4|𝑋1
𝑋2 ⫫ 𝑋5|𝑋3
𝑋4 ⫫ 𝑋5|𝑋3

𝑋1 ⫫ 𝑋3|{𝑋2, 𝑋4}

 A toy example of PC (Peter-Clark)
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𝑋1 ⫫ 𝑋5|𝑋3 𝑋2 ⫫ 𝑋4|𝑋1 𝑋2 ⫫ 𝑋5|𝑋3

𝑋4 ⫫ 𝑋5|𝑋3 𝑋1 ⫫ 𝑋3|{𝑋2, 𝑋4} 𝑋2 ⫫ 𝑋4|𝑋3 𝑁𝑜 𝑚𝑜𝑟𝑒 collider



Constraint-based methods: FCI

 How to deal with latent confounders?

• if there is a latent confounder  𝐿 behind 𝑋3 and 𝑋4
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𝐿

𝑋1 ⫫ 𝑋2
𝑋1 ⫫ 𝑋4|𝑋3
𝑋2 ⫫ 𝑋4|𝑋3

𝑋1 ⫫ 𝑋2
𝑋1 ⫫ 𝑋4|𝑋3
𝑋2 ⫫ 𝑋4|𝑋3

𝑋1 𝑋2

𝑋3

𝑋4

𝑋1 𝑋2

𝑋3

𝑋4

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.



Constraint-based methods: FCI

 FCI (Fast Causal Inference): allows Confounders

• Results represented by PAGs (Partial Ancestral Graphs) 
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FCI’s output

𝐿

𝑋1 𝑋2

𝑋3

𝑋4𝑋1

𝑋1

𝑋1

𝑋1

𝑋1

𝑋2

𝑋2

𝑋2

𝑋2

𝑋2

𝑋1 and X2 are not adjacent

𝑋2 is not an ancestor of X1

No set d-separates 𝑋2 and X1

𝑋1 𝑖𝑠 𝑎 𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝑋2

There is a latent common cause of 𝑋1 𝑎𝑛𝑑 𝑋2

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.



Constraint-based methods: limitations

Problem:  Cannot identify the structures belonging to the Markov Equivalence Class 

x1 x2 x3

x1 x2 x3

x1 x2 x3

G1

G2

G3

𝑥1 ⫫ 𝑥3|𝑥2

Inferring
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 Limitations of constraint-based methods

Markov Equivalence Class 

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.



经典方法

 基于约束的因果发现方法

 基于函数的因果发现方法

 混合型因果发现方法

15



𝑋1 → 𝑋2 or 𝑋2 → 𝑋1?
16

Can we directly distinguish cause from effect?



Causal Function based methods: assumptions

 Considering the data generating process, effect generated from causes and noises, 

represented with functional causal model:

𝑌 = 𝑓(𝑋, 𝐸)

 Introducing additional assumptions 

• Independent noise assumption: Independence between the causes 𝑋 and noises 𝐸

• Independent mechanism assumption: independence between the causes 𝑋 and process 𝑓

X

E

⫫

17



Causal Function based methods: independent Noise (IN) Condition

 Causal Asymmetry in the Linear non-Gaussian Case

• Data generated by 𝑌 = 𝑎𝑋 + 𝐸 𝑖. 𝑒. , 𝑋 → 𝑌

 (𝐗, 𝑌) follows the IN condition iff regression residual 𝑌 − ෥𝜔T𝐗 is independent from 𝐗

18



Causal Function based method: LiNGAM

 Under the above assumptions, the LiNGAM can be expressed as

𝐗 = 𝐁𝐗 + 𝑬

• 𝑿 is a p-dimensional random vector, representing the observed variable.

• 𝑩 is 𝑝 × 𝑝-dimensional matrix, which represents the connection weight between the observed variables.

• 𝑬 is a p-dimensional non-Gaussian random noise variable.

 Because of the DAG assumption, there exists a permutation matrix 𝑷 ∈ 𝑅𝑚×𝑚 such that 𝑩’

= 𝑷𝑩𝑷𝑇 is a strict lower triangular matrix and diagonal elements are all 0

19

Shimizu S, Hoyer P O, Hyvärinen A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7(10).

Shimizu S. LiNGAM: Non-Gaussian methods for estimating causal structures[J]. Behaviormetrika, 2014, 41(1): 65-98.



 ICA, Independent Component Analysis, can be used to solve the LiNGAM

 Assumptions in ICA

• At most one of 𝑆𝑖 is Gaussian

• Size(X) >= Size(S), and A is of full column rank

LiNGAM: Independent Component Analysis

20

Hyvärinen et al., Independent Component Analysis, 2001

X1

Xm

observed signals

ICA system

output: as independent as 

possible

W

… … Y1

Yn

de-mixing

estimate

…

X = A·S Y = W·X

A

… …S1

Sn

unknown mixing system

independent 

sources

mixing

Then A can be estimated up to 

column scale and permutation

indeterminacies



 LiNGAM:

𝐗 = 𝐁𝐗 + 𝑬

 ICA:

𝒀 = 𝑾𝑿

𝑩 = 𝑰 −𝑾

 An example

LiNGAM: analysis by ICA

21

Shimizu S, Hoyer P O, Hyvärinen A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7(10).

X2 X3

X1

0.5

-0.2 0.3

So we have the causal relation:

W



Causal Function based method: ANM

 Hoyer et al. proved that nonlinear functions can play a similar role to non-Gaussian models, which 

can be used to identify causal directions.

22

Hoyer P O, Janzing D, Mooij J M, et al. Nonlinear causal discovery with additive noise models. NeurIPS. 2008.

