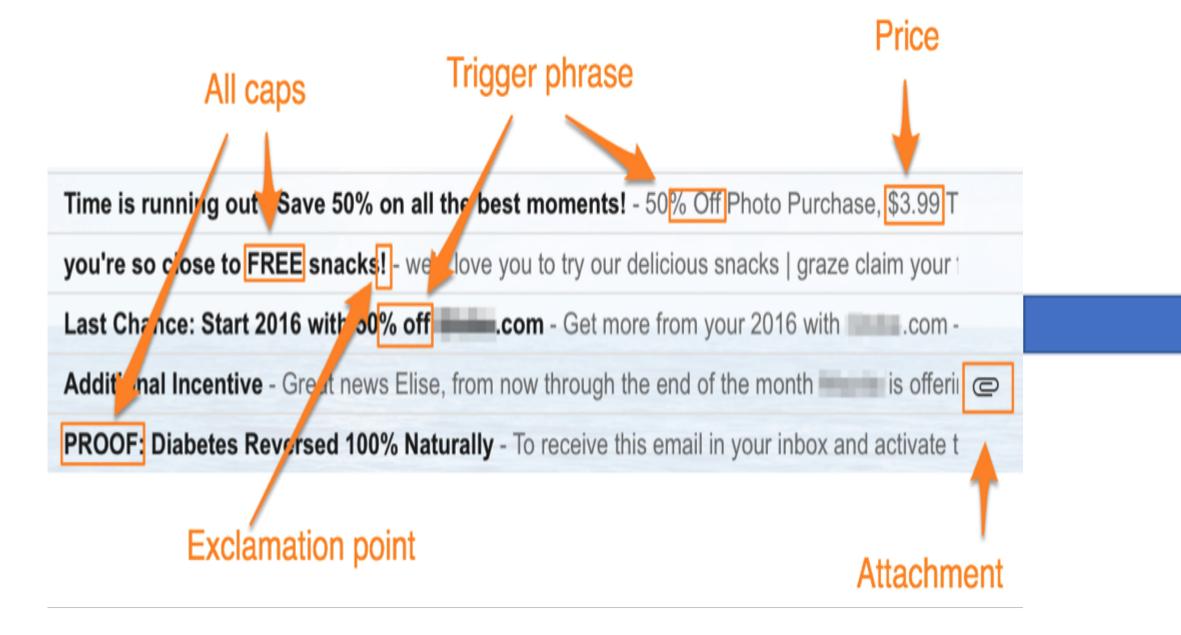
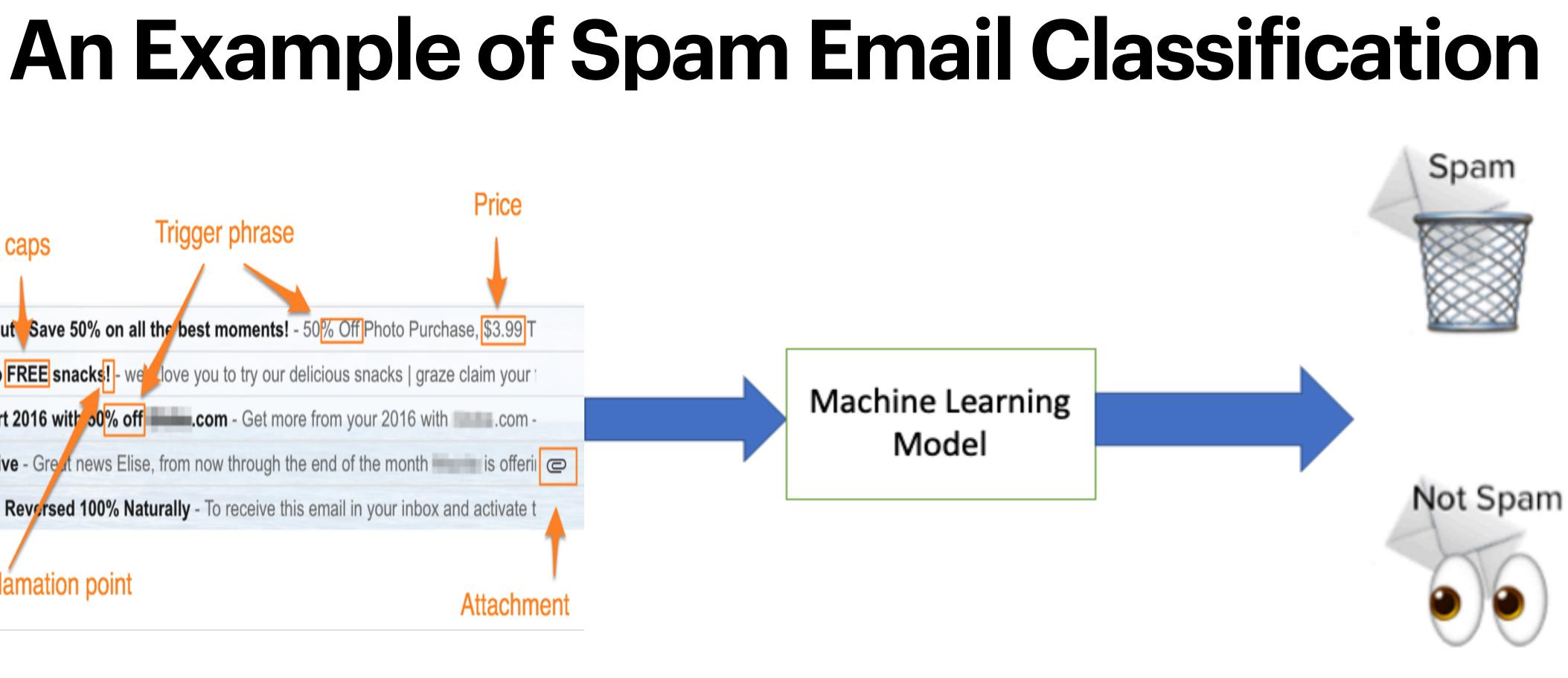
Fast Algorithms for AUC Maximization

