

Channel Equilibrium Networks for Learning Deep Representation

Wenqi Shao, VALSE, July, 28, 2021 The Chinese University of Hong Kong

- Overview
 - Convolutional Neural Networks (CNNs) facilitate various applications in computer vision

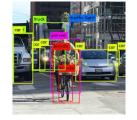


Image Classification

Object Detection

Semantic Segmentation

Person ReID

- AlexNet, ResNet, ResNeXt, Wide-ResNet, MobileNet ...

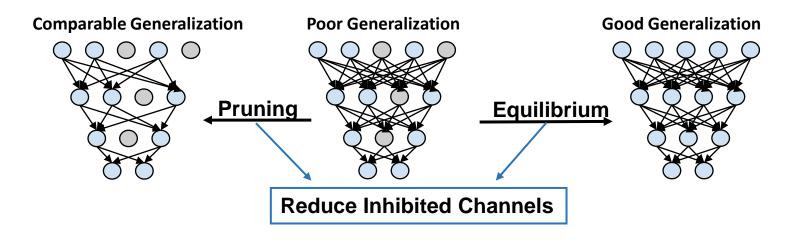
over-parameterized network architectures

- Observation.
- An over-parameterized CNN always contains unimportant ('inhibited')
 channels whose feature values are extremely small.

Some channels in a well-trained CNN can easily be pruned without significant loss of performance.

• Overview

- A network's reliance on single directions is a good predictor of generalization performance. [1] *A network generalizing well often rely less on single direction (neuron, channel etc.).*



A natural idea: Why not wake up those 'inhibited' channels?

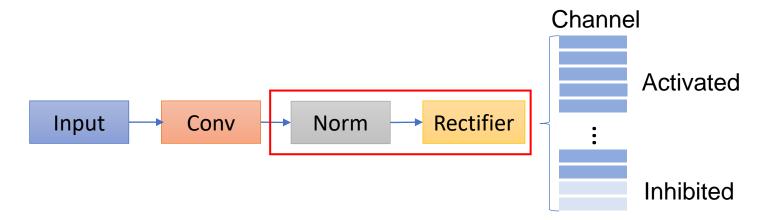
inhibited channels \rightarrow reliance on single directions \rightarrow generalization \uparrow

[1] Ari S. Morcos, et al. ON THE IMPORTANCE OF SINGLE DIRECTIONS FOR GENERALIZATION. ICLR'18

Overview

- How inhibited channels are related with BN
- How whitening method can avoid channel collapse Channel CE block
- Connection between CE and Nash Equilibrium
- Experimental results
- Conclusion

- Inhibited Channels where and how?
 - Where: Normalization and Rectifier block



- Norm: BatchNorm, InstanceNorm, GroupNorm, LayerNorm...
 - a. reduce covariance shift
 - b. stabilize and accelerate the training process
- Rectifier: ReLU, Exponential Linear Unit (ELU), Leaky ReLU (LReLU)...
 - a. highly non-linear representation,

b. allow faster and effective training of deep neural architectures

• **'Norm+Rectifier'** block leads to inhibited channels.

- Inhibited Channels where and how?
 - How: small feature values which contribute little to the learned feature representation
 - Formulation: $x \in \mathbb{R}^{N \times C \times H \times W}$ represents the feature map in a layer,

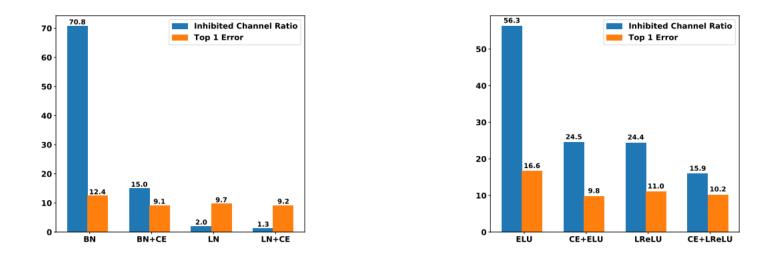
 x_{ncij} denotes a element of \boldsymbol{x} .

