Few-shot Learning from Biomedical

Network

- with a focus on predicting emerging drugs interactions

Dr. Quanming Yao
Assistant professor, EE Tsinghua

gyaoaa@tsinghua.edu.cn

https://lars-group.github.io/index.html
2024/011/10



mailto:qyaoaa@tsinghua.edu.cn
https://lars-group.github.io/index.html

Biomedical Network (BN)

r-a 5 g
l ;' \ Cofmpounds

Graph
representation Graph

learni ng transformations

Predictions, \
patterns, insights

Representation learning for The network visualized The metagraph, a schema of the
networks in biology and medicine. network types.

entities relations




Important Applications

Differentially expressed genes PPI network Protein embeddings
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Needs Few-shot Learning

- Compounds
\ Target identification, initial hits identified / 10%-10°

Early Discovery * Time-consuming but necessary.

Preclinical d Optimisatiol ,‘ 10%-10?

T i * Hard to obtain clinical data.
Clinical Phase Il <10

Phase lli <10 ° Data Spal"Sit)l.
Approval 1

Drug discovery process

* Limited experimental data - Weakly supervised learning from biomedical network.
* Heterogeneous data ittty \

|
* Lack of supervision data i * Here we focus on drug-drug interaction prediction. E
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Emerging Drug-Drug Interaction (DDI) Prediction

Drug-Drug Interaction Adverse effects!

m S.No. | Drugs Interaction Combination Frequency Outcome
1 6

Ceftriaxone + Calcium Gluconate Precipitation of ceftriaxone-calcium salt

2 Fusiasids + ArKaEn 5 Potentiate the nsk_ gf oto- and
nephrotoxicity
Severe and/or prolonged respiratory

3 Atracurium + Amikacin 3 :
Possible Effects depression
- < Omeprazole + Clopidogril 2 Decreased effectiveness of Clopidogril
of Drug(s) of Drug(s) Effects 5 Aspirin + Clopidogril 2 Increased platelet inhibition effect
Clinical combination use is common. Top 5 major drug interaction combinations and their outcomes
7S N ). TS TEEEEEEEEmEEEEEEEEEEEEEE N

| . [
. 6.7% of hospitalized patients have a serious - data Sparsity Vv.s. data hungry :
. adverse drug reaction with a fatality rate of 0.32%., i T T |
i --U.S. Food and Drug Administration E : DD prediction deep learning E

These problems are even more serious for emerging drugs.




DDI Task
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transform

A graph learning problem

* Input:
* Fingerprint features (f,,) of a given
emerging drug u.

* Drug drug interaction (DDI) network.

* Biomedical network.
* Output:

* Interaction type between a given emerging

drug and a given existing drug.
(Emerging drug, ? , Drug)
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Related VWorks

the amount of data required

DF (Drug Features, e.g.CSMDDI) GF (Graph Features, e.g.HINDDI) Emb (Drug Embbedings, e.g. KG- GNN (Graph neural network,

DDI) e.g.CompGCN)
learn a function to extract meta-paths on graph embbeding fuse multiple types of
map drugs’ attributes the BN and predict information

to representations interactions

Existing deep learning methods do not perform well, as they require large
amounts of data to train their over-parameterized models.




Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
: : Network with Biomedical Network.
O u r C O ntrl b Utl O n S Y. Zhang, Q.Yao, L.Yue, X Wu, Z. Zhang, Z. Lin,Y. Zheng

Nature Computational Science. 2023

* Develop the first effective deep learning method for emerging drug-
drug interaction (DDI) prediction.

* Propose a variant of Graph Neural Network (EmerGNN) by
integrating the relevant biomedical concepts.

* Extensive experiments with interpretable learned concepts on
biomedical network (BN).

* Possible applications for patient care and drug development processes.



Intuition
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* Medication instructions « How to extract relevant information?

Emerging drugs often share the same Need an effective and efficient method.

entities with existing drugs, like the
same targeted genes or diseases.



Challenges

* However, properly utilizing biomedical networks can be challenging
as these networks are not specially developed for emerging drugs.

* The mismatch of objectives can lead the machine learning models to
learn distractive knowledge.

s;@ts ?
. .
How to utilize biomedical network : 5
\ 5 / .
W Genes The target drug



Architecture of EmerGNN

Main idea:
* Construct a subgraph to extract knowledge related to emerging drugs.

* Set attention weight for edges to highlight the important paths and

design GNN.
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Framework
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Subgraph extraction

b Augmented network

g >

u (emerging drug) and v (existing drug) share some same entities, like
genes, side effects and compounds.