𝑌 = 𝑓 𝑋 + 𝐸 𝑤𝑖𝑡ℎ

𝐸⫫X



Causal Function based method: practical issue - hidden variables

 Motivation: Non-Transitivity of Nonlinear Causal Model

• Let the direct cause in 𝑿𝟏 → 𝑿𝟐 → 𝑿𝟑 satisfy the additive noise model (ANM):

𝑋1 ∼ 𝑈(−0.5,0.5)
𝑋2 = 2 tanh(5𝑋1) + 𝑁2

𝑋3 =
𝑋2
2

3

+ 𝑁3

• However, the causal influence 𝑿𝟏 → 𝑿𝟑 does not necessarily follow the additive noise model,

23

and we might not identify the causal by simply test the independence between cause and noise. 



Causal Function based method: cascade Additive Noise Model (CANM)

 There exists a sequence of unmeasured intermediate variables Z  between X and Y, where 𝑁1, 𝑁2, 𝑁3, 𝝐
are the additive noise at each direct cause.

 Formally:

 How to solve it?

24

Figure: Illustration of the CANM

൞

𝑍1 = 𝑓1(𝑋) + 𝑁1
𝑍𝑡 = 𝑓𝑡(𝐙𝑝𝑎(𝑡)) + 𝑁𝑡

𝑌 = 𝑓𝑇+1 𝐙 )𝑝𝑎(𝑦 + 𝜖

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



Cascade Additive Noise Model (CANM)

25

 Given data set 𝓓 = 𝒙 𝒊 , 𝒚 𝒊
𝒊=𝟏

𝒎
,the marginal likelihood is given as follow:

 The unobserved intermediate variables z can be replaced by n.

① Decomposes the joint likelihood based on the Markov condition

② Applies the independence property between the cause and the noise, i.e., 

③ At the same time, we replace 𝑑𝒛 = 𝑑𝒏 and rewrite function ൯𝑓𝑇+1(𝐙 )𝑝𝑎(𝑦 as )𝑓(𝑋, 𝐍 .

൯𝑝(𝑍𝑡|𝐙 )𝑝𝑎(𝑡 ) = 𝑝(𝑁𝑡 = 𝑍𝑡 − 𝑓𝑡(𝐙 )𝑝𝑎(𝑡 )|𝐙 )𝑝𝑎(𝑡 )𝐙 )𝑝𝑎(𝑡 ⊥ 𝑁𝑡 𝑝(𝑁𝑡 = 𝑍𝑡 − 𝑓𝑡(𝐙 )𝑝𝑎(𝑡 )

𝑙𝑜𝑔ි

𝑖=1

𝑚

න𝑝𝜃 𝑥 𝑖 , 𝑦 𝑖 , 𝑧 𝑑𝑧 ⟺ 𝑙𝑜𝑔ි

𝑖=1

𝑚

න𝑝𝜃 (𝑥
𝑖 , 𝜖 𝑖 , 𝑛)𝑑𝑛

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



CANM: variational solution 

 Purpose: Find ൯𝑞𝜙(𝐍|𝑋, 𝑌 to approximate )𝑝𝜃(𝐍|𝑋, 𝑌

 Action: Optimize a variational lower bound (ELBO) of the marginal log-likelihood

 The lower bound is tight at the maximum of ELBO i.e. ൯𝑞𝜙(𝐍|𝑋, 𝑌 equal )𝑝𝜃(𝐍|𝑋, 𝑌

26

logි

𝑖=1

𝑚

න𝑝𝜃 𝑥 𝑖 , 𝜖 𝑖 , 𝑛 𝑑𝑛

≥෍

𝑖=1

𝑚

log 𝑝 𝑥 𝑖 − 𝐾𝐿(𝑞𝜙 𝑛 𝑥 𝑖 , 𝑦 𝑖 𝑝𝜃 𝑛 + 𝐸 ൯𝑛~𝑞𝜙(𝑛|𝑥
𝑖 ,𝑦 𝑖 log𝑝 𝜖 𝑖 = 𝑦 𝑖 − 𝑓 𝑥 𝑖 , 𝑛; 𝜃

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



CANM: Encoder and Decoder Scheme

 Steps of VAE to optimize 𝓛(𝜽,𝝓;𝑿, 𝒀)

1. Encode data into 𝝁, 𝝈.

2. Sample the 𝒏 through 𝝁 + 𝝈⊙𝒖, where 𝒖 ∼ 𝓝(𝟎, 𝑰)

3. Reconstruct 𝒚 using 𝐱, 𝒏.

27

Encoder phase:

Decoder phase:

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



CANM: algorithm

28

①

②

 Model selection: select the best number of latent variables.

 To estimate the marginal likelihood to identify the causal relationship.

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



CANM: identifiability

 Theorem 1. Let 𝑿 → 𝒀 follow the cascade additive noise model, while there exists a backward model following the same form, i.e.

𝑌 = 𝑓(𝑋,𝑁) + 𝜖, 𝑋,𝑁,and 𝜖 are independent,

𝑋 = 𝑔(𝑌, ෡𝑁) + Ƹ𝜖, 𝑌, ෡𝑁,and Ƹ𝜖 are independent,

then the noise distribution of the reverse direction 𝑝ො𝜖 must be

𝑝ො𝜖 Ƹ𝜖 = න𝑒2𝜋𝑖ො𝜖⋅𝜈
׬ 𝑝׬ (𝑥)𝑝(𝑛)𝑝𝜖(𝑦 − 𝑓(𝑥, 𝑛))𝑒−2𝜋𝑖𝑥⋅𝜈𝑑𝑛𝑑𝑥

𝑝(𝑦)׬𝑝 ො𝑛 𝑒−2𝜋𝑖𝑔 𝑦, ො𝑛 ⋅𝜈𝑑 ො𝑛
𝑑𝜈,

where 𝒇, 𝒈 denote the function implied by the cascade process. 

