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Structural Causal Models and Graphical Causal Models @

M The structural causal model (SCM) is a framework that can be used for multivariate analysis,
which can be used to describe the real-world related variables and their interactions.
M X, = fi(pa, E;),i=1.2,..,n
* pa; . parents of X;
« E;:exogenous variables / errors / disturbances
« [Each equation represents an autonomous mechanism

« Describes how nature assigns values to variables of interest

SCM Graphical Causal Model: Directed Acyclic Graphs (DAG)
X ={X1, X0, X3, Xy}, E = {E1, Ep, E3, EL L F = {f3, fu} Nodes: {X{,X,, X3, X4} X1 Xz

X1 =E; Edges:{X; - X3, \X /

Xz =k Xy = X3, lg

X3 = f3(Xy, X3, E3)

Xy = fa(X3, Ey) Xy = Xa) X4



Constraint-based methods: assumptions @

M Causal Markov Assumption: A variable X is independent of every other variable (except X's
effects) conditional on all of its direct causes.

x1\ /xz
@ X4 @

S xgll {x3,%6, x5} | {x1, %2}

v Causal Faithfulness Assumption: for all observed variables, X; is independent of X; conditional
on variables Z if and only if the Markov Assumption for G entails such conditional independencies.



Constraint-based methods

M (Conditional) Independence Test

x1 UL x3|x;,

xq L x3
x1 & x3]|x;

Inferring

Inferring

Markov
Equivalence
Class

V-Structure



Constraint-based methods: PC

M PC (Peter-Clark from CMU)

X, X2 X3 X, X
-1.1 1 1.3 0.2 -0.7
2.1 2 31 -13 -1.6
3.1 42 -26 0.6 2.1
23 -06 -35 0.8 2.3
1.3 -1.7 0.9 24 -14
-1.8 09 -13 0.9 0.7
(a) Hudfs

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.

\_

X1 L Xs|X;
X, L X,)X,
X, 1L Xs5|Xs
Xy 1L X5| X5
X1 L X3]{X2, X4}

J

(b) 2 A AR

Xs

(c) PAIREH

10



Constraint-based methods: PC

M A toy example of PC (Peter-Clark)

!
X/ X/]( \X
L 4
N N /
3 X3
X, JLX5|X3
Xs Xs
X X1
X/ \X X/ X.
2 4 2 4
X3 X3
X, 1L Xg|X; Xy 1L X31{X2, Xa} |
Xs Xs

X, 1L X,|X,

Xo B X, | X5

-
=

(
X; I X5|Xs h
X, 1L X41X,
X, 1L X5|Xs
Xy 1L X5|X5
X1 L X3|{X2, X4}

X2 Xy
\ /
- X3
X, UL Xc| X5
Xs
/Xf
Xz\ Xy
- X3
No more collider l

11



Constraint-based methods: FCI

M How to deal with latent confounders?

« if there is a latent confounder L behind X; and X,

X1 X7 X1 X>
NS NS
)is /)is

L
X, X,
X, I X, X, 1L X,
X1 L Xy X3 X1 e X4]X3
Xy L Xy| X3 Xo Jb X4 X3

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.

12



Constraint-based methods: FCI

M FCI (Fast Causal Inference): allows Confounders
* Results represented by PAGs (Partial Ancestral Graphs)

X4 X, X1 and X, are not adjacent

X o—» X X, is not an ancestor of X,

X1 o——o0 X, No set d-separates X, and X;

X1 —— X X; is a cause of X,

X =— X, There is a latent common cause of X; and X,

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.

X, X,

\/
Y
~i,

@ FCI’s output

13



Constraint-based methods: limitations @

M Limitations of constraint-based methods

G (PP (o))
Inferr

x1 I x3]x5 l Gz

G: (+()+(0)

Markov Equivalence Class

Problem: Cannot identify the structures belonging to the Markov Equivalence Class

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. Causation, prediction, and search. MIT press, 2000.
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Can we directly distinguish cause from effect?
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Causal Function based methods: assumptions @

M Considering the data generating process, effect generated from causes and noises,
represented with functional causal model:
Y = f(X,E)
M Introducing additional assumptions

* Independent noise assumption: Independence between the causes X and noises E

* Independent mechanism assumption: independence between the causes X and process f

17



Causal Function based methods: independent Noise (IN) Condition

M Causal Asymmetry in the Linear non-Gaussian Case
« DatageneratedbyY =aX +E (i.e.,X > Y)
M (X, Y) follows the IN condition iff regression residual Y — @TX is independent from X

Linear regression Y = aX + E, Linear regression X =bY + E,

Y

XA

Gaussian case

18



Causal Function based method: LINGAM @

M Under the above assumptions, the LINGAM can be expressed as

X=BX+E

« X is a p-dimensional random vector, representing the observed variable.
* B is p X p-dimensional matrix, which represents the connection weight between the observed variables.

« FE is a p-dimensional non-Gaussian random noise variable.

M Because of the DAG assumption, there exists a permutation matrix P € R™ ™ such that B’

= PBPT is a strict lower triangular matrix and diagonal elements are all 0

Shimizu S, Hoyer P O, Hyvarinen A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7(10).
Shimizu S. LINGAM: Non-Gaussian methods for estimating causal structures[J]. Behaviormetrika, 2014, 41(1): 65-98.

19



LINGAM: Independent Component Analysis

M ICA, Independent Component Analysis, can be used to solve the LINGAM

., — — — —— — — —

— — —_— _—— —
— \ ~ [k‘. oy E £y I8 £ . /
- BN o \ i ‘ ! \ E /‘ \l\ / \ / ‘\ ﬂf \. /
d 3 \/ VAVAVA R : /\/\/Wy A VAVAVAVA
¢ S - ol X, — 7+
S AL f = :
: D = = - —i— Xm —_— — Yn
- T —— : F—— L
s 7L mixing W de-mixing "‘ .‘I
‘.‘ independent observed signals output: as independent as
: sources possible
ICA system
unknown mixing system

M Assumptions in ICA

_ | Then A can be estimated up to
« At most one of S; is Gaussian

column scale and permutation
« Size(X) >= Size(S), and A is of full column rank indeterminacies

Hyvarinen et al., Independent Component Analysis, 2001

20



LINGAM: analysis by ICA

M LINGAM:

M ICA:

M An example

\

X=BX+E
Y = WX
B=I1-W
Ey 1 0_ 0 Xo So we have the causal relation:
E,| = —o.sw ol - | x; Ny
E, 0.2 1 X, '
(Xz — E4 0.2
X3 — 05X2 + Eg

X1 —0.2X9 4+ 0.3X3 + Eo

Shimizu S, Hoyer P O, Hyvérinen A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7(10).