Norm $\tilde{x}_{ncij} = \gamma_c \bar{x}_{ncij} + \beta_c$, $\bar{x}_{ncij} = (x_{ncij} - \mu_k)/\sigma_k$.Rectifier $y_{ncij} = g(\tilde{x}_{ncij})$,

• Inhibited channels emerge when γ and β satisfy the condition in Remark 1

Remark 1. Let a random variable $z \sim \mathcal{N}(0,1)$ and $y = max\{0, \gamma_c z + \beta_c\}$. Then we have $\mathbb{E}_z[y] = 0$ and $\mathbb{E}_z[y^2] = 0$ if and only if $\beta_c \leq 0$ and γ_c sufficiently approaches 0.

Inhibited Channels – Empirical Observation



- Inhibited channels emerge in various 'Norm+Rectifier' blocks
- Condition of inhibited channels in various ResNets trained on the ImageNet dataset.

CNNs	ResNet18	ResNet50	ResNet101
$(\gamma_c < 0.1)$	1.2	18.8	21.4

Table 9. Ratios of ($\gamma_c < 0.1$) after traing on various CNNs.

CNNs	ResNet18	ResNet50	ResNet101
$(\beta_c \le 0)$	76.0	76.7	81.8

Table 4. Ratios of ($\beta_c \leq 0$) after traing on various CNNs.

- Channel Equilibrium Block
 - We use **decorrelation** method that decorrelate each output of normalization to achieve **channel equilibrium (CE)**.
 - Formulation of CE: $p_{nij} = D_n^{-\frac{1}{2}}(\text{Diag}(\gamma)\bar{x}_{nij} + \beta)$, $D_n^{-\frac{1}{2}}$ is a decorrelation operator
 - Construction Goal: better model the dependencies between channels

 $\boldsymbol{D}_n = \lambda \boldsymbol{\Sigma} + (1 - \lambda) \mathrm{Diag}(\boldsymbol{v}_n), \quad \boldsymbol{v}_n = f(\tilde{\boldsymbol{\sigma}}_n^2),$

 Σ , Covariance matrix estimated by a batch of sample

 $oldsymbol{v}_n$, Adaptive instance variance computed by the current sample

• Approximation $D_n^{-\frac{1}{2}} = [\lambda \Sigma + (1 - \lambda) \operatorname{Diag}(\boldsymbol{v}_n)]^{-\frac{1}{2}}$ $\leq \lambda \sum_{\text{batch decorrelation}}^{-\frac{1}{2}} + (1 - \lambda) \underbrace{[\operatorname{Diag}(\boldsymbol{v}_n)]^{-\frac{1}{2}}}_{\text{instance reweighting}},$

High-order terms are controlled by the spectral of Σ and ${m v}_n$

Decomposition

CE is decomposed into two branches,

Batch Decorrelation (BD) and instance reweighting (IR)

- Channel Equilibrium Block
 - BD branch computes $\Sigma^{-\frac{1}{2}}$, by Newton's iteration

 $\boldsymbol{\Sigma} = \boldsymbol{\gamma} \boldsymbol{\gamma}^{\mathsf{T}} \odot \frac{1}{M} \bar{\boldsymbol{x}} \bar{\boldsymbol{x}}^{\mathsf{T}}, \quad \text{covariance matrix after BN layer}$

 $\begin{cases} \boldsymbol{\Sigma}_0 = \boldsymbol{I} & \text{Newton's iteration} \\ \boldsymbol{\Sigma}_k = \frac{1}{2} (3\boldsymbol{\Sigma}_{k-1} - \boldsymbol{\Sigma}_{k-1}^3 \boldsymbol{\Sigma}), \ k = 1, 2, \cdots, T. \end{cases}$

- **BD branch** firstly calculates a normalized covariance matrix and then applies Newton's Iteration to obtain its inverse square root
- IR branch calculates $\operatorname{Diag}[f(\widetilde{\sigma}_n^2)]^{-\frac{1}{2}}$

 $\tilde{\sigma}_n^2 = \operatorname{diag}(\gamma \gamma^{\mathsf{T}}) \odot \frac{(\sigma_{\mathrm{IN}}^2)_n}{\sigma_{\mathrm{BN}}^2},$ instance variance after BN layer

 $[\text{Diag}(\boldsymbol{v}_n)]^{-\frac{1}{2}} = \text{Diag}(\text{Sigmoid}(\tilde{\boldsymbol{\sigma}}_n^2; \boldsymbol{\theta})) \cdot s^{-\frac{1}{2}}, \text{ reparameterization with attention}$

• **IR branch** uses a reparameterization trick , where an attention mechanism with Sigmoid activation is used to control the strength of the inverse square root of variance for each channel

- Channel Equilibrium Block
 - BD branch increases the magnitude of gamma and feature channels.