Mingrui Liu **Boston University**

June 02, 2021



x : feature vector



model: $f(\mathbf{x})$

 $y \in \{\text{spam, not spam}\}$

Risk Minimization

- $f^* = \arg\min_{f \in \mathcal{F}} R$
- F: hypothesis class
- Loss function $\ell(\hat{y}, y)$ measures the prediction error

$$\mathbf{w}_* = \operatorname*{arg\,min}_{\mathbf{w}} \mathbb{E}_{\mathbf{x},\mathbf{y}}$$

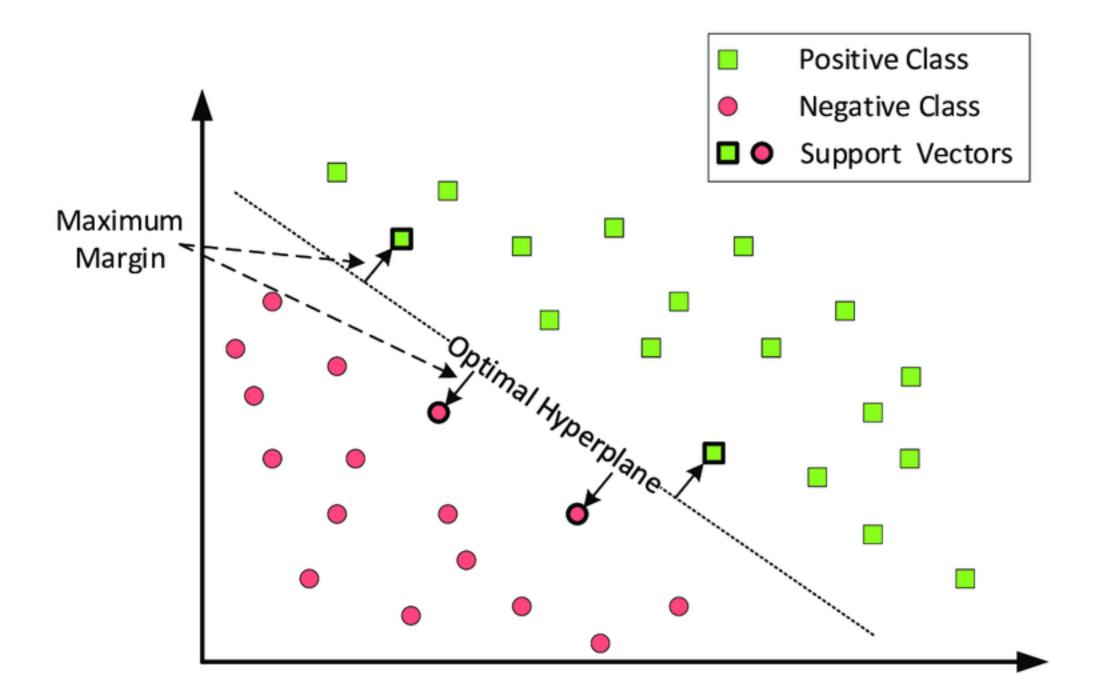
Risk of model f

$$\mathbf{f} := \mathbb{E}_{\mathbf{x}, y} \left[\ell(f(\mathbf{x}), y) \right]$$