29

◼ The main result of our main theorem is that, If the model is non-identifiable, one strict condition must hold:

∀𝑦1, 𝑦2, න 𝑒2𝜋𝑖ො𝜖⋅𝜈
׬ 𝑝׬ (𝑥)𝑝(𝐧)𝑝𝜖(𝑦1 − 𝑓(𝑥, 𝐧))𝑒−2𝜋𝑖𝑥⋅𝜈𝑑𝐧𝑑𝑥

𝑝(𝑦1) 𝑝׬ ෝ𝐧 𝑒−2𝜋𝑖𝑔 𝑦1,ෝ𝐧 ⋅𝜈𝑑ෝ𝐧
𝑑𝜈

= න𝑒2𝜋𝑖ො𝜖⋅𝜈
׬ 𝑝׬ (𝑥)𝑝(𝐧)𝑝𝜖(𝑦2 − 𝑓(𝑥, 𝐧))𝑒−2𝜋𝑖𝑥⋅𝜈𝑑𝐧𝑑𝑥

𝑝(𝑦2) 𝑝׬ ෝ𝐧 𝑒−2𝜋𝑖𝑔 𝑦2,ෝ𝐧 ⋅𝜈𝑑ෝ𝐧
𝑑𝜈

Intuitively, such a condition holds only in restrictive cases.

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



CANM: experiments - synthetic data

30

 Depth: as the depth increases, the accuracy of CANM is stable and around 90% accuracy with a slight 

decrease, while the performance of the rest methods decreases rapidly as the depth grows.

 Sample Size: as the sample size grows the accuracy increase, and even in the small sample size, 

CANM still outperforms the other methods.

 Fixed Structure: the variance of the likelihood decreases and the accuracy increases as the sample size

grows.

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



Stock Market DatasetElectricity Consumption Dataset

CANM: experiments - real world data

31

 The electricity consumption dataset

• Hour of day → Temperature → electricity load

‒ This data might exist more than one unmeasured variables because in the same hour of day there have different

electricity load and the reason could be the season.

‒ CANM successfully catch this latent variable because the prediction of electricity load, the red point, separating

into both upper and lower parts.

 Stock Market Dataset

• Hutchison → Cheung Kong → Sun Hung Kai.

‒ The fitted intermediate variable from CANM has a high correction (𝜌 = 0.54) with the ground truth (Cheung Kong)

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



Causal Function based method: PNL

 LiNGAM algorithms can only solve linear problems. For non-linear problems,Zhang et al. 

proposed PNL, the post-NonLinear method. 

 In the PNL model, assuming that there is a causal relationship 𝑣𝑖 → 𝑣𝑗, it can be expressed as

𝑣𝑗 = 𝑓2(𝑓1(𝑣𝑖) + 𝑛𝑗) (1)

• 𝑣𝑖 and 𝑛𝑗 are independent of each other

• 𝑓1 is an unconstant smooth function 

• 𝑓2 is a reversible smooth function and 𝑓’2 ≠ 0

32

𝑓2 𝑣𝑗

𝑓1𝑣𝑖

𝑛𝑗

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.



PNL: All non-identifiable cases

 Causal direction is generally identifiable if the data were generated according to 

𝑋2 = 𝑓2 (𝑓1 (𝑋1) + 𝐸).

33

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.



Causal Function based methods

 If we add new assumptions to the PNL model, we will get the LiNGAM and ANM.

34

PNL

𝑥𝑗 = 𝑓2(𝑓1(𝑥𝑖) + 𝑛𝑗)

𝑥𝑖 and 𝑛𝑗 is independent

LiNGAM

𝑥𝑗 = 𝑏𝑗𝑖𝑥𝑖 + 𝑛𝑗

𝑥𝑖 and 𝑛𝑗 is independent

𝑏𝑗𝑖 is the connection weight of 𝑥𝑗 and 𝑥𝑖

ANM

𝑥𝑗 = 𝑓(𝑥𝑖) + 𝑛𝑗

𝑥𝑖 and 𝑛𝑗 is independent

𝑓1 and 𝑓2 is linear 

𝑛𝑗 is non-Gaussian 

𝑓1 is non-linear 

𝑓2 is linear 

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.



Causal Function based methods: in noiseless case

 Problem: how to infer whether 𝑌 = 𝑓(𝑋) or 𝑋 = 𝑓−1(𝑋) is the right causal model?

 An example of independent mechanism

𝑌 = 𝑓 𝑋 , 𝑋 ⫫ 𝑓(𝑋)

 Asymmetry holds

• In the causal direction: independence between 𝑋 and𝑓 𝑋 holds

• In the anti-causal direction: independence between 𝑌 and  𝑓 𝑌 does not hold

35

X

E

⫫

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.



IGCI: inference rule

 If 𝑋 → 𝑌 then

නlog |𝑓′ 𝑥 | 𝑝 𝑥 𝑑𝑥 ≤න log 𝑓−1
′
𝑦 𝑝 𝑦 𝑑𝑦

 empirical estimator

መ𝐶𝑋→𝑌 ≔
1

𝑚
σ𝑗=1
𝑚 log

𝑦𝑗+1−𝑦𝑗

𝑥𝑗+1−𝑥𝑗
≈ ׬ log |𝑓′ 𝑥 | 𝑝 𝑥 𝑑𝑥

 infer 𝑋 → 𝑌 whenever

መ𝐶𝑋→𝑌 < መ𝐶𝑌→𝑋

36

Janzing D, Mooij J, Zhang K, et al. Information-geometric approach to inferring causal directions. Artificial Intelligence, 2012.