• CE:
$$p_{nij} = D_n^{-\frac{1}{2}}(\operatorname{Diag}(\boldsymbol{\gamma})\bar{\boldsymbol{x}}_{nij} + \boldsymbol{\beta})$$

• **Decomposition**
$$D_n^{-\frac{1}{2}} = [\lambda \Sigma + (1 - \lambda) \operatorname{Diag}(v_n)]^{-\frac{1}{2}}$$

 $\preceq \lambda \underbrace{\Sigma^{-\frac{1}{2}}}_{\text{batch decorrelation}} + (1 - \lambda) \underbrace{[\operatorname{Diag}(v_n)]^{-\frac{1}{2}}}_{\text{instance reweighting}}$

• BD:
$$p_{nij}^{\mathrm{BD}} = \mathrm{Diag}(\boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\gamma})\bar{x}_{nij} + \boldsymbol{\Sigma}^{-\frac{1}{2}}\boldsymbol{\beta}$$

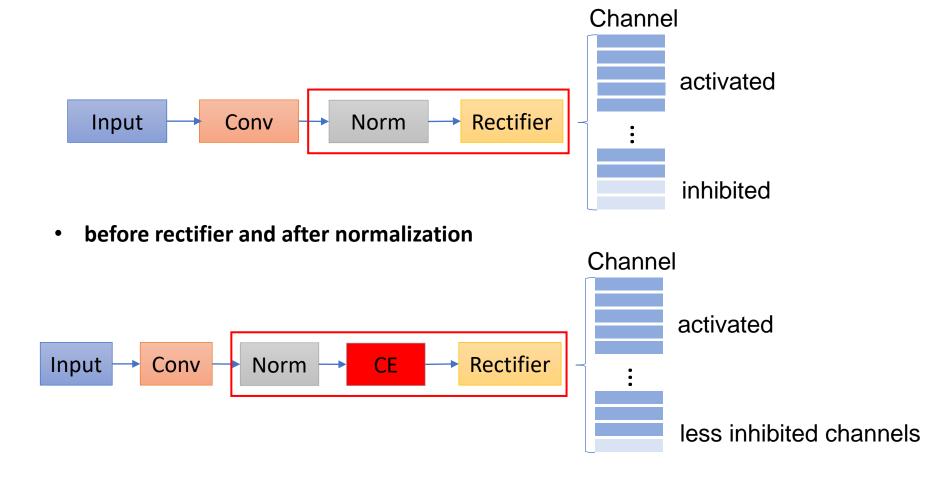
• Equivalent gamma in BD: $\hat{\gamma} = \Sigma^{-\frac{1}{2}} \hat{\gamma}$.

Proposition 1. Let Σ be covariance matrix of feature maps after batch normalization. Then, (1) assume that $\Sigma_k = \Sigma^{-\frac{1}{2}}, \forall k = 1, 2, 3, \cdots, T$, we have $|\hat{\gamma}_c| \geq |\gamma_c|, \forall c \in [C]$. (2) Denote $\rho = \frac{1}{M} \bar{x} \bar{x}^{\mathsf{T}}$ in Eqn.(5) and $\tilde{x}_{nij} = \operatorname{Diag}(\gamma) \bar{x}_{nij} + \beta$. Assume ρ is full-rank, then $\|\Sigma^{-\frac{1}{2}} \tilde{x}_{nij}\|_2 > \|\tilde{x}_{nij}\|_2$

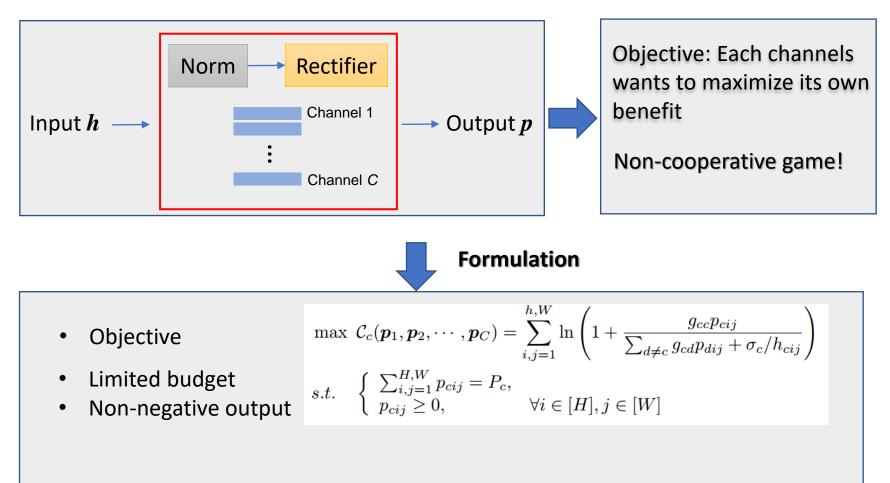
magnitude of gamma for every channel increases

prevent inhibited channels!