Attention weight design

* Attention weight

Sigmoid function

@ = 0((W,§D)T [fuk

Relation weight The fingerprints of drugs to be predicted
A p-1) (l))
(hu,e’ Ohy
/

Message passing:  h{)=8 (W(”Z eyt (hff};” +o (R0, hﬁ”)))

ion: -0 O
Message function: o (h0,nY) -

e v

* Weight the different types of relations on the biomedical network.

9(Givi 0)

* The edges with larger weights on the paths are helpful for eescagy
. . ay/ |\ E as
interpretation. 2.\l \E

Applied to Construct GNN. wrg e

JCO)C ] 0/1/2/3-th flow step

* After iterating for L steps, we can obtain the representation hff,),



Objective and training

* Bi-directional representations:
[(u,v) = Wrel[ht%)); hi(JLl)L]

* Two datasets: DrugBank (multi-class) and TWOSIDES (multi-label).

Dataset Probability of interaction type i Loss function

exp(l;(u, v))
Zjer,exp(l;(w, v))

DrugBank Ii(u,v) = Lpp = _Z(u,i,v)eND_tminYi(u» v)logl;(u,v)

1 Lrg

TWOSIDE L(u,v) = _ I ay!
OSIDES | [i(u, v) 14+ exp(=L;(w,v)) | = ~Z@iv)eNp_tram 09l (W, V)"'Z(u’,v’)eNilOg(l —L;(u',v"))

: g = ®, 0, w®
Parameters: 6 {Wrel»{W e, Wy }1:1,_..,L,reR



Technical differences

GNN

method Subgraph Message passing
1
R = (0D + 5jepy —hPWw®
GCN None l o jen@ W)
GAT Can only aggregate |-hop neighbors hglﬂ) = jeN(i)ai,jW(l)h]gl)
GraphSage None hg”l) = ReLU(U'Concat (h%,MeanjeN(i)h}D))
I+1
CompGCN None R = fCunenmWi, o(hl, hL))
Decagon None h(l+1) 01029 jeniC ”W(l)h(l) ihl@)
KGNN Multiple hops neighbors
SumGNN Enclosing subgraph hl@ ReLU (W, elfh(l_l) + bg))
EmerGNN Path-based subgraph he), =6 <W(”Ze it (hff:) +o(nl0, h,@)))
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Comparison with Existing Works

1 &

DF (Drug Features, e.g. CSMDDI)  GF (Graph Features, e.g.HINDDI)  Emb (Drug Embbedings, e.g.KG- GNN (Graph neural network, EmerGNN

[

he amount of equired

Why can we solve data sparsity v.s. data hungry? |
* Introduce biomedical network and extract essential information 1
|
|

f
!
|
|
. due to attention mechanism based on specially designed GNN.



D ata S et DrugBank

* Multi-class

_Compounds * |nteractions
\ Target identification, initial hits identified 10%-10° ° PI’G-'PO
Early Discovery . .
103 * Relation type:increase or decrease
the expression of the metabolite,
Phase | <10 TWOSIDES
Clinical - Phase Il <10 e Multi-label
 Side effects
Phase Il <10
* Post-market
1 . . .
Approval * Relation type: anaemia, nausea, pain,
etc..
Statistics l Ivl)l | lRll l L\’l,)-lrmnl L\"l)-\'z\hdl L‘\‘l)-tvstl
Drugbank 1,710 586 134,641 19,224 38,419
TWOSIDES 604 200 177,568 24 88T 49,656

Statistics of common DDI datasets used



Baseline

Method Baseline
MLP Learn a multi-layer perception (denoted as MLP) that mapped the fingerprints of drugs to their
interaction type.
GAT Use attention networks to aggregate neighborhood information in DDI network.
CSMDDI Learn a function to map drugs’ attributes to representations for DDI prediction in a cold-start setting.
HIN-DDI Extract meta-paths on the biomedical network and predicts the interaction type based on the meta-paths.
MSTE Predict interactions by learning drug embeddings.
CompGCN Use GNN to learn high-order embeddings of entities from their neighbors in a knowledge
Graph.
Have similar model structure as CompGCN, but only use three types of entities, i.e., drug, protein and
Decagon :
disease.
KGNN Sample and aggregate neighborhoods for each node from their local receptive via GNN and with external
KG, which achieves the state-of-the-art result on binary DDI prediction problem.
SumGNN Use GNN to summarize knowledge in the subgraphs covering the drug pairs.



