

MIS-FM: 基于大规模自监督预训练模型的 3D 医学图像分割

报告人: 王国泰

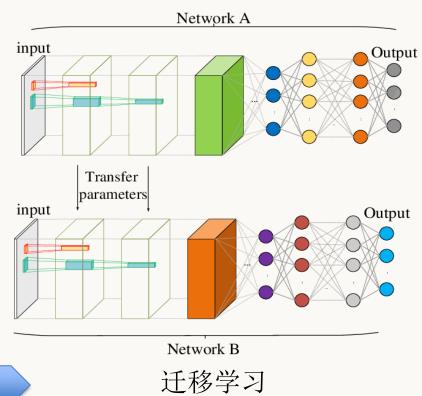
电子科技大学

2023年10月11日

为什么使用预训练模型?

预训练模型

- 通常在一个大的数据集上进行预训练,学习到较通用的特征
- 从而可以迁移到一个较小的目标数据集,提高模型性能,降低过拟合



目标数据集

预训练模型的三大要素

数据集

大规模三维医学图像数据集?

模型结构

- CNN
 - 模型较小,训练较快,表达能力稍弱
- Transformer
 - 模型更大, 计算量大, 表 达能力较强

预训练方法

- · 全监督训练
 - 对特征的引导性强,标注 成本高、甚至无法获取
- 自监督训练
 - 无需人工标注,需要设计 合理的方式学习特征表达

三维医学图像分割的模型?

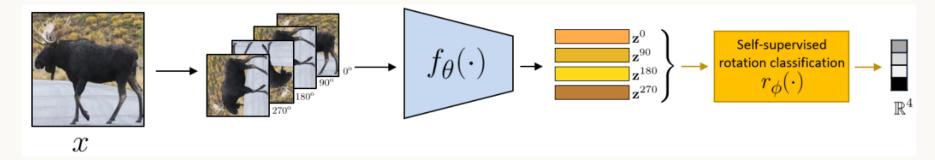
适合三维分割的自监督方法?

三维医学图像分割预训练模型

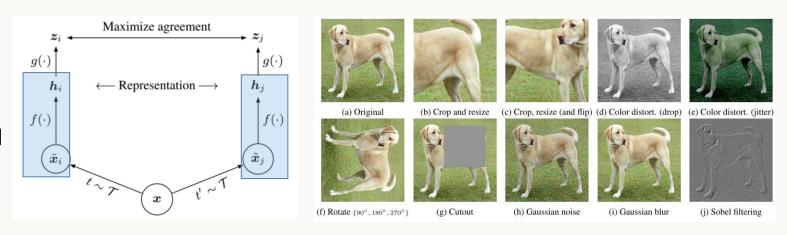
自监督预训练策略: 1) 训练特征提取器

可通过自监督图像分类、对比学习等训练特征提取器

旋转角度 预测^[1]



对比学习[2]



在不需要人工标 注的情况下,增 强模型对图像内 容的理解能力

缺点:图像分割通常还需要一个解码器,这些方法只训练了编码器

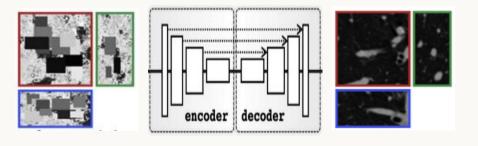
^[1] S. Gidaris et al., Unsupervised Representation Learning by Predicting Image Rotations, ICLR 2018

^[2] T. Chen et al. A simple framework for contrastive learning of visual representations, 2020

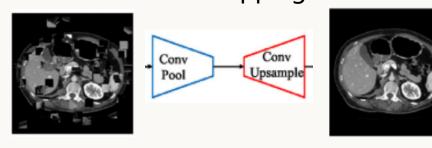
自监督预训练策略: 2) 训练编码器-解码器

基于图像重建任务, 训练编码器-解码器结构

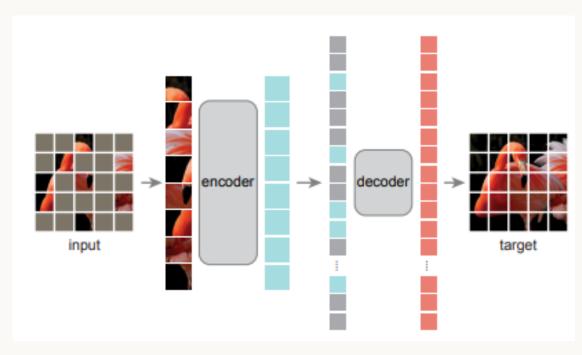
Model Genesis^[1]