Prediction $\hat{y} = f(\mathbf{w}; \mathbf{x})$

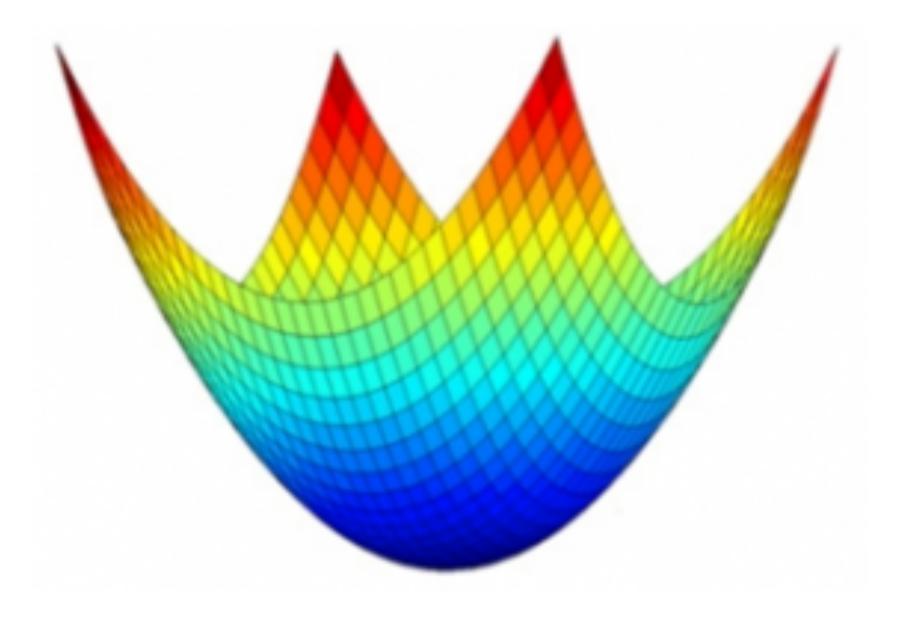
 $\int_{V} \left[\ell(f(\mathbf{w};\mathbf{x}),y) \right]$