21



Causal Function based method: ANM @

M Hoyer et al. proved that nonlinear functions can play a similar role to non-Gaussian models, which
can be used to identify causal directions.

Y = f(X) + E with
E1X

(Hoyer et al., 2009)

Hoyer P O, Janzing D, Mooij J M, et al. Nonlinear causal discovery with additive noise models. NeurlPS. 2008.
22



Causal Function based method: practical issue - hidden variables @

M Motivation: Non-Transitivity of Nonlinear Causal Model

» Let the direct cause in X; — X, — X3 satisfy the additive noise model (ANM):

(X, ~ U(-=0.5,0.5)
< Xz — 2 tanh(5X1) + Nz

X\
X3 = (—) + N,
\

2
« However, the causal influence X; - X3 does not necessarily follow the additive noise model,

04020 0204
: X4

(a) (¢)
and we might not identify the causal by simply test the independence between cause and noise.

23



Causal Function based method: cascade Additive Noise Model (CANM) @

M There exists a sequence of unmeasured intermediate variables Z between X and Y, where N, N,, N3, €
are the additive noise at each direct cause.

Figure: lllustration of the CANM

M Formally:

Z1=fX)+ N,
Zt = ft(Zpawy)) + Nt
Y = fT+1(Zpa(y)) Te

M How to solve it?

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.
24



Cascade Additive Noise Model (CANM)

M Given data set D = {x("),y(")}zl,the marginal likelihood is given as follow:

m m
log ‘ ‘ jpe (x®D,y®,2)dz < log ‘ ‘ jpg (x®,e® n)dn
=1 i=1

@ Decomposes the joint likelihood based on the Markov condition
@ Applies the independence property between the cause and the noise, i.e.,

p(Zt|Zpa(t)) =p(Ne =Z; — ft(Zpa(t))|Zpa(t))Zpa(t) L Nep(Ny = Z — ft(zpa(t)))

(3® At the same time, we replace dz = dn and rewrite function fT+1(Zpa(y)) as f(X,N).

M The unobserved intermediate variables z can be replaced by n.

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.

25



CANM: variational solution

M Purpose: Find g4 (N|X, Y) to approximate pg(N|X,Y)

M Action: Optimize a variational lower bound (ELBO) of the marginal log-likelihood

m
log ‘ ‘ jpg (x(i), e(i),n)dn
i=1
m

> Z logp(x®) — KL(qp(n|xD,y®)|pe(n)) + E o nix® y©) [logp (e(i) =y — £(xO,n; 9))]
i=1

M The lower bound is tight at the maximum of ELBO i.e. g4 (N|X, Y) equal pg(N|X,Y)

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.

26



CANM: Encoder and Decoder Scheme @

M Steps of VAE to optimize £(0, ¢; X,Y)
1. Encode data into u, o.
2. Sample the n through u + ¢ © u, where u ~ ¥ (0,1)

3. Reconstruct y using x, n. Encoder phase:

O1010] 0.
Sfololore

Decoder phase:

oJojoo
YOIOTON

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.

S~ (0, D)

Y
Encoder  Reparameterization  Decoder

27



CANM: algorithm

M Model selection: select the best number of latent variables.

M To estimate the marginal likelihood to identify the causal relationship.

Algorithm 1 Inferring causal direction with CANM

m

Input: Data samples {(;r('i). y(i))}@zl.
Output: The causal direction.

D = 2:
- 3

4.

@ — 5:
0:

7:

8:

9:

10:

1:

Split the data into training and test sets;

Choose the best number of latent variables by optimizing
the variational lower bound (Eq. (3)) on the training set
and evaluating the performance on the test set;

. Optimize the lower bound in both directions with the best

number of latent variables on the full dataset, obtaining
Lx_y and Ly _, x (see Eq. (4)), respectively.
if Lx_yv > Ly_x + 0, where ¢ is a pre-asigned small
positive number, then,
Infer X — Y
elseif Ly _,v < Ly, — 9, then
InferY - X
else
Non-identifiable
end if

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.
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CANM: identifiability

M Theorem 1. Let X — Y follow the cascade additive noise model, while there exists a backward model following the same form, i.e.
Y=f(X,N)+e¢, X, N, and € are independent,
X=g{,N)+§¢ Y, N,and ¢ are independent,
then the noise distribution of the reverse direction p; must be
@ - J i ] IP COPOIPD — fGrm)e ™2 dndx
ve ) [p (e M0V dn
where f, g denote the function implied by the cascade process.

dv,

" The main result of our main theorem is that, If the model is non-identifiable, one strict condition must hold:

Vy1, Y2 j ezni@‘vf Jp COp(M)pe(y1 — f(x, n))f_znix'vdndx
o p(y1) fp (ﬁ)e‘zﬂg(h,n)-vdﬁ

— fezmé-vf Jp pM)p (v, — f(x, n))e 2mXVdndx
p(¥2) fp (ﬁ)e_zmg(YZ,ﬁ)-vdﬁ

dv

dv

Intuitively, such a condition holds only in restrictive cases.

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.
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CANM: experiments - synthetic data

M Depth: as the depth increases, the accuracy of CANM is stable and around 90% accuracy with a slight
decrease, while the performance of the rest methods decreases rapidly as the depth grows.

M Sample Size: as the sample size grows the accuracy increase, and even in the small sample size,
CANM still outperforms the other methods.

M Fixed Structure: the variance of the likelihood decreases and the accuracy increases as the sample size

grows.
1.004 Al 1.00 4 ~3.0 X5y
h’-"ia\ 314 ¢ . B3 XeY
4 0.754
>\0.75 A T - BV T - -
2 ~ il N T IN I W | S 1. L A=" I 8 32+
g [ et e S o050 4 4 + -4 =1 = s
S 0.50 3] ~4 ]
3 . 2 = -3.3 % +
“oas TS = ed o = WE G ”
: S~ o o - LINGAM - ANM (a=001) = + LINGAM =3/= ANM (¢1=0.01) '
0,00 E""E----EI--:.-"‘I-——I-'EI-—-. 0.00 - ﬁ——'—-ﬁ——ﬁ——ﬁ- P ol et i = B -3.54 . ] ] . . 1 1 .
(IJ ; é ('3 fll é 250 500 1000 2000 3000 4000 5000 6000 250 500 1000 2000 3000 4000 5000 6000
Sample Size
Depth Sample Size p
Figure 4: Sensitivity to Depth. Figure 5: Sensitivity to Sample. Figure 6: Sensitivity to Sample in a Fixed Structure.

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.



CANM: experiments - real world data

M The electricity consumption dataset

M Stock Market Dataset
Hutchison - Cheung Kong — Sun Hung Kai.

Hour of day — Temperature — electricity load

— This data might exist more than one unmeasured variables because in the same hour of day there have different

electricity load and the reason could be the season.