Patch Swapping^[2]



Masked Auto Encoder^[3]



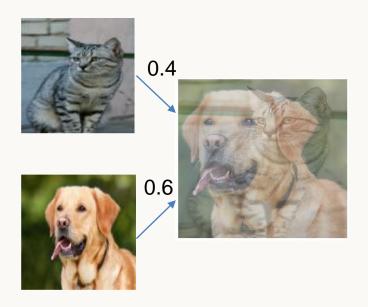
缺点: 图像重建和分割是不同的任务, 二者之间需要的特征可能不匹配

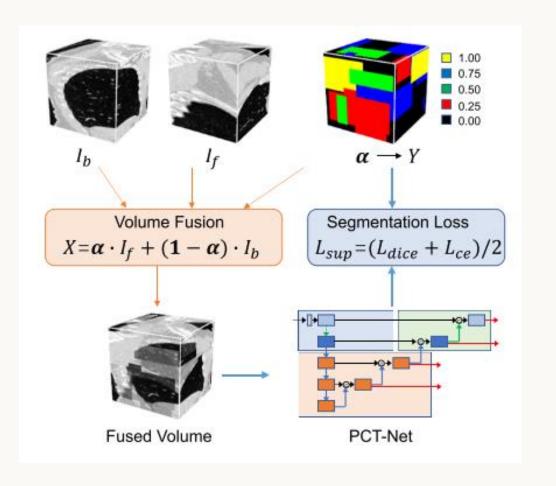
- [1] Z. Zhou et al., Model Genesis, MedIA 2021
- [2] L. Chen et al., Self-supervised learning for medical image analysis using image context restoration, MedIA 2019
- [3] K. He et al., Masked autoencoders are scalable vision learners, CVPR 2022