Linear Model: Convex Methods

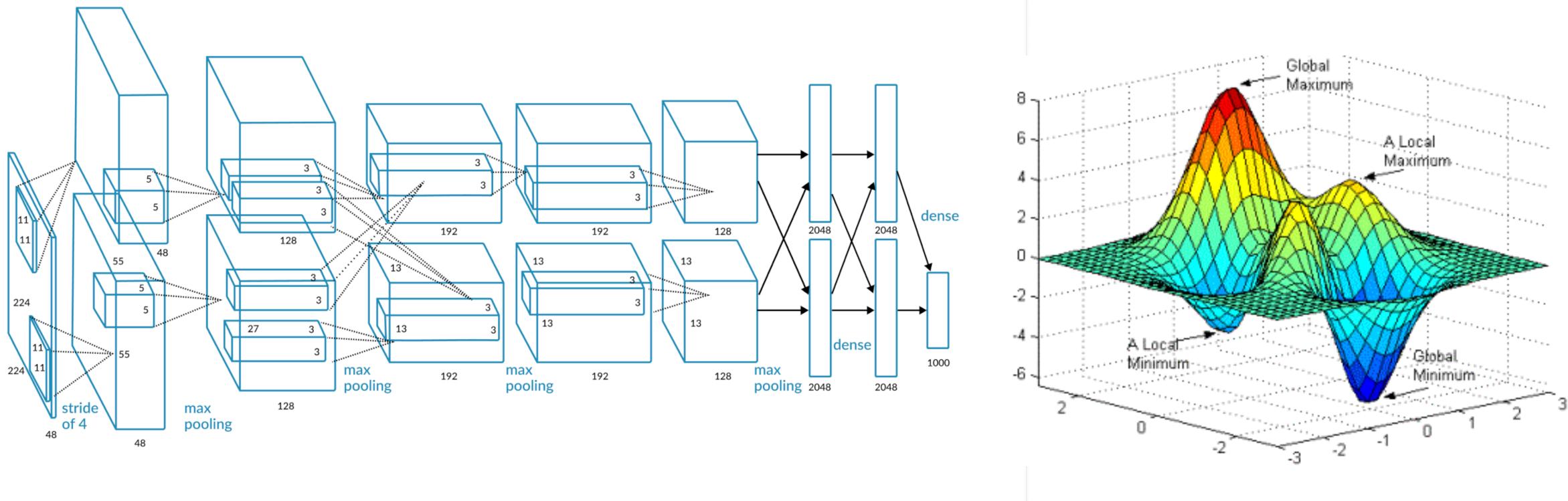


$$\mathbf{x} \to f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

 $\min_{\mathbf{w}} \mathbb{E}_{\mathbf{x},y} \left[\ell(f_{\mathbf{w}}(\mathbf{x}), y) \right]$



Deep Neural Networks: Nonconvex Methods



Alexnet:
$$\mathbf{x} \to f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}_L \circ \sigma \left(\dots \sigma \left(\mathbf{w}_2 \circ \sigma (\mathbf{w}_2 \circ (\mathbf{w}_2 \circ (\mathbf{w}_2 \circ (\mathbf{w}_2 \circ \sigma (\mathbf{w}_2 \circ (\mathbf{w}_2$$

$$\min_{\mathbf{w}} \mathbb{E}_{\mathbf{x},y} \left[\ell(f_{\mathbf{w}}(\mathbf{x}), y) \right]$$

• X

$\begin{array}{l} \textbf{Classical Learning Paradigm}\\ \textbf{Solve risk minimization by stochastic gradient descent}\\ \min \mathbb{E}_{\mathbf{x},y} \left[\mathscr{C}(f_{\mathbf{w}}(\mathbf{x}),y) \right]\\ \textbf{\cdot} \\ \textbf{Stochastic Gradient Descent (SGD) [Robbins-Monro'51]} \end{array}$