Causal Function based method: practical issue - categorical variables

 Additive noise model for categorical variables

𝑌 = 𝑔(𝑋) + 𝐸, 𝑋 ⊥ 𝐸

 Problem of existing method: how to fit the discrete data? e.g. male, female, wood, iron, steel… 

37

 
 
 
 
 

   

 
 
 
 
 

   

Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurIPS, 2018.



Causal Function based method: HCR

 Categorical data: A Hidden Compact Representation Model

38
Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurIPS, 2018.



HCR: algorithm

 Step 1: Estimate the model 𝑀:𝑋 → 𝑌′ → 𝑌, ෡𝑀:𝑌 → 𝑋′ → 𝑋 by maximizing BIC 𝐿∗ 𝑀;𝐷 , 𝐿∗ ෡𝑀;𝐷

respectively.

 Step 2: If 𝐿∗ 𝑀;𝐷 > 𝐿∗ ෡𝑀;𝐷 , infer “𝑋 → 𝑌” 

If 𝐿∗ 𝑀;𝐷 < 𝐿∗ ෡𝑀;𝐷 , infer “𝑋 → 𝑌”

If 𝐿∗ 𝑀;𝐷 = 𝐿∗ ෡𝑀;𝐷 , infer “non − identifiable”
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𝐿∗ 𝑀;𝐷 =ෑ

𝑖=1

𝑚

𝑃 𝑋 = 𝑥𝑖 𝑃(𝑌 = 𝑦𝑖|𝑌
′ = 𝑓(𝑥𝑖)) −

𝑑

2
log(𝑚)

=෍

𝑥

𝑛𝑥 log
𝑛𝑥

σ𝑥 𝑛𝑥
+෍

𝑦′

෍

𝑦

𝑛𝑦′,𝑦 log
𝑛𝑦′,𝑦

σ𝑦 𝑛𝑦′.𝑦
−
𝑑

2
log(𝑚)



HCR: Identifiability

 Theorem 2. Assume that in the causal direction there exists the transformation 𝑌 ′ = 𝑓(𝑋) such that 𝑃(𝑌 ∣

𝑋) = 𝑃(𝑌 ∣ 𝑌′), where ∣ 𝑌′ ∣<∣ 𝑋 ∣, and assumption A1 holds. Then to produce the same distribution 

𝑃(𝑋, 𝑌), the reverse direction must involve more effective number of parameters in the model than the 

causal direction.

40
Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurIPS, 2018.



HCR: results

 The causal mechanism behind the abalone data set：Adult/Infant  → size

41

Result on Abalone data set.

Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurIPS, 2018.



经典方法

 基于约束的因果发现方法

 基于函数的因果发现方法

 混合型因果发现方法

42



How to handle the high dimensional data?

 Motivation: complimentary of Constraints based methods and Causal function based methods

43

Causal Function based Constraints based

High Dimensionality NO (Pairwise) Yes

Discovery Ability Yes
NO

(Markov Equivalence)



SELF: model

 Embedding the functional causal assumption into the likelihood framework

Pr 𝑋𝑖 = 𝑜𝑗,𝑖 ∣ 𝑋𝑃𝑖 = 𝑜𝑗,𝑃𝑖

𝑋𝑖 = 𝐹𝑖 𝑋𝑃𝑖 + 𝐸𝑖 Pr 𝐸𝑖 = 𝑜𝑗,𝑖 − 𝐹𝑖(𝑜𝑗,𝑃𝑖)|𝑋𝑃𝑖

𝑋𝑃𝑖 ⫫ 𝐸𝑖 Pr ൯𝐸𝑖 = 𝑜𝑗,𝑖 − 𝐹𝑖(𝑜𝑗,𝑃𝑖

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.
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SELF: framework

 Embedding the functional causal assumption into the likelihood framework

45

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.



SELF: algorithm

 Step 1: For each nodes, fit 𝐹𝑖 with a nonlinear or linear regression (e.g. XGBoost, OLS)

 Step 2: Estimate the noise distribution with kernel density function

 Step 3: Maximize 

46

Regression

𝑥2 = 𝑓 𝑥1 + 𝐸2
𝑥3 = 𝑓 𝑥1 + 𝐸3

𝑥2 = 𝑓 𝑥2, 𝑥3 + 𝐸4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4Delete

X1

X2

X3

X4

 

 

Noise 

Estimation

𝐸2 = 𝑥2 − 𝑓 𝑥1
𝐸3 = 𝑥3 − 𝑓 𝑥1
𝐸4 = 𝑥2 − 𝑓 𝑥2, 𝑥3

Structure 

Searching 𝑀𝑎𝑥 ℒℬ(𝑆; 𝑂)

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.



SELF: results

47

 SOTA results, out of box 

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.

Codes: https://github.com/DMIRLAB-Group/CDMIR

https://github.com/DMIRLAB-Group/CDMIR


研究进展

 隐变量问题

 非独立同分布问题

48



 Discovering causal relations among latent variables is important in many domains

• In psychotherapy:  what is the causal relations among role conflict, depersonalization, personal 

accomplishment?

Causal discovery among latent variables

49

Stress

Depression

Coping

s1

s5

...

d1 d4
...

c1

c6

...

?