方法: 1) 基于Volume Fusion的自监督训练策略

Volume Fusion: 将预训练过程表示为一个自监督图像分割任务

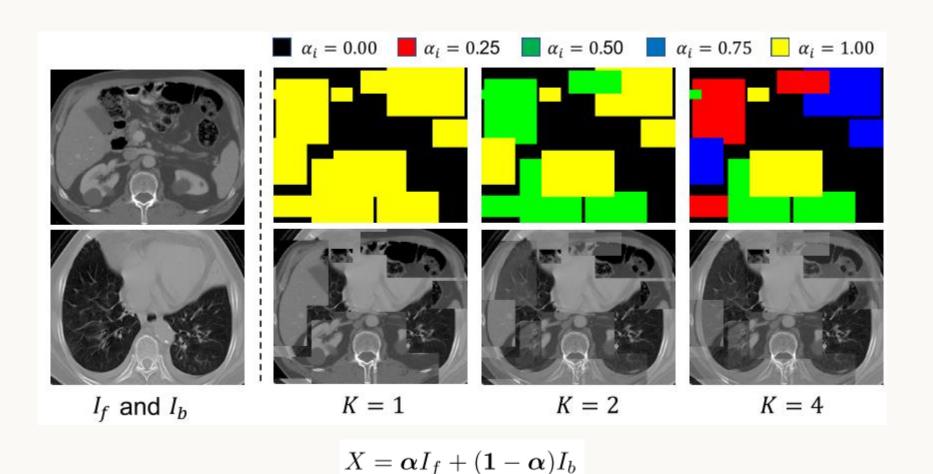
来自Mix-up^[1]的启发



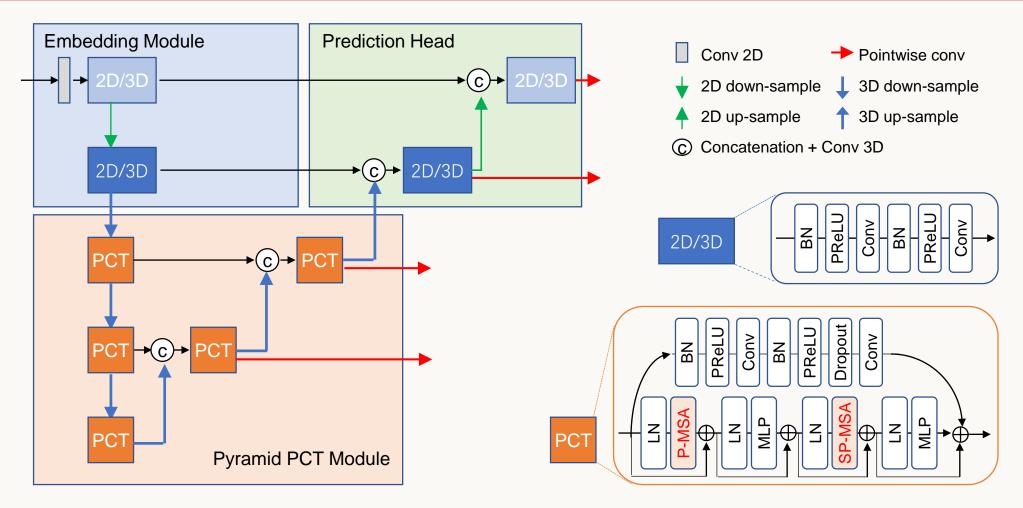


方法: 1) 基于Volume Fusion的自监督训练策略

Volume Fusion可有效提升模型对图像中上下文(结构信息)的感知和识别能力



方法: 2) PCT-Net 基于并行的卷积-Transformer结构的分割网络



- Embedding Module: 通过2D或3D卷积实现,保留高分辨率,形成局部特征表达
- Pyramid PCT Module: 卷积与Transformer相结合,融合局部与全局特征
- Prediction Head: 产生高分辨率分割结果,并得到多尺度预测

方法: 3) 3D预训练数据集

以往工作的3D医学图像预训练数据集大小为几百到5k左右

方法	预训练数据集	大小	标注情况
Model Genesis ^[1]	LUNA16	623	无标注
Swin UNETR ^[2]	LUNA16, TCIA Covid19 LiDC, HNSCC, TCIA Colon	5050	无标注
CLIP-Driven Universal Model ^[3]	Pancreas CT, LiTS, KiTS, WORD等16个公开数据集	3410	部分标注
STU-Net ^[4]	TotalSegmentor	1204	全标注

^[1] Z. Zhou et al., Model Genesis, MedIA 2021

^[2] Y. Tang et al., Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis, CVPR 2022

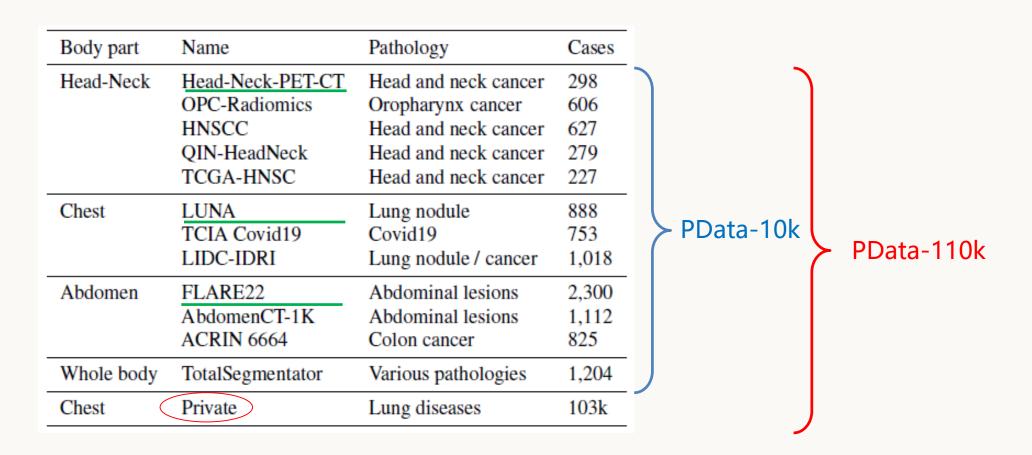
^[3] J. Liu et al., CLIP-driven universal model for organ segmentation and tumor detection, ICCV 2023

^[4] Z. Huang et al., STU-Net: Scalable and transferable medical image segmentation models empowered by large-scale supervised pre-training, arxiv 2023