— CANM successfully catch this latent variable because the prediction of electricity load, the red point, separating
into both upper and lower parts.

— The fitted intermediate variable from CANM has a high correction (p = 0.54) with the ground truth (Cheung Kong)

Electricity Load

Electricity Consumption Dataset

¢ Raw Data

Prediction |l~l
| “'MAF'

g
-““'mm m ‘nw'

egee
ll‘ ilo.

Sannes e o - ¥%a

T | . -' .-u.:]

[ 53

AR il -:':'.'ll
3] ]

0 5 10 15 20
Hour of Day

Figure 7: Hour of Day Against Electricity Load.

Fitted Intermediate Variable
o

10 20 30 40
Real Intermediate Variable
(Temperature)

Figure 8: Temperature Against Fitted Intermediate Variable,

Stock Market Dataset

0.10
0101 ¢ Raw Data
Prediction

of Sun Hung Kai Prop.

Stock return

0.10 0.05 0.00 0.05
Stock return of Hutchison

Figure 9: Stock return of Hutchison Against Stock return

Hung Kai Prop.

of Sun

Fitted Intermediate Variable

0.054

0.004

-0.05+

-0.10+

:
-04

03 -02 01 00
Real Intermediate Variable
(Stock return of Cheung kong)

01

Cai R, Qiao J, Zhang K, et al. Causal discovery with cascade nonlinear additive noise models. IJCAI, 2019.
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Causal Function based method: PNL

e

M LINGAM algorithms can only solve linear problems. For non-linear problems,Zhang et al.

proposed PNL, the post-NonLinear method.

M In the PNL model, assuming that there is a causal relationship v; — v;, it can be expressed as

vi = f2(fi(v) +15) (D)

* v; and n; are independent of each other
« f; Is an unconstant smooth function

* f, Is areversible smooth function and f’, + 0

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.

oOrr

f2

_)@
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PNL: All non-identifiable cases

M Causal direction is generally identifiable if the data were generated according to

X2 = f2

f1X1) + E).

(og p,) —>c(c# 0),

Log-mixed-linear-and-
exponential:
logp,, = 12" 4+ cqv + ¢y

ASV —»—coQras v —» oo

log p

Table 1: All situations in which

the PNL causal model is not identifiable.

L Il p. N\ [ Py, (=95 (z1)) |[[h=fiog | Remark
1 Gaussian \ Gaussian linear h also linear
11 log-mix-lin-exp log-mix-lin-exp linear hy strictly monotonic, and A} —
0, as z2 — 400 or as 22 — —00
111 log-mix-lin-exp one-sided asyvmptoti-+¥|| h strictly monotonic, —
cally exponential (but and A" — 0, as t; —
not log-mix-lin-exp) +o00 or as £] — —ocC
v log-mix-lin-exp generalized mixture of Same as above -
two exponentials
\% generalized mixture | two-sided asyvmptoti- Same as above —
of two expongntials cally exponential w
; = g o C2T T4V CE \ =
y DX \C1 € o€ '
P (c1 +cs ) (log p,) — ¢, (¢, # 0), =
as v — —oo and 2
1
(og ) —> ¢, (g, #0),
as v —» oo A%}

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.
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Causal Function based methods @

M If we add new assumptions to the PNL model, we will get the LINGAM and ANM.

LINGAM
Xj = bjix; + 1y
f, and £, is linear x; and n; is independent
n; is non-Gaussian b;; is the connection weight of x; and x;
PNL
xj = f2(fi(x;) + )
x; and n; is independent
ANM

xj = f(x;) +n
x; and n; is independent

f1 is non-linear

f> is linear

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.
34



Causal Function based methods: in noiseless case

M Problem: how to infer whether Y = f(X) or X = f~1(X) is the right causal model?

M An example of independent mechanism
Y=fX), XLfX)

p(y) f(x)
/ |

M Asymmetry holds
 In the causal direction: independence between X andf(X) holds

 In the anti-causal direction: independence between Y and f(Y)does not hold

Zhang K, Hyvarinen A. On the identifiability of the post-nonlinear causal model. UAI, 2009.
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|GCI: Inference rule

M IfX - Y then

[10g17" 1 pCdx < [ toglf~ 0| pGIdy

M empirical estimator

y1+1 3’]

A._iml

~ [log|f'(x)| p(x)dx

M infer X - Y whenever

Cx-y < Cy-y

Janzing D, Mooij J, Zhang K, et al. Information-geometric approach to inferring causal directions. Artificial Intelligence, 2012.
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Causal Function based method: practical issue - categorical variables @

M Additive noise model for categorical variables

Y=g(X)+EXLE

O=-NWhH
I

O=-NWhH
I

|
-10080

|
-10080

N -
W
N -
W

M Problem of existing method: how to fit the discrete data? e.g. male, female, wood, iron, steel...

Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurlPS, 2018.
37



Causal Function based method: HCR

M Categorical data: A Hidden Compact Representation Model

Cause Hidden Compact Representation Effect
: : LY Y! I i : :
Stage 1: deterministic mapping Stage 2: probabilistic mapping
from cause (X) to hidden representation (Y’')  from hidden representation (Y') to effect (Y)
X Y" | Poisonous|Not Poisonous| Y | Food Stomach Flu | Normal

. Y’ Poisoning
Poisonous Mushroom 1 0
Poisonous
Mushroom 0 1 0.85 0.10 0.05
Rice 0 1 MNot
Poisonous Fish 1 O Poisonous 003 007 090

Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurlPS, 2018.
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HCR: algorithm @

M Step 1: Estimate the model M:X - Y' - Y, M:Y - X' - X by maximizing BIC L*(M; D), L*(M; D)
respectively.
M Step 2: If L*(M; D) > L*(M; D), infer “X —» Y”
If L*(M; D) < L*(M; D), infer “X - Y”
If L*(M;D) = L*(IW; D), infer “non — identifiable”

Cause Hidden Compact Representation Effect
@ N\ Y, ,‘ @
Stage 1: deterministic mapping Stage 2: probabilistic mapping

from cause (X) to hidden representation (Y')  from hidden representation (Y’) to effect (Y)

- d
;D) = | [ PO =x0P(r = yilY’ = £(x) — Flog(m)
i=1

—zn log( T >+z zn log< Ty'y >_glo (m)
~ * Dix My Yoy Zyny’.y 2 8

y! y

39




HCR: Identifiability

e

M Theorem 2. Assume that in the causal direction there exists the transformation Y ' = f(X) such that P(Y |

X) =P |Y"), where|Y'|<| X |, and assumption Al holds. Then to produce the same distribution

P(X,Y), the reverse direction must involve more effective number of parameters in the model than the
causal direction.