𝑸𝟏: What is the level of stress 

you are experiencing?
𝑸𝟐: How often do you 

feel depressed?



How to handle latent variable?

 Linear latent variable model

• Measurement model

• Structural model

50

𝑆1

……

𝑆20.

𝐶1

……

𝐶20

𝐷1

……

𝐷20

Causal structure of latent variables

How to?

Observed data



Tetrad Condition

Tetrad Condition: for 𝑋1, 𝑋2 and any one of 𝑋3, 𝑋4, three quadratic constraints (tetrad constraints) 

on the covariance matrix are implied: e.g., for 𝑋4, 

𝜌12𝜌34 = 𝜌14𝜌23 = 𝜌13𝜌24,

where 𝜌12 is the correlation between 𝑋1, 𝑋2, etc. 

(Note that any two of the three vanishing tetrad differences above entails the third.)

Silva R, Scheines R, Glymour C, Spirtes P, Chickering DM. Learning the structure of linear latent variable models, JMLR 2006.

𝜌14𝜌23 − 𝜌13𝜌24 = 0
𝜌12𝜌34 − 𝜌13𝜌24 ≠ 0
𝜌12𝜌34 − 𝜌14𝜌23 ≠ 0

𝜌14𝜌23 − 𝜌13𝜌24 = 0
𝜌12𝜌34 − 𝜌13𝜌24 = 0
𝜌12𝜌34 − 𝜌14𝜌23 = 0

51



Tetrad Condition: Limitation

 Cannot identify the causal direction: 𝐿1 → 𝐿2 or 𝐿2 → 𝐿1?

 Cannot detect the latent variables when we only have 3 measured 

variables

𝑋3

𝐿1 𝐿2

𝑋4𝑋1 𝑋2 𝑋3

𝐿1 𝐿2

𝑋4𝑋1 𝑋2

𝜌14𝜌23 − 𝜌13𝜌24 = 0
𝜌12𝜌34 − 𝜌13𝜌24 ≠ 0
𝜌12𝜌34 − 𝜌14𝜌23 ≠ 0

𝜌14𝜌23 − 𝜌13𝜌24 = 0
𝜌12𝜌34 − 𝜌13𝜌24 ≠ 0
𝜌12𝜌34 − 𝜌14𝜌23 ≠ 0

How to solve this problem?

𝑋𝑘

𝐿1

𝑋𝑖 𝑋𝑗

52



Intuition

 What kind of information is helpful to distinguish them?

Second moment 

information

（covariance）

Higher moment 

information

（independence of noise）

Non-Gaussianity

Tetrad Condition ?  Condition

53

Non-Gaussian information may help



Triad: the asymmetry of Triad condition

(𝑋𝑖 −
𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑘)

𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘
𝑋𝑗) ⊥ 𝑋𝑘

𝑋𝑖 = 𝑎𝑏𝐿2 + 𝑎𝐿1 + 𝜀𝑖

𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑘 = 𝑎𝑏𝑑

𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘 = (𝑏2+1)cd
𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑘)

𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘
=

𝑎𝑏

(𝑏2+1)𝑐

𝑋𝑖 = 𝑎𝐿1 + 𝜀𝑖

(𝑋𝑖 −
𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑘)

𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘
𝑋𝑗) ⊥ 𝑋𝑘

 Consider the following two causal structures:

𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑘 = 𝑎𝑏𝑑

𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘 = 𝑐𝑑
𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑘)

𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘
=
𝑎𝑏

𝑐

54
Cai, R., Xie, F. et al. Triad constraints for learning causal structure of latent variables. NeurIPS 2019.



Triad condition

 Triad Constraints (our proposed) In a linear latent model, suppose {𝑋𝑖 , 𝑋𝑗} and 𝑋𝑘 are distinct and 

correlated variables and that all noise variables are non-Gaussian. Define the pseudo-residual of {𝑋𝑖 , 𝑋𝑗}

relative to 𝑋𝑘 , which is called a reference variable, as

𝐸 𝑖,𝑗 |𝑘 : = 𝑋𝑖 −
൯Cov(𝑋𝑖,𝑋𝑘
൯Cov(𝑋𝑗,𝑋𝑘
⋅ 𝑋𝑗 .

 We say that {𝑋𝑖 , 𝑋𝑗} and 𝑋𝑘 satisfy Triad constraint if and only if 𝐸 𝑖,𝑗 |𝑘 ⊥ 𝑋𝑘, i.e., {𝑋𝑖 , 𝑋𝑗} and 𝑋𝑘 violate 

the Triad constraint if and only if 𝐸 𝑖,𝑗 |𝑘 ⊥ 𝑋𝑘.

55

VS

“pseudo-residual”“normal-residual”

Residual

R1= 𝑋𝑖 −
𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)

𝐶𝑜𝑣 𝑋𝑗,𝑋𝑗
𝑋𝑗 R2= 𝑋𝑖 −

𝐶𝑜𝑣(𝑋𝑖,𝑋𝑘)

𝐶𝑜𝑣 𝑋𝑗,𝑋𝑘
𝑋𝑗

Cai, R., Xie, F. et al. Triad constraints for learning causal structure of latent variables. NeurIPS 2019.



Triad Condition: Limitation

 Cannot applied into the multiple shared latent variables case:

 Can we extend the surrogate strategy to multiple shared latent variables?

56



Generalized Independent Noise (GIN) Condition

Consider  𝒀 = {𝑋1, 𝑋2, 𝑋3}, we have

However, we don’t have access to 𝐿1 and 𝐿2

Can we still use some measured variables as surrogate variables?

𝑬𝐘 is independent from 𝐿1 and 𝐿2.