方法: 3) 3D预训练数据集

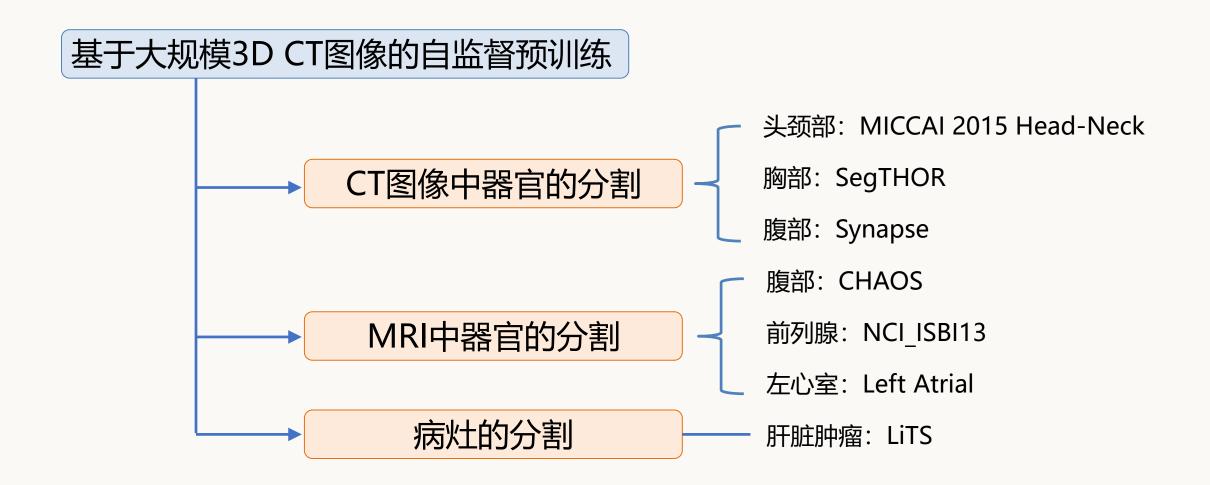
我们将预训练3D图像的规模扩大到1万和10万量级

PData-1k (选取一部分)