X P(X) R Y | Food Poisoning Stomach | Normal
Y Flu
Poizcnous Mushroom 0.1 - — -
Mushroom 0.2 Poisonous Mushroom | ()85 0.10 0.05 Poisonous
Rice 0.6 Mushroom 0.03 0.07 0.90 Not Poisonous
Poizonous Fish
0.1 Rice 0.03 0.07 0.90 Not Poisonous
]
Poisonous Fish 0.85 0.10 0.05 Poisonous
Y P(Y) N Poisonous Mushroom | Poisonous Fish
Food Poisoning 0276 | L.X Mushroom
Stomach Fla 0.079 Poisonous Mushroom ) 308 0.127 0.008 Poisonous Mushroom
o 06451 | Mushroom 0.616 0.253  [0.016 Mushroom
Rice 0.065 0.532 |0.837 Rice
Poisonous Fish  0.011 0.089 [0.140 Poisonous Fish

Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurlPS, 2018.
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HCR: results

M The causal mechanism behind the abalone data set:

I

Abalone X Y Y
Infant | 0.43+0.1
Sex—Length  peale Male 2 0.57 +0.96
Infant | 0.33 £ 0.088
Sex—Diameter “poaje Male 2 0.45 + 0.079
Infant | 0.11 £ 0.032
Sex—Height  poale Male 2 0.15 +0.037

Cai R, Qiao J, Zhang K, et al. Causal discovery from discrete data using hidden compact representation. NeurlPS, 2018.

Adult/Infant - size

Diameter Height Length
°
® Fq
L
—
R iR

T T
Infant Female,Male

Result on Abalone data set.

T T
Infant Female,Male

Y!

T T
Infant Female,Male
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How to handle the high dimensional data? @

M Motivation: complimentary of Constraints based methods and Causal function based methods

Causal Function based Constraints based
High Dimensionality NO (Pairwise) Yes
. . NO
Discovery Ability Yes (Markov Equivalence)

43



SELF: model

M Embedding the functional causal assumption into the likelihood framework

Pr(X; = 0y | Xp, = 0jp))

Xi = Fi(XPi) + Ei Pr(El- = Oj,i - Fi(oj,Pi)lXPi)

X,=F,(X,) +E, X;3=F5(X,) + E;
Pr(X,=x) = Pr(E,=x — F,(X,)) Xp, Il E; Pr (El- =0j; — F (oj,Pi))

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.
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SELF: framework @

M Embedding the functional causal assumption into the likelihood framework

R Clliglelelel £ (G; 0) = Zzlog (PI‘(Xi =0 | Xp, = Oj,Pa))
=1 i=1
Structural — n
equation L(S:0) = Z ; log (Pr(E; = 0;,; — Fy(0;,p,))
j=1

X2=F2(X1)+E2 X3=F3(X2)+E3 -

l Bl . d;log(m)
criteria £p(5:0) = log(Pr(E; = 0;; = Fi(0p))) = —

Pr(X,=x) = Pr(E,=x—F,(X,)) — J=1

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.
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SELF: algorithm

M Step 1: For each nodes, fit F; with a nonlinear or linear regression (e.g. XGBoost, OLS)
M Step 2: Estimate the noise distribution with kernel density function
M Step 3: Maximize

Xy = f(x1) + Ey
x3 = f(x1) + E3
Xy = f(x2,%3) + Ey

Regression

O Ops
g’ Estimation

E; =x; — f(xq)
E3 = x3— f(xq)

E, = x; — f(x3,x3)

Max L5(S; 0)

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.

Structure

Searching
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SELF: results

M SOTA results, out of box

Table 3: Results on real world structure with nonlinear data.

Fl1 Recall Precision
Data SELF ANM SELF ANM SELF ANM
Child 0.71 0.26 0.60 0.40 0.88 0.19
Alarm 0.79 0.53 0.74 0.59 0.85 0.48

Win95pts 0.77 0.47 0.71 0.49 0.86 0.45
Pathfinder 0.88 0.15 0.90 0.08 0.86 1.00

Table 2: Results on real world structure with linear data.

F1 Recall Precision
Dataset SELF LiINGAM DLINGAM HCBN SELF LINGAM DLINGAM HCBN SELF LINGAM DLINGAM HCBN
Child 0.98 0.98 0.95 0.58 | 1.00 1.00 1.00 0.65 | 0.96 0.95 092 0.52
Alarm 0.98 0.43 094 0.52 | 0.99 0.76 1.00 0.64 | 0.96 0.31 0.88 0.44
winosps ~ (0.95 0.56 0.88 0.80 | 0.97 0.88 1.00 0.91 | 0.93 0.42 0.79 0.71
Pathfinder 0.91 0.86 085 0.73 095 0-96 0.96 0.83 0.87 0.77 0.76 064

Cai R, Qiao J, Zhang Z, et al. Self: structural equational likelihood framework for causal discovery. AAAI. 2018.
Codes: https://github.com/DMIRLAB-Group/CDMIR
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Causal discovery among latent variables

e

M Discovering causal relations among latent variables is important in many domains

* In psychotherapy: what is the causal relations among role conflict, depersonalization, personal

accomplishment?

Gnmeasufed'
R ]

i
Depression

S comera
cosing PErsonal accomplishment .

Personal accompllshment

‘°°"*Depressmn bl

o Dﬂp ersonalization COp!ng owe Depersonalizatio

“c";“,;,,:g Coping_
Coplng Role COI'Iﬂ'ICt
w . shausio Depressmn

Y Role conflict
0 p] n g ... Emotional exhaustlon

Role conflict

-~ Depersonalization
varerur Depressnon

-----

Q1: What is the level of stress Q,: How often do you
you are experiencing? feel depressed?
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How to handle latent variable?

M Linear latent variable model
« Measurement model

e Structural model

Observed data

How to? >

Q-

Q T
1 N Qs

'I{Depres 510
Qs

, Stress |
\ / o

Q- |Cop1ng|
Qi Q¢ .. Qs

Causal structure of latent variables
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Tetrad Condition @

MTetrad Condition: for X,, X, and any one of X5, X,, three quadratic constraints (tetrad constraints)
on the covariance matrix are implied: e.qg., for X,,

P12P34 = P14P23 = P13P24,
where p;, is the correlation between X, X,, etc.

(Note that any two of the three vanishing tetrad differences above entails the third.)

Xy X5 X3 X4 X4 X, X3

P14P23 — P13P24 =0
P12P34 — P13P24 =0
P12P34 — P14P23 =0

X4

P1aP23 — P13P24 =0
P12P34 — P13P24 # 0
P12P34 — P14P23 * 0

Silva R, Scheines R, Glymour C, Spirtes P, Chickering DM. Learning the structure of linear latent variable models, JMLR 2006.
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Tetrad Condition: Limitation

M Cannot identify the causal direction: L; - L, or L, —» L{?