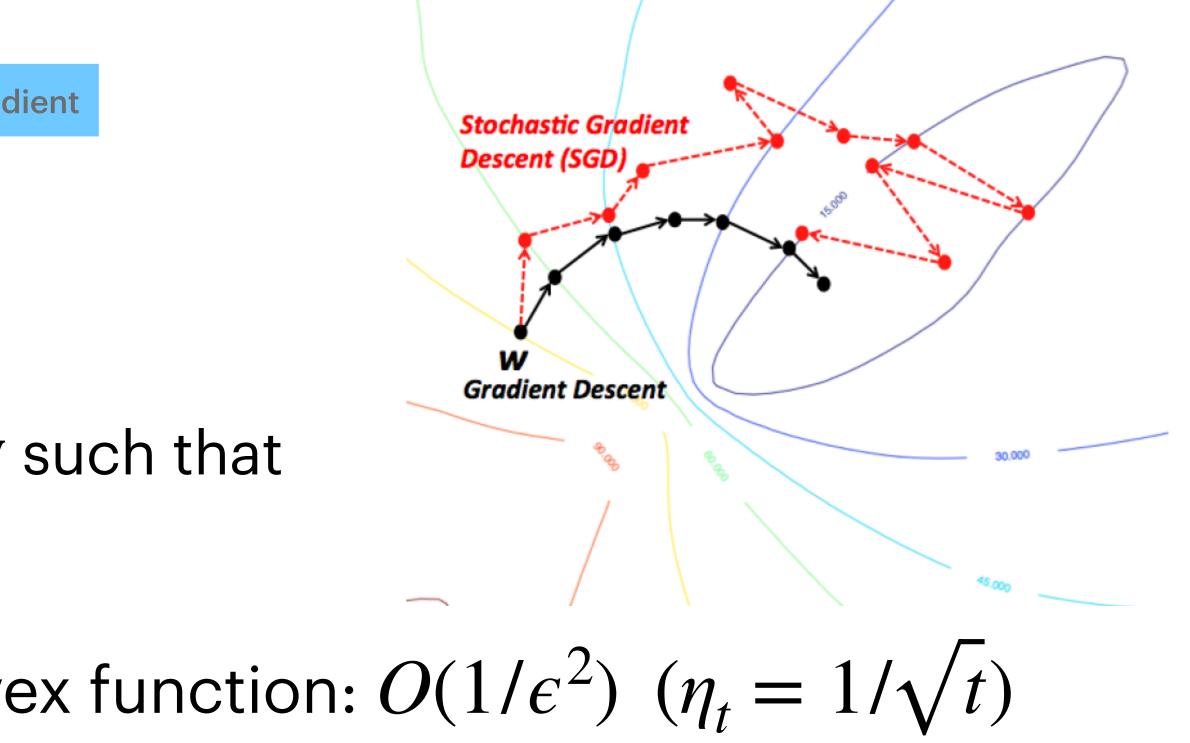
• Sample (\mathbf{x}_t, y_t) uniformly

Stochastic gradient

•
$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta_t \partial \ell(\mathbf{W}_t, \mathbf{X}_t, y_t)$$

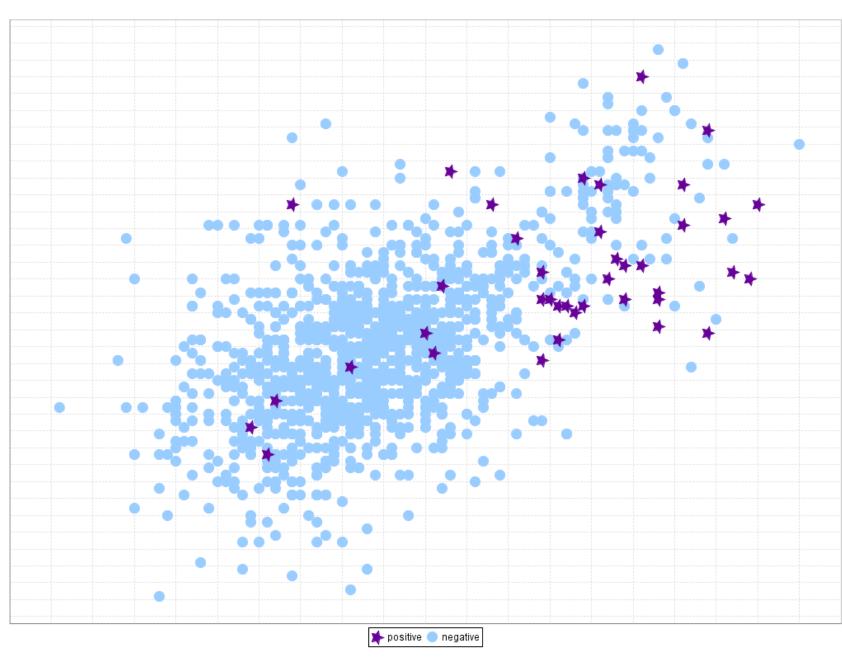
Goal: For an small $\epsilon > 0$, find a solution $\hat{\mathbf{w}}$ such that $F(\hat{\mathbf{w}}) - \min_{\mathbf{w}} F(\mathbf{w}) \le \epsilon$

• Iteration complexity of SGD for convex function: $O(1/\epsilon^2)$ $(\eta_t = 1/\sqrt{t})$



Limitations of Classical Learning Paradigm

- Slow convergence: $O(1/\epsilon^2)$ (e.g., 10^{12} iterations if $\epsilon = 10^{-6}$)
- Not sufficient for learning imbalanced data

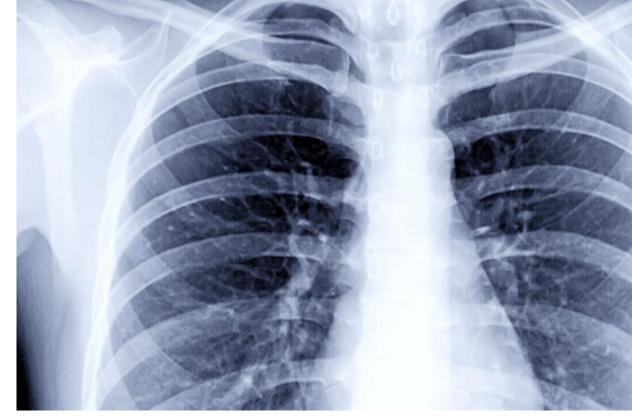


Imbalanced data

Imbalanced Data is Common

Credit Card Fraud Detection

Minimizing Classification Error Rate is not a good idea



Software Bug Detection

Medical Image Classification

Q: How to efficiently learn from imbalanced data?