Experiments

(S1): DDI prediction between emerging drug and existing drug.

| DrugBank | TWOSIDES
Type Methods | F1-Score Accuracy Kappa |PR-AUC ROC-AUC Accuracy
DF  MLP (Rogers and Hahn, 2010) 21.1+0.8 46.6+£2.1 33.4+2.5 |81.5+£1.5 81.2+1.9 76.0=2.1
Similarity (Vilar et al, 2014) 43.0£5.0 51.3+3.5 44.8+3.8 | 56.2+0.5 55.7£0.6 53.9:04
CSMDDI (Liu et al, 2022) 45.5+1.8 62.6+2.8 55.0+3.2 | 73.2+2.6 74.2+2.9 69.91+2.2
STNN-DDI (Yu et al, 2022) 39.7£1.8 56.7£2.6 46.5x3.4 | 68.9+:2.0 68.3£2.6 65.3=1.8
GF  HIN-DDI* (Tanvir et al, 2021) | 373129 589+14 47.6x1.8 | 1.940.6 83.840.9 79.3+1.1
Emb MSTE (Yao et al, 2022) 7.0£0.7 51.4+18 37.4+2.2|64.1+1.1 62.3+£1.1 58.7+£0.7
KG-DDI* (Karim et al, 2019) 26.1+:09 46.7+19 35.2+2.5(79.1+£0.9 77.7£1.0 60.212.2
GNN CompGCN* (Vashishth et al, 2019) | 26.8+2.2 48.7+3.0 37.6+2.8 | 80.3+3.2 79.4+4.0 71.4+3.1
Decagon* (Zitnik et al, 2018) 24.3+4.5 474449 35.84£59 |79.0+£2.0 78.5+2.3 69.7+2.4
KGNN* (Lin et al, 2020) 23.14+34 514419 40.3x£2.7 | 78.5£0.5 T79.8£0.6 72.3=0.7
SumGNN* (Yu et al, 2021) 35.0+:4.3 48.8+8.2 41.1+4.7 | 80.3x1.1 81.4+1.0 73.0=14
#-ReepLGEZ (Ban.et.al. 2022).......... L T4t OGR4 0L 0R2.0.| 81432 ... 82.4KA0... . TA8A S,
L EmerGNNT L ] 82:082.0,68.653.7, 62,4443 90.6£0.7, 91,5510, 84.6:0.7:
p-value 8.9E-7 0.02 0.02 1.6E-6 6.0E-8 3.5E-5

 Metrics

S| setting

* Fl-score (macro) (primary)

* Accuracy

* Cohen’s Kappa (Cohen, 1960)

(run on a single Nvidia RTX 3090 GPU

with 24GB memory)

Overall, EmerGNN

significantly outperforms all the compared methods as

indicated by the small p-values.
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Performance
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HIN-DDI
Il KG-DDI

mam EmerGNN |2
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1%~20% 21%~40% 41%~60% 61%~80% 81%~100%
Groups of interactions based on frequency

* EmerGNN outperforms the
baselines in all frequencies.

60% -

F1 score

20% -

—&— CSMDDI
—— HIN-DDI
~#- KGDDI

1 3
Number of added DDI interactions

Supplement interactions to emerging drugs.

* EmerGNN has increased performance with
more interactions added and is still the best

over all the compared methods.
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Analyzing the learned paths

a: o o Group 1
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The diagonal elements are dominant.

The paths with large attention weights are likely —> & - similar _ > &
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Yellow cycles: strongly correlated pairs of Uq
interactions.



Analyzing the biomedical relation types

c 1 d F1
10 ACC
=] Kappa
K L o 65% -
z I0 =
S - s
ER | - £
= = L0 L 55%
2 40 o
S o
§ 50 - t:’o
g : . E 45%
E 60 : —
70 = 0.2
80 % Full rnletwork with I1‘.0Fl 1 with I'LOP-3 with I1‘.0[3'-5 with ID° with 3D° with ED°
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* Correlations between i,,.4 and relations/ .../10% random edges/ 30% random
biomedical relations r edges/ ...
Observation: Observation:
Most frequent relation type: CrC (the < EmerGNN can select important and relevant

drug resembling relation) relations in BN.



Interpretable

An existing drug

An emerging drug

DB09290

DB09241

m CrC
CbG
#39
B Other types

* Select top ten paths between u and v

according to edges’ attention weights.