- Channel Equilibrium Block
 - Integration Strategy of CE



Connection between CE and Nash Equilibrium



Allows unique Nash Equilibrium

- Connection between CE and Nash Equilibrium
 - When all channels are activated, we have Nash Equilibrium Point by Taylor expansion

$$p_{ij}^* = G^{-1} \left(\operatorname{Diag}(\sigma) \bar{h}_{ij} + \operatorname{Diag}(v_0)^{-1} \operatorname{diag}(G) + (2 + \delta) \sigma \right)$$

 $p_{nij} = D_n^{-\frac{1}{2}} \left(\operatorname{Diag}(\gamma) \bar{x}_{nij} + \beta \right)$

The same form with the expression of CE.

• CE:

 We expect further investigation on modelling of relationship among channels by techniques in game theory

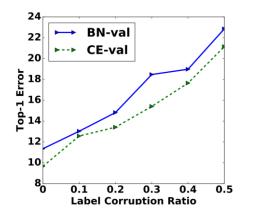
- Experimental Results
 - CE improves the generalization of various ResNets and mobile backbones with marginal increase of computational burden.

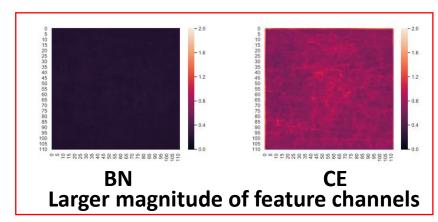
	ResNet18			ResNet50			ResNet101		
	Baseline	SE	CE	Baseline	SE	CE	Baseline	SE	CE
Top-1	70.4	71.4	71.9	76.6	77.6	78.3	78.0	78.5	79.0
Top-5	89.4	90.4	90.8	93.0	93.7	94.1	94.1	94.1	94.6
GFLOPs	1.82	1.82	1.83	4.14	4.15	4.16	7.87	7.88	7.89
CPU (s)	3.69	3.69	4.13	8.61	11.08	11.06	15.58	19.34	17.05
GPU (s)	0.003	0.005	0.006	0.005	0.010	0.009	0.011	0.040	0.015

• CE outperforms the baseline BN-ResNets and SE-ResNets.

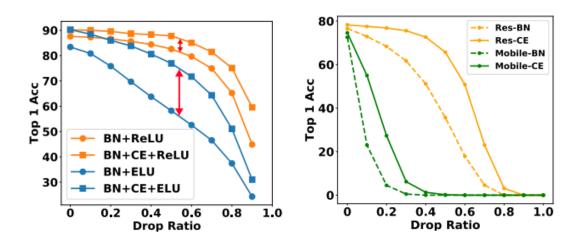
	MobileNetv2 1×			ShuffleNetv2 0.5×			ShuffleNetv2 $1 \times$		
	top-1	top-5	GFLOPs	top-1	top-5	GFLOPs	top-1	top-5	GFLOPs
Baseline	72.5	90.8	0.33	59.2	82.0	0.05	69.0	88.6	0.15
SE	73.5	91.7	0.33	60.2	82.4	0.05	70.7	89.6	0.15
CE	74.6	91.7	0.33	60.5	82.7	0.05	71.2	89.8	0.16

- Experimental Results
 - CE improves generalization ability in corrupted label setting.





• CE encourages channels to contribute more equally to the learned feature representation.



Cumulative Ablation Curves

- CE presents a more gentle accuracy drop curve
- CE makes the network less reliant on specific channels.

Conclusion

- We presented an effective and efficient network block, termed as Channel Equilibrium (CE)
- CE encourages channels at the same layer to contribute equally to learned feature representation, enhancing the generalization ability of the network.
- We hope that the analyses of CE could bring a new perspective for future work in architecture design

Thanks!