P14P23 — P13P24 =0 P14P23 — P13P24 =0

P12P34 — P13P24 0 P12P34 — P13P24 0

P12P34 — P1aP23 F 0 P12P34 — P1aP23 * 0
X, X, Xs X,

X1 X2 X3 X4

M Cannot detect the latent variables when we only have 3 measured

variables ﬁk Q @ @ @
X; X; X X; X; X, X; X X
[ How to solve this problem?
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Intuition

M What kind of information is helpful to distinguish them?

-

\

Second moment
iInformation
(covariance)

~

J

Tetrad Condition

)

Non-Gaussianity

-

Higher moment
iInformation

~

(independence of noise)

\

J

? Condition

Non-Gaussian information may help
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Triad: the asymmetry of Triad condition @

M Consider the following two causal structures:

a c d
X; X; Xi
X; =abl, +alq + ¢ Asymme“.y X;i =alq+ ¢
Cov(X;,X;) = abd Cov(X;,Xy) = abd
Cov(Xj,Xk) = cd Cov(Xj,Xk) = (b*+1)cd
Cov(X;, Xx) ab Cov(X;, X,)  ab
Cov(Xj,Xk) Coc Cov(Xj,Xk) (b%+1)c
Cov(X;, X Cov(X;, X
P~ Sl R)Xj) 1 X X; — St R)X') X X
Cov(X;, X) Cov(X;, X)

Cai, R., Xie, F. et al. Triad constraints for learning causal structure of latent variables. NeurlPS 2019. s



Triad condition @

M Triad Constraints (our proposed) In a linear latent model, suppose {X;, X;} and X, are distinct and
correlated variables and that all noise variables are non-Gaussian. Define the pseudo-residual of {X;, X;}
relative to X, , which is called a reference variable, as

o COV(Xi,Xk)
E(i'jlk). o Xi N COV(Xj,Xk) A
M We say that {X;, X;} and X, satisfy Triad constraint if and only if E(; ; ) L Xy, i.e., {X;, X;} and X, violate
the Triad constraint if and only If E(; ;) L Xj.

Residual
3 Cov(X;X ;) —y. _|Cov(XiXk)
R1= X - Cov(Xj,Xjr % VS R2=X; Cov(X;,Xp) %
“normal-residual” “pseudo-residual”

Cai, R., Xie, F. et al. Triad constraints for learning causal structure of latent variables. NeurlPS 2019. -



Triad Condition: Limitation

M Cannot applied into the multiple shared latent variables case:

M Can we extend the surrogate strategy to multiple shared latent variables?
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Generalized Independent Noise (GIN) Condition

Consider Y = {X;, X5, X3}, we have

. Xl ai bl L EXl
XQ =|as bQ |:L ] + | €x,
X3 az b e

;‘,—J ;‘,—l
Y Ev

Ey is independent from L; and L,.

However, we don’t have access to L; and L,

Can we still use some measured variables as surrogate variables?

Similarly, use Measured Variables Z = (X4,X5)T as Surrogate Variables we have

X a; b
X; = a; b; [b5 — a2 [ 5 ] [ SXZ
X3 as b3 a5b4_ Cl4_b5 as a5b4 — a4b5

3 nonzero vector w s.t. @ Cov(Y,Z) = 0
w = [ayb3 — byaz, byaz — a b3, a1b; — bia,]”
= Y is independent from L.

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurlPS 2020.



GIN: Generalized Independent Noise Condition

E—
] Xl- aq bl L €X1
Consider Y = {X;, X, X3}, we have Xl =la, b, [Ll] + [&x, SY=AL+E=>E=Y — AL
X3_ as b3 2 €X3
Jnonzerovector w  s.t. TA=0 > 'Y = TE is independent from L. Y
w'A=0 @&=) W Cov(V, L) =0
a; by
T —
@ ZZ 22 = @a=) LT Cov(V,Li;)=0
use Z == (X4_,X5)T 3 3 +
instead Lq a b
wT|a, b, [bj b;] -0 =) T - Cov(Y,Ly;5)Cov(Ly3,Z) =0
az bs
[} )
)
a,a, + bb, aias+ bibs T
(DT a,Aay + b2b4 a,as + bzbs =0 “ W COV(Y'Z) =0
asa, + b3sb, asas + b3bg
# 3 nonzero vector w s.t.w™ - Cov(Y,Z) =0 = 'Y is independent from L.

o = [azb; — byas, byaz — aybs,a;b, — byay]”

GIN: view measured and latent variables in a unified way

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurlPS 2020.
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GIN: Generalized Independent Noise Condition

M Generalized Independent Noise(GIN) condition: (Z,Y) follows the GIN condition iff there
exists non-zeros w such that wTE[YZT] = 0 and w'Y is independent from Z.
M Triad condition can be seen as a special case of the GIN condition.
- For example, ({X,}, {X;, X;}) satisfy Triad condition iff ({X,},{X;, X;}) satisfy GIN condition

——)
/5

Xy

3 nonzero vector w s.t. @TCov({X;, X;}, {X;}) = 0

Cov(X;, X
(Xi — ( l k) X]) 1 Xk w = [Cd, —abd]T
COU(X]"XR) Xil ..
=> w! [X] is independent from L.
j
Triad condition GIN condition

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurlPS 2020.
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GIN: Application in LINGLaM @

Linear Non-Gaussian Latent Variable Model (LINGLaM)

M Al. [Measurement Assumption] There is no observed

variable in X being an ancestor of any latent variables in L. -

M A2. [Non-Gaussianity Assumption] The noise terms are

non-Gaussian. X, @ G Q

M A3. [Double-Pure Child Variable Assumption] Each

latent variable set L', in which every latent variable directly : Ly

-

o 6

causes the same set of observed variables, has at least
2Dim(L") pure measurement variables as children. A simple structure that satisfies LINGLaM
M A4. [Purity Assumption] There is no direct edge between

observed variables.

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurlPS 2020.
60



GIN: Application in LINGLaM

M We proposed a two-steps algorithm.

«  Step 1: find causal clusters (variables sharing the same latent variables as parents);
«  Step 2: determine causal order of the latent variables;
«  Estimate the coefficients if needed

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurlPS 2020.
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GIN: Application in LINGLaM

M We proposed a two-steps algorithm.
«  Step 1: find causal clusters (variables sharing the same latent variables as parents);

Cluster 1
Ly
— /—x /@ /®
L Ls
)
(x3) X4
. /@ Cluster 3 /@
Ly Ly
L \~® Cluster 2
0 (%)

Ground-truth graph E.g., Test |latent|=1, we have

({Xq, ..., X4, X7, Xg}, {Xs, X }) satisfies GIN. Thus, {Xs, X} is a cluster.