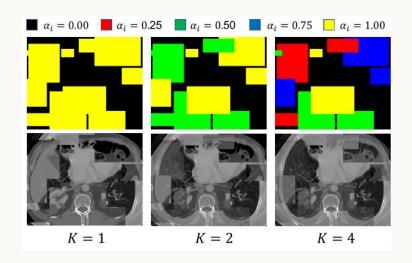


GitHub: https://github.com/openmedlab/MIS-FM

实验设置:下游分割任务数据集

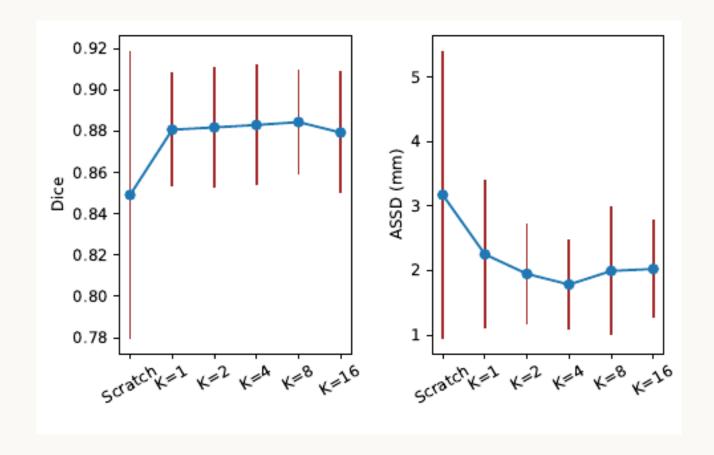


实验结果: 1) 超参数K的影响



预训练: PData-1k 模型: 3D UNet

下游任务: SegTHOR



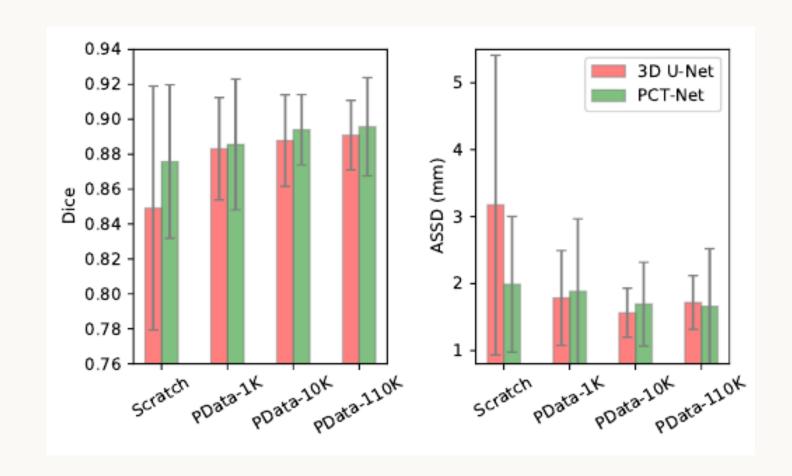
K = 1 到 8 时Dice值较平稳,显著优于不用预训练的结果

K = 4 时综合表现最好

实验结果: 2) 不同预训练数据规模和模型的比较

预训练: PData-1k, 10k, 110k 模型: 3D UNet, PCT-Net

下游任务: SegTHOR



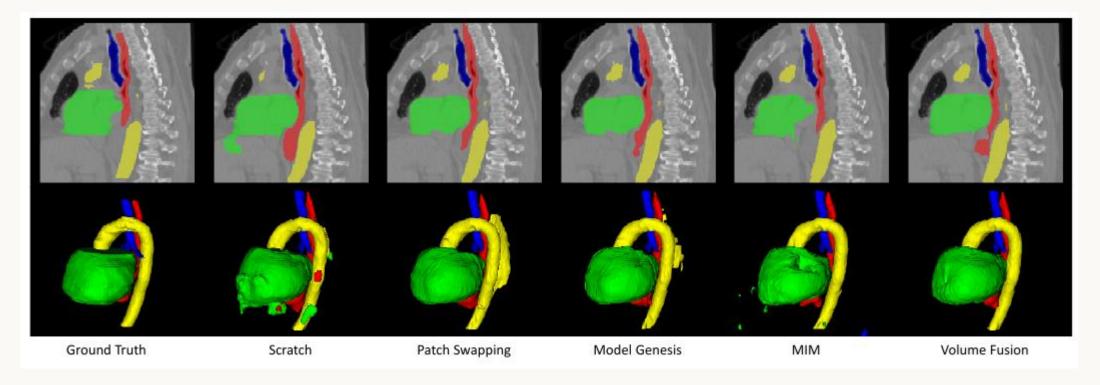
模型性能随着预训练数据规模的增加而提升 PCT-Net比3D U-Net的表现更好

实验结果: 3) 不同预训练策略的比较

预训练: PData-1k 模型: 3D UNet

下游任务: SegTHOR

Method	Dice (%)								
	Esophagus	Heart	Trachea	Aorta	Average				
Scratch	71.87 ± 11.27	90.82 ± 4.72	87.63 ± 5.77	89.34 ± 6.19	84.92 ± 6.47				
Patch Swapping [1]	75.91 ± 9.04	91.88 ± 5.27	87.31 ± 6.45	89.64 ± 7.60	86.18 ± 4.05				
Model Genesis [2]	76.98 ± 8.29	92.78 ± 3.13	87.87 ± 6.28	89.64 ± 7.74	86.81 ± 4.00				
MIM [3]	76.29 ± 8.91	91.85 ± 2.82	87.52 ± 5.43	92.19 ± 2.98	86.97 ± 3.50				
Volume Fusion	77.61 ± 7.82	93.72 ± 2.28	88.21 ± 4.18	$93.67 {\pm} 1.68$	88.30 ± 2.93				



^[1] L. Chen et al., Self-supervised learning for medical image analysis using image context restoration, MedIA 2019