Similarly, use Measured Variables 𝒁 = (𝑋4, 𝑋5)
T as Surrogate Variables, we have  

𝑋1
𝑋2
𝑋3

=

𝑎1 𝑏1
𝑎2 𝑏2
𝑎3 𝑏3

⋅
1

𝑎5𝑏4 − 𝑎4𝑏5

𝑏5 𝑏4
𝑎5 𝑎4

𝑋4
𝑋5

−

𝑎1 𝑏1
𝑎2 𝑏2
𝑎3 𝑏3

⋅
1

𝑎5𝑏4 − 𝑎4𝑏5

𝑏5 𝑏4
𝑎5 𝑎4

𝜀4
𝜀5

+

𝜀𝑋1
𝜀𝑋2
𝜀𝑋3

∃ nonzero vector 𝝎 s.t. 𝝎T𝐂𝐨𝐯 𝒀, 𝒁 = 𝟎

𝝎 = 𝑎2𝑏3 − 𝑏2𝑎3, 𝑏1𝑎3 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑏1𝑎2
𝑇

⇒ 𝝎T𝒀 is independent from 𝐿.

57

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020.



GIN: Generalized Independent Noise Condition

𝝎T
𝑎1 𝑏1
𝑎2 𝑏2
𝑎3 𝑏3

= 𝟎

𝝎T
𝑎1𝑎4 + 𝑏1𝑏4 𝑎1𝑎5 + 𝑏1𝑏5
𝑎2𝑎4 + 𝑏2𝑏4 𝑎2𝑎5 + 𝑏2𝑏5
𝑎3𝑎4 + 𝑏3𝑏4 𝑎3𝑎5 + 𝑏3𝑏5

= 𝟎

𝝎T ∙ 𝐂𝐨𝐯(𝒀, 𝑳𝟏,𝟐) = 𝟎

𝝎T ∙ 𝐂𝐨𝐯 𝒀, 𝒁 = 𝟎

∃ nonzero vector 𝝎 s.t.𝝎T ∙ 𝐂𝐨𝐯 𝒀, 𝒁 = 𝟎 ⇒ 𝜔T𝒀 is independent from 𝐿.

𝝎 = 𝑎2𝑏3 − 𝑏2𝑎3, 𝑏1𝑎3 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑏1𝑎2 𝑇

𝝎T
𝑎1 𝑏1
𝑎2 𝑏2
𝑎3 𝑏3

𝑎4 𝑎5
𝑏4 𝑏5

= 𝟎

Consider  𝒀 = {𝑋1, 𝑋2, 𝑋3}, we have

GIN: view measured and latent variables in a unified way 

use 𝒁 = (𝑋4, 𝑋5)
T

instead 𝑳𝟏,𝟐

∃ nonzero vector 𝝎 s.t. 𝝎T𝑨 = 𝟎 ⇒ 𝝎T𝒀 = 𝝎T𝑬 is independent from 𝐿.

𝝎T𝑨 = 𝟎 𝝎T ∙ 𝐂𝐨𝐯(𝒀, 𝑳𝟏,𝟐) = 𝟎

𝝎T ∙ 𝐂𝐨𝐯 𝒀, 𝑳𝟏,𝟐 𝐂𝐨𝐯(𝑳𝟏,𝟐, 𝒁) = 𝟎

⇒ 𝒀 = 𝑨𝑳 + 𝑬 ⇒ 𝑬 = 𝒀 − 𝑨𝑳

𝑋1
𝑋2
𝑋3

=

𝑎1 𝑏1
𝑎2 𝑏2
𝑎3 𝑏3

𝐿1
𝐿2

+

𝜀𝑋1
𝜀𝑋2
𝜀𝑋3

58

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020.



GIN: Generalized Independent Noise Condition

59

 Generalized Independent Noise(GIN) condition：(𝒁, 𝒀) follows the GIN condition iff there 

exists non-zeros 𝜔 such that 𝜔T𝔼 𝒀𝒁T = 0 and 𝜔T𝒀 is independent from 𝒁.

 Triad condition can be seen as a special case of the GIN condition.

• For example, ( 𝑋𝑘 , 𝑋𝑖 , 𝑋𝑗 ) satisfy Triad condition iff ( 𝑋𝑘 , 𝑋𝑖 , 𝑋𝑗 ) satisfy GIN condition

(𝑋𝑖 −
𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑘)

𝐶𝑜𝑣 𝑋𝑗 , 𝑋𝑘
𝑋𝑗) ⊥ 𝑋𝑘

∃ nonzero vector 𝝎 s.t.𝝎T𝐂𝐨𝐯 𝑋𝑖 , 𝑋𝑗 , 𝑋𝑘 = 𝟎

𝝎 = 𝑐𝑑,−𝑎𝑏𝑑 𝑇

⇒ 𝝎T 𝑋𝑖
𝑋𝑗

is independent from 𝐿2.

Triad condition GIN condition

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020.



GIN: Application in LiNGLaM

Linear Non-Gaussian Latent Variable Model (LiNGLaM)

 A1. [Measurement Assumption] There is no observed 

variable in 𝐗 being an ancestor of any latent variables in 𝐋. 

 A2. [Non-Gaussianity Assumption] The noise terms are 

non-Gaussian. 

 A3. [Double-Pure Child Variable Assumption] Each 

latent variable set 𝐋′, in which every latent variable directly 

causes the same set of observed variables, has at least 

2Dim(𝐋′) pure measurement variables as children.

 A4. [Purity Assumption] There is no direct edge between 

observed variables.

60

A simple structure that satisfies LiNGLaM

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020.