Similarly,

({Xq, .., Xy, X5, X6}, {X, Xg}) satisfies GIN. Thus, {X-, Xg} is a cluster.

[The variables in a cluster share the same GIN conditions.




GIN: Application in LINGLaM

M We proposed a two-steps algorithm.

«  Step 2. determine causal order of the latent variables;

Ground-truth graph

86 &6

Run Step 2>

causally earlier

Y

ofe

X4 causally earligr

& o

E.g.,

({X3, X4, X5}, {Xq, X, }) satisfies GIN, and
({X5, X4, X7}, {Xq, X, }) satisfies GIN.

We have {L4, L,} is causally earlier than L; and L,.

Similarly, we have L; is causally earlier than L,.
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GIN: Application in LINGLaM

and latent variables.
M Goal: find clusters (determine the location of latent variables)?

« Latent oimission: measure omitted latent variables

« Latent commission: measure falsely detected latent variables

* Mismeasurements: measure the misclassification of observed variables The ) ower the petier
Latent omission Latent commission Mismeasurements
Algorithm GIN LSTC FOFC BPC GIN LSTC FOFC BPC GIN LSTC FOFC BPC
500 | 0.0000) || 0.00(0) | 1.0OC10) | 0.50(10) || 0.00(0) [{0.0000) | 0.0000) | 0.00(0) | 0.0000) | 0.00(0) | 0.00(0) 0.00(0)
Case | | 1000 | 0.00(0) || 0.00(0) | L.OOCIO) | 0.50(10) || 0.00(0) [10.00(0) [ 0.00(0) | 0.00¢0) || 0.00(0) | 0.00(0) | 0.00(0) 0.00(0)
2000 | 0.00(0) || 0.00(0) | 1.00(10) | 0.50(10) | 0.00(0) [] 0.00(0) | 0.00(0) { 0.00¢0) || 0.00(0) | 0.00(0) [ 0.00(0) 0.00(0)
500 | 0.102) || 0.20(4) | 0.9(10) | 0.50(10) || 0.00(0) [{0.05(1) | 0.0000) | 0.00(0) | 0.12(2) | 0.12(4) | 0.00(0) | 0.20(10)
Case 2 | 1000 | 0.05(1) || 0.15(3) | L.OOCIO) | 0.50(10) | 0.00(0) |1 0.00(0) | 0.00(0) | 0.0000) || 0.04(1) } 0.12(3) | 0.00(0) | 0.20(10)
2000 | 0.00(0) || 0.0000) | 1.00(10) | 0.50(10) | 0.00(0) [} 0.02(2) | 0.00(0) | 0.0000) || 0.00(0) } 0.00(0) | 0.000) | 0.20(10)
500 | 0.20(3) || 0.20(3) | 0.13(9) 0.10(1) | 0.00(0) [10.03(3) | 0.0000) | 0.0000) | 0.19(3) | 0.17(3) | 0.00(0) 0.00(0)
Case 3 | 1000 | 0.06(2) || 0.13(2) | 0.16(10) | 0.00(0) | 0.00(0) [10.00(0) | 0.00(0) | 0.00¢0) || 0.06(2) | 0.00(0) | 0.00(0) 0.00(0)
2000 | 0.00(0) [ 0.00(0) | 0.50(10) | 0.00(0) | 0.0000) []0.00(0) | 0.00(0) { 0.00¢0) || 0.00(0) | 0.00(0) | 0.00(0) 0.00(0)
500 | 0.13(4) || 0.40(6) | 0.90(10) | 0.63(10) || 0.00(0) [10.23(5) | 0.00(0) | 0.00(0) || 0.04(2) | 0.15(6) | 0.02(2) 0.06(4)
Case 4 | 1000 | 0.10(3) || 0.26(6) | 0.93(10) | 0.66(10) || 0.00(0) [10.00(0) | 0.00(0) | 0.00¢0) || 0.05(3) | 0.11(2) | 0.0I(I) 0.02(2)
2000 | 0.03(1) || 0.32(6) | 1.00(10) | 0.70(10) | 0.0000) [} 0.00(0) | 0.00(0) { 0.0000) || 0.04(1) | 0.11(3) | 0.00(10) | 0.00(0)

Note: The number in parentheses indicates the number of occurrences that the current algorithm cannot
correctly solve the problem.

[Our proposed algorithm is more efficient and can find all latent variables!

J

e

M We simulate data following the LINGLaM, including 4 cases, with different DAG structures for and measurement variables




GIN: Results

M We apply our algorithm to discover the underlying causal structure behind the Teacher’s Burnout,
and we are developing a tool with the help of psychologist.

* Discovered clusters and
causal order of the latent

|\\01| |I( | |l(1|

7 >Rl<

variables: Oreient) Pl g
Causal Clusters Observed variables
S, (1) RC,, RCy,, WO, W0O,,
DM, DM,
Sy (1) CCy, CO,00,,00,
S5 (1) PS,, PS,
Sy (1) FLC,,ELCy,ELCs,ELCY,
FELC;
S5 (2) SE|,SE,, SEs, EE,,
EE,, EEs, DPy, PA,
85 (3) DP,, PA,, PA,

L(S)) > L(Sy) > L(83) > L(S5) > L(Sy) > L(Ss).

(from root to leaf) Hypothesized model by experts [Byrne, 2010]

Xie, F., Cai, R., Huang, B., Glymour, C., Hao, Z., & Zhang, K. Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs. NeurlPS 2020.
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FRITL: More general setting @

M How to learn causal structure with latent variables from observed data?

X1
X2 Gene -=======3> smokin
X3 Type 9
Xn
ol g i

B
]]:2' B T S T E

I T T T T
3 :——|—+—|——r—|——r—| yellow Lung
S T U R B R teeth Cancer
£ AT T T
me J_ 1 11 _ L 1_1

M Challenges:
* how to efficiently decompose a large global graph into local small structures without introducing new
latent confounders?

» how to recover local structures accurately in the presence of latent confounders?

Chen W, Zhang K, Cai R, et al. FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders. Submitted to JMLR, arXiv preprint arXiv:2103.14238, 2021.
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FRITL: Algorithm @

M Step 1: Construct a PAG: based on conditional independence test
M Step 2: Infer local causal structures: IN condition
M Step 3: Detect shared latent confounders

M Estimate remaining undetermined local causal structures if needed

Chen W, Zhang K, Cai R, et al. FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders. Submitted to JMLR, arXiv preprint arXiv:2103.14238, 2021.
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E| = ENvAE P il
Multi-domain
Multi closely related domain
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How about data from multiple environments? @

M If data are generated from multiple environments, how to discover the causal structures from data?
M Data is non-i.i.d.