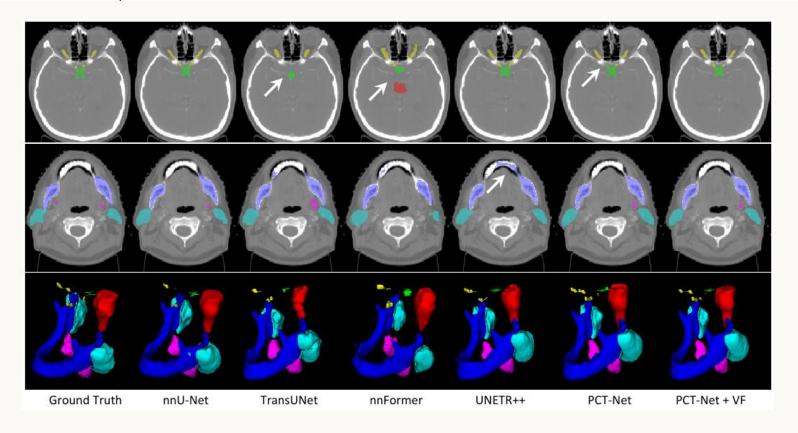
^[2] Z. Zhou et al., Model Genesis, MedIA 2021

^[3] Z. Chen et al., Masked Image Modeling Advances 3D Medical Image Analysis., IEEE WCACV 2023

实验结果: 4) 不同模型在CT图像中多器官分割的比较

下游任务: 头颈部器官分割 (MICCAI 2015 Head-Neck)

	Method	Brain stem	Optic chiasm	Mandible	Optic nerves	Parotid Glands	SM glands	Average
Dice (%)	nnU-Net [2]	89.27 ± 2.42	57.47 ± 24.24	90.12 ± 5.84	72.50 ± 7.85	87.53 ± 3.43	75.06 ± 12.58	78.66 ± 5.42
	TransUNet [34]	75.52 ± 5.58	41.92 ± 15.99	92.28 ± 1.45	58.36 ± 6.91	76.70 ± 6.85	69.80 ± 8.27	69.10 ± 3.08
	nnFormer [37]	80.02 ± 3.53	52.72 ± 14.70	87.96 ± 2.27	57.34 ± 7.72	75.31 ± 7.24	68.25 ± 5.53	70.27 ± 4.19
	UNETR++ [33]	87.26 ± 2.13	60.44 ± 22.49	93.99 ± 1.30	75.19 ± 5.85	84.61 ± 3.89	80.74 ± 4.53	80.37 ± 3.94
	PCT-Net	89.25 ± 1.86	58.09 ± 18.59	94.17 ± 1.66	77.04 ± 4.84	87.44 ± 3.37	82.49 ± 4.55	81.41 ± 3.67
	PCT-Net + VF	$90.24{\pm}1.78$	62.93 ± 20.73	$94.85{\pm}1.36$	78.11 ± 4.04	87.07 ± 3.69	83.25 ± 3.90	82.74 ± 3.95

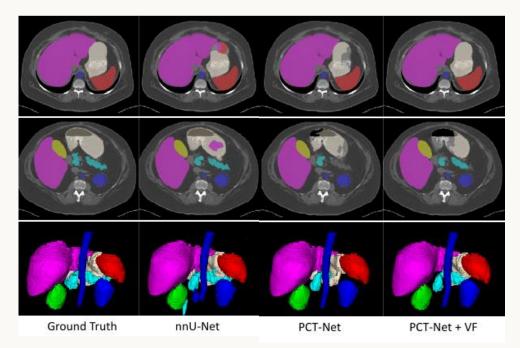


实验结果: 4) 不同模型在CT图像中多器官分割的比较

下游任务: 胸、腹部器官分割

SegTHOR

Method	Dice (%)								
	Esophagus	Heart	Trachea	Aorta	Average				
nnU-Net [2]	80.15±7.85	$93.05{\pm}2.59$	87.33 ± 5.84	93.78 ± 1.67	88.57±3.84				
TransUNet [34]	75.66 ± 9.36	85.27 ± 16.18	$89.37{\pm}4.26$	91.52 ± 2.97	85.46 ± 7.20				
nnFormer [37]	78.00 ± 6.86	92.47 ± 2.06	84.87 ± 10.10	90.07 ± 4.89	86.35 ± 3.78				
UNETR++ [33]	76.24 ± 10.43	92.00 ± 4.79	88.61 ± 4.49	92.48 ± 2.32	87.33 ± 3.67				
PCT-Net	82.08 ± 6.19	88.47 ± 11.18	88.11 ± 4.43	91.65 ± 3.67	87.58 ± 4.39				
PCT-Net + VF	$83.45{\pm}4.78$	91.66 ± 7.14	89.26 ± 4.47	$93.88 {\pm} 1.79$	$89.56{\pm}2.81$				