GIN: Application in LiNGLaM

 We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed

61

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020.



GIN: Application in LiNGLaM

 We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed

62

Ground-truth graph
E.g., Test |latent|=1, we have

({𝑋1, … , 𝑋4, 𝑋7, 𝑋8}, {𝑋5, 𝑋6}) satisfies GIN. Thus, {𝑋5, 𝑋6} is a cluster.

Similarly,

({𝑋1, … , 𝑋4, 𝑋5, 𝑋6}, {𝑋7, 𝑋8}) satisfies GIN. Thus, {𝑋7, 𝑋8} is a cluster.

𝐿1

𝐿2

𝑋1 𝑋2 𝑋3 𝑋4

𝑋5
𝐿3

𝐿4

𝑋6

𝑋8

𝑋7

Cluster 1

Cluster 3

Cluster 2

The variables in a cluster share the same GIN conditions.



GIN: Application in LiNGLaM

 We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed
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Ground-truth graph

E.g., 

({𝑋3, 𝑋4, 𝑋5}, {𝑋1, 𝑋2}) satisfies GIN, and 

({𝑋3, 𝑋4, 𝑋7}, {𝑋1, 𝑋2}) satisfies GIN. 

We have {𝐿1, 𝐿2} is causally earlier than 𝐿3 and 𝐿4.

Similarly, we have 𝐿3 is causally earlier than 𝐿4.

Run Step 2

𝐿1

𝐿2

𝑋1 𝑋2 𝑋3 𝑋4

𝑋5
𝐿3

𝐿4

𝑋6

𝑋8

𝑋7

𝐿1

𝐿2

𝑋1 𝑋2 𝑋3 𝑋4

𝑋5
𝐿3

𝐿4

𝑋6

𝑋8

𝑋7

causally earlier 

causally earlier 



GIN: Application in LiNGLaM

 We simulate data following the LiNGLaM, including 4 cases, with different DAG structures for and measurement variables 

and latent variables. 

 Goal: find clusters (determine the location of latent variables)? 

• Latent oimission:  measure omitted latent variables

• Latent commission: measure falsely detected latent variables

• Mismeasurements: measure the misclassification of observed variables 

64
Our proposed algorithm is more efficient and can find all  latent variables!



GIN: Results

65

 We apply our algorithm to discover the underlying causal structure behind the Teacher’s Burnout,

and we are developing a tool with the help of psychologist.

(from root to leaf)

• Discovered clusters and 

causal order of the latent 

variables:

Hypothesized model by experts [Byrne, 2010] 

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurIPS 2020.



FRITL: More general setting

66

 How to learn causal structure with latent variables from observed data?

 Challenges:

• how to efficiently decompose a large global graph into local small structures without introducing new 

latent confounders?

• how to recover local structures accurately in the presence of latent confounders?

Chen W, Zhang K, Cai R, et al. FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders. Submitted to JMLR, arXiv preprint arXiv:2103.14238, 2021.
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FRITL: Algorithm

67

 Step 1: Construct a PAG: based on conditional independence test

 Step 2: Infer local causal structures: IN condition

 Step 3: Detect shared latent confounders

 Estimate remaining undetermined local causal structures if needed

x1

x2

x3

x5

x4

x6

x7

x8

L1

L2

Chen W, Zhang K, Cai R, et al. FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders. Submitted to JMLR, arXiv preprint arXiv:2103.14238, 2021.



前沿进展

 隐变量问题

 非独立同分布问题
• Multi-domain

• Multi closely related domain

68



How about data from multiple environments？

 If data are generated from multiple environments, how to discover the causal structures from data?

 Data is non-i.i.d.

 Challenges:

• how to group the subjects that are implied the same causal structure?

• how to recover the causal structure?

69

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.



CCSL: Causal Clustering Structure Learning

70

Grouping subjects 

Recovering causal structures

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.
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CCSL: causal clustering

 Challenge 1: how to group the subjects that are implied the same causal structure?

 Causal CRP: Chinese Restaurant Process

71

𝑃 𝑐𝑠 = 𝑘|𝑐1: 𝑠−1 , 𝛼 ∝ ቊ
𝑃(𝑐𝑠 = 𝑘|𝐗𝑠)

𝛼
𝑘 ≤ 𝐾,

𝑘 = 𝐾 + 1.
Causal

Clustering

Causal 

Structural

Learning

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.



CCSL: causal structural learning 

 Challenge 2: how to recover the causal structure?

 Causal Structure Model for Each Cluster:

72

𝑃 𝐗𝑠 𝑐𝑠 = 𝑘

𝐗 𝑘 𝑡 = 𝐵 𝑘 𝑋 𝑘 𝑡 +෍

𝑝=1

𝑝𝑙

𝐴𝑝
𝑘
𝑋 𝑘 𝑙 − 𝑝 + 𝐸 𝑘 (𝑡)

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.

Causal 

Structural

Learning

Causal

Clustering



MD-LiNA：Multi-Domain causal discovery

 Common Space V.S. Multi-domain space

73

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LiNGAM for latent factors. IJCAI 2021.



MD-LiNA：Formalization

 The formalization of our model is shown in these three equations. To integrate the multi-domain 

data, we use a simple coding representation method.
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𝒇(𝑚) =𝑩(𝑚)𝒇(𝑚) + 𝛆(𝑚)

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LiNGAM for latent factors. IJCAI 2021.