Target: Tapentadol (DB(6204) may decrease the analgesic activity of Dolasetron (DB00757).

z ? binds binds_inv
Pathl (0.6666): Tapentadol — CYP2D6 (P450) — Dolasetron

Explanation: Tapentadol can binds the P450 enzyme CYP2D6 (Gene::1565), which is vital
for the metabolism of many drugs like Dolasetron (Estabrook, 2003). In addition, Binding
of drug to plasma proteins is reversible, and changes in the ratio of bound to unbound drug
may lead to drug-drug interactions (Kneip et. al. 2008).

resembles #39:1 constipating

#39_i
Path2 (0.8977): Dolasetron —— Hyoscyamine Eluxadoline —tanapentadol

Explanation: Dolasetron i1s similar to drug Hyoscyamine (DB00424). Hyoscyamine and
Tapentadol can get some connection since they will both increase the constipating activity of
Eluxadoline (DB09272). As suggested by Liu and Wittbrodt (2022), reversing opioid-
induced constipation often causes the unwanted side effect of analgesia reversal.

rF-- - m"=-"=-="=="=="="=="======="=™""™2

'EmerGNN can find important paths for emerging DDI. |

| e e e e e e e e e e e e e e e e e e e = =
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Effectiveness of GNN architecture design

d

70 1

Average score in %
3 kS 3 g

N
o

10

I Undirected edges w.o. inverse
0 Subgraph representation

Uni-directional pair-wise representation

B EmerGNN

F1 score

Evaluation metrics

Accuracy

Kappa

* Performance comparison of
different GNN architecture designs.

Conclusion:

 The flow-based GNN architecture
is more effective than any other
variants of GNN architectures.

* Our design is effective.
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Dlscrlmlnatlon ablllty of GNN

CompGCN SumGNN EmerGNN
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Complexity analysis

Testing F1 scores (%)

GPU footprint (MB)

DrugBank
60 S
50
40
N
30 ) g
,l"“n"
/ /
]
204
'
i -~ Decagon
105 — = SumGNN
' DeeplGF
0 —— EmerGNN
0 2 2 6 8 10
Training time (in hours)
B Decagon
16000 . SumGNN
Deealdah
S o EmerGNN ;
12000
10000 1
8000
6000 -
4000 1
2000 4

o

DrugBank

TWOSIDES

b TWOSIDES
90 4 /_/_\/\W
- 851
o
o
S
[SETE -
- e T T —
;.t ! ’ " ‘.\'\.
~,
7514 s
(-]
=
- 704
&
-+ Decagon
651 —.= SUMGNN
DeeplGF
o —— EmerGNN
o 1 2 3 4 5 6

Training time (in hours)

Q

Number of model parameters

DrugBank

TWOSIDES

()
e EmerGNN can achieve

higher accuracy although
it takes a long time.

* But compared to clinical
development, this is
acceptable.

(b)
* EmerGNN is memory
and parameter efficient.

* Smaller subgraphs and
only relying on
biomedical concepts.
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Changing the length L

C
A | g * The value of L determines the
/ \\\ maximum number of hops of
/ b neighboring entities that the GNN-
40% 1 / based models can visit.
S il
I e OO * L = 3 is optimal for EmerGNN
L] - considering both the effectiveness
// ... oo | and computation efficiency.
-~ SumGNN
/ o Emerchi
0= y . : .
1 2 3 4 5

Number of subgraph depth and GNN layers
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Summary of EmerGNN

* Outperforms existing methods in emerging DDI prediction.

* Exploit the rich knowledge in existing large biomedical networks for
low-data scenarios.

* Customize small subgraphs and a flow-based GNN architecture to
effectively extract essential information.

* May contribute to improving patient care and more efficient drug
development processes.



Recent works in our group

* Emerging Drug Interaction Prediction Enabled by Flow-based Graph
Neural Network with Biomedical Network. Nature Computational
Science. 2023 [covered in this talk] collaborators

* Accurate and interpretable drug-drug interaction prediction enabled
by knowledge subgraph learning. Nat. Com. (Medicine). 2023

* Bilinear Scoring Function Search for Knowledge Graph Learning.
TPAMI. 2023

* Relation-aware Ensemble Learning for Knowledge Graph Embedding.
EMNLP. 2023

* Automated 3D Pre-Training for Molecular Property Prediction. KDD. A
- 4

2023

* KGTuner: Efficient Hyper-parameter Search for Knowledge Graph &0
Learning. ACL.2022 ‘ -y

Yongqi Zhang - Ling Yue YaqinEWang

* Knowledge Graph Reasoning with Relational Digraph. WebConf.2022 | .= 7hao Yefeng Zheng James Kowk

* Property-Aware Relation Networks for Few-Shot Molecular Property
Prediction. NeurlPS. 202 |

* Generalizing from a Few Examples:A Survey on Few-Shot Learning.
CSUR. 2020.
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