Synapse

Method	Spleen	R Kidney	L Kidney	Gallbladder	Pancreas	Liver	Stomach	Aorta	Average
nnU-Net [2]	$94.00{\pm}4.26$	91.89 ± 7.72	93.30 ± 4.17	78.17 ± 18.48	$83.27{\pm}3.98$	94.33 ± 3.89	79.30 ± 19.89	89.26 ± 3.38	87.94 ± 5.26
TransUNet [34]	92.00 ± 7.15	92.48 ± 4.11	92.30 ± 4.77	74.21 ± 12.31	72.18 ± 16.12	94.73 ± 4.11	75.72 ± 15.54	90.67 ± 4.16	85.54 ± 5.40
nnFormer [37]	92.25±5.83	92.86 ± 2.11	$93.84{\pm}1.45$	73.56 ± 14.48	72.02 ± 6.22	95.31 ± 1.28	80.77 ± 10.29	90.47 ± 3.54	86.39 ± 2.81
UNETR++ [33]	89.26 ± 15.54	93.40 ± 1.61	93.19 ± 2.31	70.96 ± 28.24	74.70 ± 12.14	95.76 ± 0.68	82.79 ± 15.22	88.79 ± 482	86.11 ± 6.55
PCT-Net	91.36 ± 13.77	95.21 ± 5.46	90.78 ± 9.79	80.94 ± 9.91	79.13 ± 9.86	96.63 ± 7.04	79.25 ± 23.33	90.48 ± 5.11	87.97 ± 5.22
PCT-Net + VF	91.38±12.97	95.31 ± 0.55	92.17 ± 8.00	80.79 ± 13.58	83.24 ± 3.97	96.70 ± 6.30	82.46 ± 15.99	$90.86 {\pm} 4.10$	89.11 ± 4.43

实验结果: 4) 跨模态迁移能力——MRI图像分割

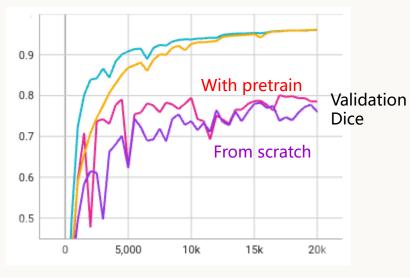
下游任务: MRI图像中器官的分割

腹部器官 (T2-MRI)

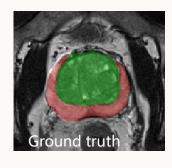
前列腺 (T2-MRI)

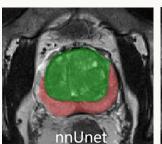
左心室(LGE-MRI)

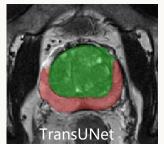
Method		CHAOS					NCI_ISBI13		
Metriod	Liver	R Kidney	L Kidney	Spleen	Average	PZ	CG	Average	Left Atrial
nnU-Net [2]	92.48 ± 0.46	91.56 ± 6.67	91.76 ± 3.67	$91.62{\pm}4.70$	91.85 ± 3.69	78.08 ± 11.18	86.12 ± 7.28	82.10 ± 7.40	89.80±6.06
TransUNet [34]	92.74 ± 1.81	93.96 ± 1.59	90.36 ± 6.08	89.33 ± 3.23	91.60 ± 1.62	77.32 ± 11.61	86.10 ± 6.35	81.71 ± 7.47	89.63±2.62
nnFormer [37]	91.47 ± 3.59	93.20 ± 1.79	90.83 ± 5.21	90.49 ± 3.83	91.50 ± 3.60	74.64 ± 12.50	81.88 ± 15.76	78.26 ± 11.35	86.62±5.31
UNETR++ [33]	91.85 ± 2.18	93.27 ± 1.20	90.88 ± 4.52	91.36 ± 3.78	91.84 ± 1.25	76.69 ± 13.04	84.05 ± 12.93	80.37 ± 9.15	89.00±4.33
PCT-Net	94.55 ± 1.19	93.36 ± 1.10	92.91 ± 1.97	88.95 ± 7.71	92.44 ± 1.89	75.91 ± 11.73	87.79 ± 4.90	81.85 ± 6.43	89.94±4.52
PCT-Net + VF	$95.08{\pm}1.20$	94.38 ± 0.94	$94.20{\pm}1.11$	90.39 ± 7.01	93.51 ± 1.96	80.30 ± 9.71	86.64 ± 7.87	83.47 ± 6.74	90.93±3.34