MD-LiNA：Formalization

 The formalization of our model is shown in these three equations. To integrate the multi-domain 

data, we use a simple coding representation method.
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ത𝒇 =𝑯෨𝒇

𝒇(𝑚) =𝑩(𝑚)𝒇(𝑚) + 𝛆(𝑚)

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LiNGAM for latent factors. IJCAI 2021.



ത𝒇 =𝑯෨𝒇

MD-LiNA：Formalization

 The formalization of our model is shown in these three equations. To integrate the multi-domain 

data, we use a simple coding representation method.
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𝒇(𝑚) =𝑩(𝑚)𝒇(𝑚) + 𝛆(𝑚)

𝒙(𝑚) =𝑮(𝑚)𝒇(𝑚) + 𝒆(𝑚)

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LiNGAM for latent factors. IJCAI 2021.



应用探索

77

 根因故障定位



 The data are generated from multiple topologically related environments, how to discover the 

causal structures from data?

 It is crucial to consider the topological structure behind the data for learning Granger causality.

通信网络故障根因故障定位

78

Non I.I.D

closely related 

Cai R, Wu S et al. THP: Topological Hawkes Processes for Learning Granger Causality on Event Sequences. Submitted to TNNLS, arXiv:2105.10884, 2021.



THP：The topological-temporal Hawkes model 

 How to learn the Granger causality among event types using the event sequences that 

generated by nodes in a topological network?

79

Cai R, Wu S et al. THP: Topological Hawkes Processes for Learning Granger Causality on Event Sequences. Submitted to TNNLS, arXiv:2105.10884, 2021.
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A unified view from convolution

 Look at the Hawkes process from a temporal convolution perspective:

 Look at the topological structure from a graph convolution perspective :

 Extend the causal intensity function to the topological-temporal domain 𝒢𝑁×T.

𝜆𝑣 𝑡 = 𝜇𝑣 + ෍

𝑣′∈𝐏𝐀𝑣

𝜙𝑣′,𝑣 ∗ 𝑑C𝑣′ 𝐓
(𝑡)𝜆𝑣 𝑡 = 𝜇𝑣 + ෍

𝑣′∈𝐏𝐀𝑣

න
𝑡′∈𝐓𝒕−

𝜙𝑣′,𝑣 𝑡 − 𝑡′ 𝑑C𝑣′(𝑡
′)

𝑦 = 𝑔𝜃 𝐿 𝑠 = 𝑔𝜃 𝑈Γ𝑈𝑇 𝑠 = 𝑈𝑔𝜃 Γ 𝑈𝑇𝑠
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Cai R, Wu S et al. THP: Topological Hawkes Processes for Learning Granger Causality on Event Sequences. Submitted to TNNLS, arXiv:2105.10884, 2021.



The 1St in PCIC 2021 Causal Discovery challenge
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Datasets: https://competition.huaweicloud.com/information/1000041487/introduction

Codes: https://github.com/DMIRLAB-Group/CDMIR

https://competition.huaweicloud.com/information/1000041487/introduction
https://github.com/DMIRLAB-Group/CDMIR


CAUSAL-LEARN：因果学习开源算法平台

82



causal-learn: 因果学习算法平台

 基于Python实现了经典和部分最新的因果学习算法。其中包含了因果发现的经典算法与API，并且提供了模块化的代

码

 GitHub: https://github.com/cmu-phil/causal-learn

 文档: https://causal-learn.readthedocs.io/en/latest/

 简单使用案例：https://github.com/cmu-phil/causal-learn/tree/main/tests
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https://github.com/cmu-phil/causal-learn
https://causal-learn.readthedocs.io/en/latest/
https://github.com/cmu-phil/causal-learn/tree/main/tests


causal-learn: 因果学习算法平台

 causal-learn支持：

• 基于约束的因果发现方法（Constrained-based causal discovery methods）: PC、FCI、CD-NOD算法等；

• 基于评分的因果发现方法（Score-based causal discovery methods）：包含BIC、BDeu、generalized

score等评分的GES算法；

• 基于函数因果模型的因果发现方法（Functional causal models-based causal discovery methods）: 

LiNGAM及其拓展方法、ANM、PNL等；

• 隐因果表征学习方法（Hidden causal representation learning）：GIN方法；

• 格兰杰因果分析（Granger causal analysis）；

• 多个独立的基础模块，比如独立性测试，评分函数，图操作，评测指标；

• 更多最新的因果发现算法，如gradient-based methods等。
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causal-learn: 使用方法

 安装：可以通过pip来实现
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 使用：causal-learn为所有模型都提供了简单易用的接口，用户可以通过一行代码在自己的数据上进行因果发现

causal-learn: PC算法使用方法
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from causallearn.search.ConstraintBased.PC import pc

cg = pc(data, alpha, indep_test, stable, uc_rule, uc_priority, mvpc, 

correction_name, background_knowledge, verbose, show_progress)

# visualization using pydot

cg.draw_pydot_graph()



 使用：causal-learn为所有模型都提供了简单易用的接口，用户可以通过一行代码在自己的数据上进行因果发现

causal-learn: GIN算法使用方法

87

from causallearn.search.FCMBased.GIN.GIN import GIN

G, K = GIN(data, indep_test, alpha)

# visualization using pydot

pyd = GraphUtils.to_pydot(G)

pyd.write_png('test.png')



causal-learn: 使用方法

 可视化结果与评测:    在算法运行结束后，用户可以查看生成的因果图，并通过多种评测指标来与基准图进行对比
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from causallearn.utils.GraphUtils import GraphUtils

# visualization using pydot

pyd = GraphUtils.to_pydot(G)

pyd.write_png('test.png')



Conclusion

Causal discovery = Causal thinking/assumptions + ML/Statistical tools
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