Causal Mechanism "f.;__ Cy Co, Ca, Gy,
HM\_/‘)/

GM ¢® O ¢® O W

Environments {_—H

.\-H\ - '
- a SETH
'k___-_-"'.\___.' N TN

Samples X1 X2 X3 X4 x> X6 X7 X8

M Challenges:
* how to group the subjects that are implied the same causal structure?
* how to recover the causal structure?

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.
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CCSL: Causal Clustering Structure Learning

u

Data with — ~
ground truth 8

/’ > /’ ~ s i
A
Causal ! : ! R ! N ! R
1 1 \ 2 1 1 4 1 \ 3 1 \
. Xt 1 X 1 X ! 1 X ! IR
Clustering \ ' \ / \ ' \ '
\\ ,' ~ ’, \\ r’ ~ ’,
S =" Sem - =" Sem -~
X3 XS X6 X?
’r"‘-..\ ’r"‘-..\ ’r"‘-..\ ’r"‘-..\
Causal / N /’ \ P4 \ P4 \
1 1 1 '
Structural | X | , | , | I
L . \\ h \ K \ K \ K
eal‘nlng N ”/ \\\ L \\\ L’ \\\ .

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.

Grouping subjects

causality

Recovering causal structures
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CCSL: causal clustering

e

M Challenge 1: how to group the subjects that are implied the same causal structure?

M Causal CRP: Chinese Restaurant Process

leleY) G3)
X! X? X3 X* X5 X6 X7 X®8
G2 G@)

Clustering oo U/ N L oL/ N LS
X3 X3 X6 X7
Causal !f/ N !f/ A !f/ N !f/ N
] ] ] ]
Structural ' ) ' ) ' i ' T
K I I I [
Learning NS v N A N ¢ N e

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.

[ \ \ . d \‘ _ S
Causal X' ! RS \ ;X '1 X ': ;T I:>P(Cs = k|C1:(s—1):a) x {P(CS )

k <K,

k=K+ 1.
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CCSL: causal structural learning

e

M Challenge 2: how to recover the causal structure?
M Causal Structure Model for Each Cluster:

leley) G3)
X! X? X3 X# X5 X6 X7 X®8
G2 G@)

Causal e A P \ , 5 , .

Clustering X! ' ) X2 , X4 ) X8 | I

Causal !f/ A !f/ % !f/ A !f/ N
]
Structural ' | ' i ' i ' e
Learning NS ‘ N ‘ N L’ N "

>

p=1

P(X%|c, = k)

Chen, W., Wu, Y., Cai, R., et al. CCSL: A Causal Structure Learning Method from Multiple Unknown Environments. arXiv, 2022.

14
X® () = BOX® (1) + z AL XO( —p) + EW (D)
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MD-LINA: Multi-Domain causal discovery

M Common Space V.S. Multi-domain space

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LINGAM for latent factors. [JCAI 2021.
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MD-LINA: Formalization @

M The formalization of our model is shown in these three equations. To integrate the multi-domain
data, we use a simple coding representation method.

|f‘> FOm) =g(m) f(m) | g(m)

Pl |

i Py [
LTI ERNAWI N L'!l_.’ :

1 1 1 1 2 2 2 2
2V [0 [z2] [P] [2?] [:2] [cP)] [«

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LINGAM for latent factors. [JCAI 2021.
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MD-LINA: Formalization

e

M The formalization of our model is shown in these three equations. To integrate the multi-domain

data, we use a simple coding representation method.

PO - ON

(1)

Aommon spige

FOm) =g(m) f(m) | g(m)

S|
I
.
\H

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LINGAM for latent factors. [JCAI 2021.
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MD-LINA: Formalization @

M The formalization of our model is shown in these three equations. To integrate the multi-domain
data, we use a simple coding representation method.

FOm) =g(m) f(m) | g(m)

~

f =Hf
YIS @)
G el |:> x(m) =G(m) ) 4. g(m)
3.':5_1) .’Bgl) Iiél) :Bil) 33{12) mé?) \Eéﬂ) mf)

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., & Hao, Z. (2020). Causal discovery with multi-domain LINGAM for latent factors. [JCAI 2021.
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185 M LA PR R E S R E (L @

M The data are generated from multiple topologically related environments, how to discover the
causal structures from data?

_ Non I.1.D
. Closely related QO

AN

uGw
MME /SGSN

.[% y [sqgl]

M It is crucial to consider the topological structure behind the data for learning Granger causality.

Cai R, Wu S et al. THP: Topological Hawkes Processes for Learning Granger Causality on Event Sequences. Submitted to TNNLS, arXiv:2105.10884, 2021.
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THP: The topological-temporal Hawkes model

M How to learn the Granger causality among event types using the event sequences that
generated by nodes in a topological network?

Cai R, Wu S et al. THP: Topological Hawkes Processes for Learning Granger Causality on Event Sequences. Submitted to TNNLS, arXiv:2105.10884, 2021.

e

topological-temporal Hawkes model

G N - Topological structure s
Gy . Causal structure

topological-causal view temporal-causal view (hawkes process)
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A unified view from convolution

/ﬁ Look at the Hawkes process from a temporal convolution perspective:

hW® =+ ) j | Burp(E=t)dCH () b A,(0) = iy + PCERTHNG
t'eT,_

v'€PA, v'€PAy,

M Look at the topological structure from a graph convolution perspective :

o

vy =ge(L)s = go(UTUM)s = Uge(MU"s

U

M Extend the causal intensity function to the topological-temporal domain G, xT.

Ao, t) = o+ D5 (PurtdCy)g sr(m, b),
v'ePA

Cai R, Wu S et al. THP: Topological Hawkes Processes for Learning Granger Causality on Event Sequences. Submitted to TNNLS, arXiv:2105.10884, 2021.



The 1St in PCIC 2021 Causal Discovery challenge @

I i
Telecommunication network Alarm Monitoring Platform
I ey - 220 EE S OSE IS B
' '
'
'
i Topology,
historical alarms
DATACOM

RAN-3G,4G,56

' ' '
N ' ] ‘
: ¢ ' '
i Jerminals_____ Q ................... g !

Alarms with

NMU: Network Mansgement Unit Trouble tlcket
MW: MicroWave
RAN: Radlo Access Network ’ processing

Engineer Alarm monitor cénter Priorities

Datasets: https://competition.huaweicloud.com/information/1000041487/introduction
Codes: https://github.com/DMIRLAB-Group/CDMIR
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CAUSAL-LEARN: BEISRZzIHEFEFES




causal-learn: FIBZIHEES @

M ETFPythonSCIl T RHEMFD RHHIRARFIFE. HPESTRRAIMNEZHEZSAPI, FEREMH TERRCAIN
f5

# causal-learn
# » Welcome to causal-learn’s documentation! C) Edit on GitHub

Getting started
Search methods causal-learn is a Python translation and extension of the Tetrad java code. It offers the
implementations of up-to-date causal discovery methods as well as simple and intuitive APls.