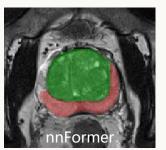


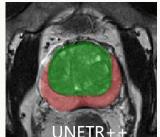
NCI_ISBI 13

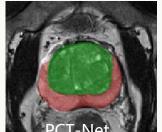


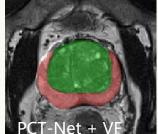








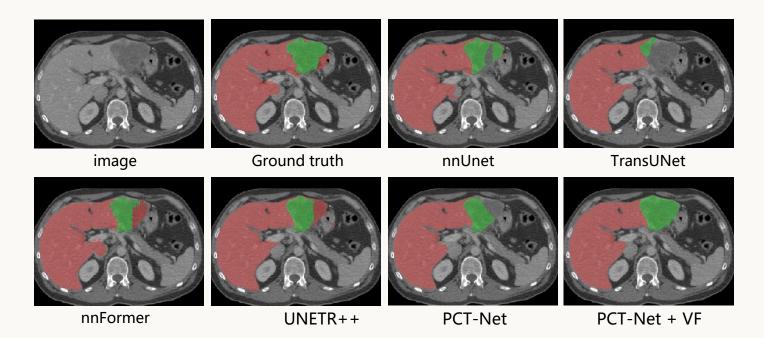




实验结果: 5) 病灶分割

下游任务: 肝脏肿瘤分割 LiTS数据集

Method	LiTS						
Method	Liver	Tumor	Average				
nnU-Net [2]	95.03 ± 2.50	66.45 ± 22.15	80.74 ± 10.93				
TransUNet [34]	94.12 ± 3.29	65.17 ± 20.50	79.65 ± 10.27				
nnFormer [37]	92.02 ± 3.56	57.05 ± 21.60	74.53 ± 10.45				
UNETR++ [33]	94.61 ± 3.23	$64.81{\pm}20.94$	79.71 ± 10.42				
PCT-Net	94.00 ± 2.70	71.42 ± 19.62	82.71 ± 9.72				
PCT-Net + VF	$95.17{\pm}2.36$	74.41 ± 13.92	84.79 ± 6.87				



总结与展望

针对三维医学图像分割任务:

数据: 大规模未标注3D图像数据集 (110k)

模型: PCT-Net 并行卷积与Transformer结构

训练: 基于Volume Fusion的自监督预训练方法

- 分割任务作为预训练任务
- 有效训练模型对图像中上下文结构的理解

CT图像中器官的分割

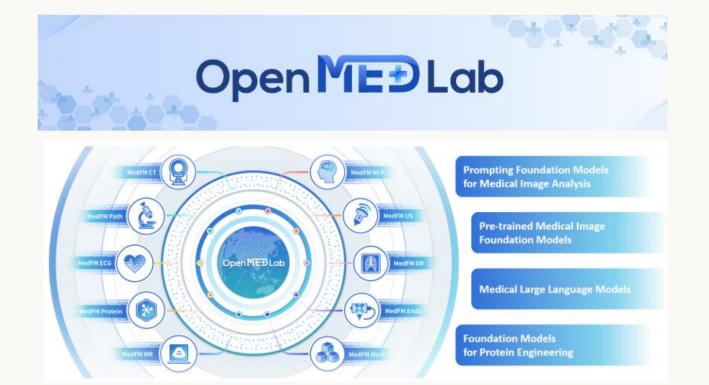
MRI中器官的分割

病灶的分割

预训练模型的作用:减少下游任务数据依赖、提高训练速度、泛化能力等 展望:

- 如何在下游任务中进一步减少数据和标注依赖,实现one-shot, few-shot分割?
- 更多模态、更大容量的预训练数据集(收集困难)

Thanks



GitHub: https://github.com/openmedlab/MIS-FM

联系方式: guotai.wang@uestc.edu.cn