Welcome to causal-learn’s documentation!

(Conditional) independence tests

Score functions
_ O Note

Utilities
This project is under active development. For source code, please kindly refer to our GitHub

Repository.

M GitHub: https://github.com/cmu-phil/causal-learn

M YHY: https://causal-learn.readthedocs.io/en/latest/
[EER{EFRZA: https://qithub.com/cmu-phil/causal-learn/tree/main/tests
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causal-learn: BIBREIHiEFES @

M causal-learnszZ#F:
- BFURPBEREMS L (Constrained-based causal discovery methods) : PC. FCI, CD-NOD&XEs,;

- HFFSRERAEZMA L (Score-based causal discovery methods) : €©&BIC. BDeu. generalized
scoreFI T RIGESHIZE;

- HFRHFERERPERLZMSGE (Functional causal models-based causal discovery methods)
LINGAMMHEHIRERA A, ANM, PNLZE;

- BBERFRIEFEIRHE (Hidden causal representation learning) : GINJT%;
- IB=RERStF (Granger causal analysis) ;

« ZSMRUBIEMEERIR, CCRIRSZENGN, TPoREN, BHR(E, MRiER

- BZEFNERAIMEL, Wgradient-based methodsZ,
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causal-learn: {E[BAx

vV %% gLUEdp

ipk

x|

pip install causal-learn

1 ! pip

install causal-learn

Collecting causal-learn
Downloading causal learn—0.1.2. 3—py3-none—any.whl (163 kB)

AIEEEEEEEEEEEEEEEEEEEEEEEEEEENEE | 163 kB 26.6 MB/s

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
Installing collected packages:

statsmodels in /usr/local/lib/python3. 7/dist—packages (from causal-learn) (0.10.2)

graphviz in /usr/local/lib/python3. 7/dist-packages (from causal-learn) (0.10.1)

scikit—learn in /usr/local/lib/python3. 7/dist—packages (from causal-learn) (1.0.2)

tgdm in fusr/local/lib/python3. 7/dist—packages (from causal-learn) (4.64.0)

numpy in /usr/local/lib/python3. 7/dist—-packages (from causal-learn) (1.21.6)

matplotlib in /usr/local/lib/python3. 7/dist—packages (from causal-learn) (3.2.2)

pandas in /usr/local/lib/python3. 7/dist—packages (from causal—-learn) (1.3.5)

pydot in fusr/local/lib/python3. 7/dist—packages (from causal-learn) (1.3.0)

networkx in /usr/local/lib/python3. 7/dist—packages (from causal-learn) (2.6.3)

seipy in /usr/local/lib/python3. 7/dist-packages (from causal-learn) (1.4.1)

cycler>=0. 10 in /usr/local/lib/python3. 7/dist-packages (from matplotlib—>causal-learn) (0.11.0)

kiwisolver>=1.0.1 in /usr/local/lib/python3. 7/dist—packages (from matplotlib—causal-learn) (1.4.2)
pyparsing!=2.0.4, !=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3. 7/dist-packages (from matplotlib—>causal-learn) (3.0.8)
python—dateutil>=2.1 in /usr/local/lib/python3. 7/dist-packages (from matplotlib—>causal-learn) (2.8.2)
typing-extensions in /usr/local/lib/python3. 7/dist—packages (from kiwisolver>=l.0.1->matplotlib->causal-learn) (4.1.1)
six>=1.5 in /usr/local/lib/python3. 7/dist—packages (from python—dateutil>=2. 1-'matplotlib—rcausal-learn) (1.15.0)
pytz>=2017. 3 in /usr/local/lib/python3. 7/dist-packages (from pandas—>causal-learn) (2022.1)

threadpooletl1>=2.0.0 in /usr/local/lib/python3. 7/dist—packages (from scikit-learn—>causal-learn) (3.1.0)
joblib»=0. 11 in /usr/local/lib/python3. 7/dist—packages (from scikit-learn—>causal-learn) (1.1.0)

patsy>=0.4.0 in /usr/local/lib/python3. 7/dist-packages (from statsmodels—>causal-learn) (0.5.2)

causal—learn

Successfully installed causal-learn—0.1.2.3
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causal-learn: PCEEERAG X

e

¥ fEF: causal-learnAFEREEMRME TRIEZANZD, BAPITLIEL—TABEE SRR LHITRR AN

3
3

from causallearn.search.ConstraintBased.PC import pc
cg = pc(data, alpha, indep test, stable, uc rule, uc_priority, mvpc,

correction_name, background knowledge, verbose, show progress)

# visualization using pydot

cg.

dep
dep

Graph

X1;X2;

Graph

1.
2. X1
3.
4
b

Depth=2, working on node 4: 100%||[ Il 5/5 [co0:00<e0:00, 418.08it/s]

X1

X2

. X3
. X4

draw_pydot graph()

4 |1 (0, 2) with p-value 0.000000
4 1 (1, 2) with p-value 0.000000
Nodes:

X3:X4; X5
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causal-learn: GINE;X{EHAGZ @

¥ fEF: causal-learnAFEREEMRME TRIEZANZD, BAPITLIEL—TABEE SRR LHITRR AN

from causallearn.search.FCMBased.GIN.GIN import GIN
G, K = GIN(data, indep test, alpha)

# visualization using pydot
pyd = GraphUtils.to pydot(G)
pyd.write png('test.png')

Runing the Step 1: Finding the Causal Clusters
Runing the Step 2: Learning the Causal Order of Latent Variables L1

Graph Nodes:

L1;X2;X3;X1;L2;X9;X7;X8;L3;X6;X4;X5 \
Graph Edges:

. L1 — X2 X2 1.2
. L1 — X3

L1 — X1

L1 — L2

L1 — L3

L2 — X9 X5 1.3
L2 — X7

. L2 — X8

9. L2 — L3

10. L3 — Xé

11. L3 — X4 X7 @ X9
12. L3 — X5

[r1, 2, ol, (8, 6, 71, [5, 3, 4]l

00 ~1 O~ L In N N
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causal-learn: (5% @

¥ AIMUERSTN: ERIETERE, BPUUEEERNERE, FEESHmEliEnkSEEEHITIIE
from causallearn.utils.GraphUtils import GraphUtils

# visualization using pydot
pyd = GraphUtils.to pydot(G)
pyd.write png('test.png')

N
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Conclusion

Causal discovery = Causal thinking/assumptions + ML/Statistical tools
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