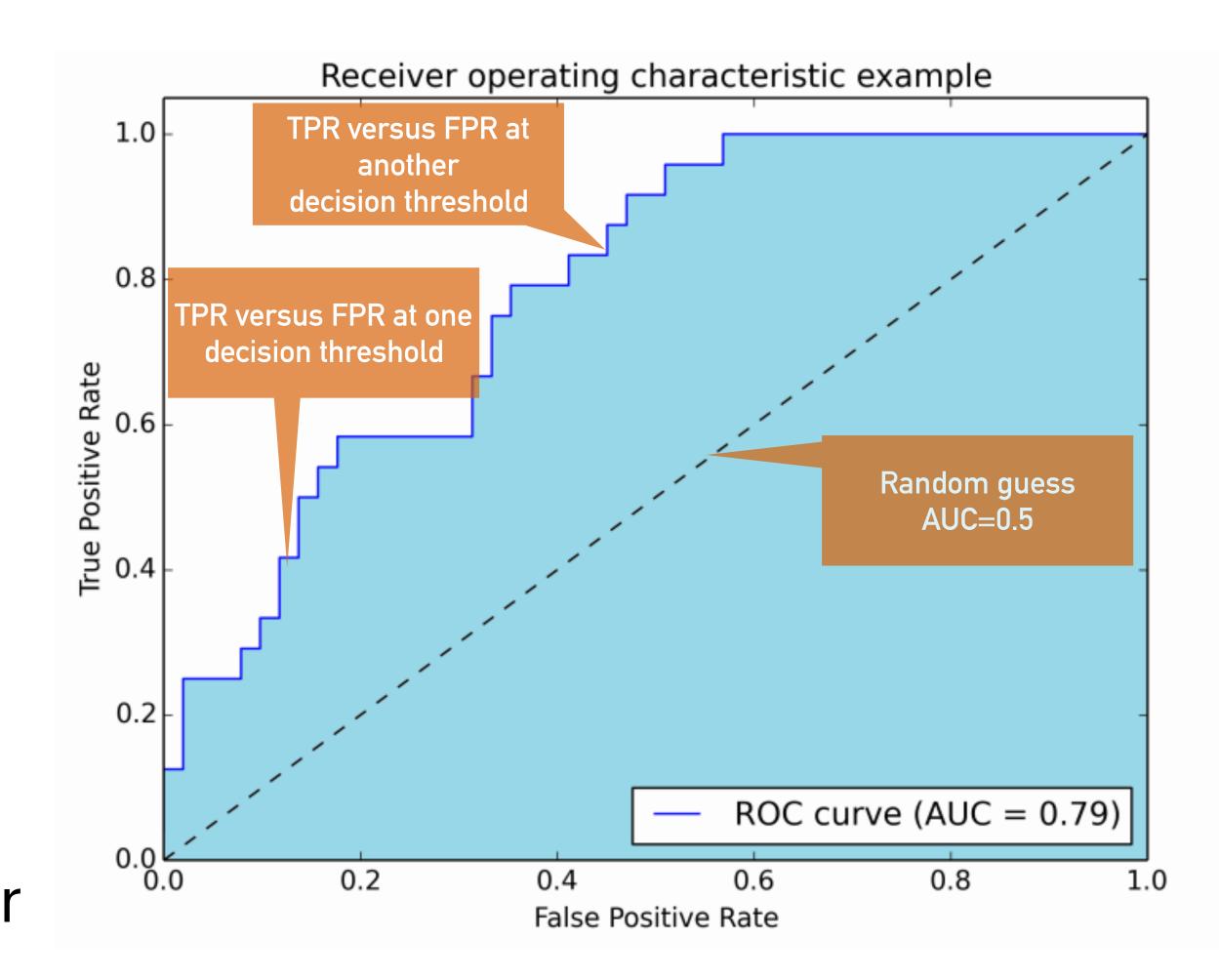
A: Fast Algorithms for AUC Maximization

Area Under the ROC Curve (AUC)

	Ground truth: Positive	Ground truth: Negative
Predict: Positive	TP	FP
Predict: Negative	FN	TN

TPR = TP/(TP+FN), FPR = FP/(FP+TN)

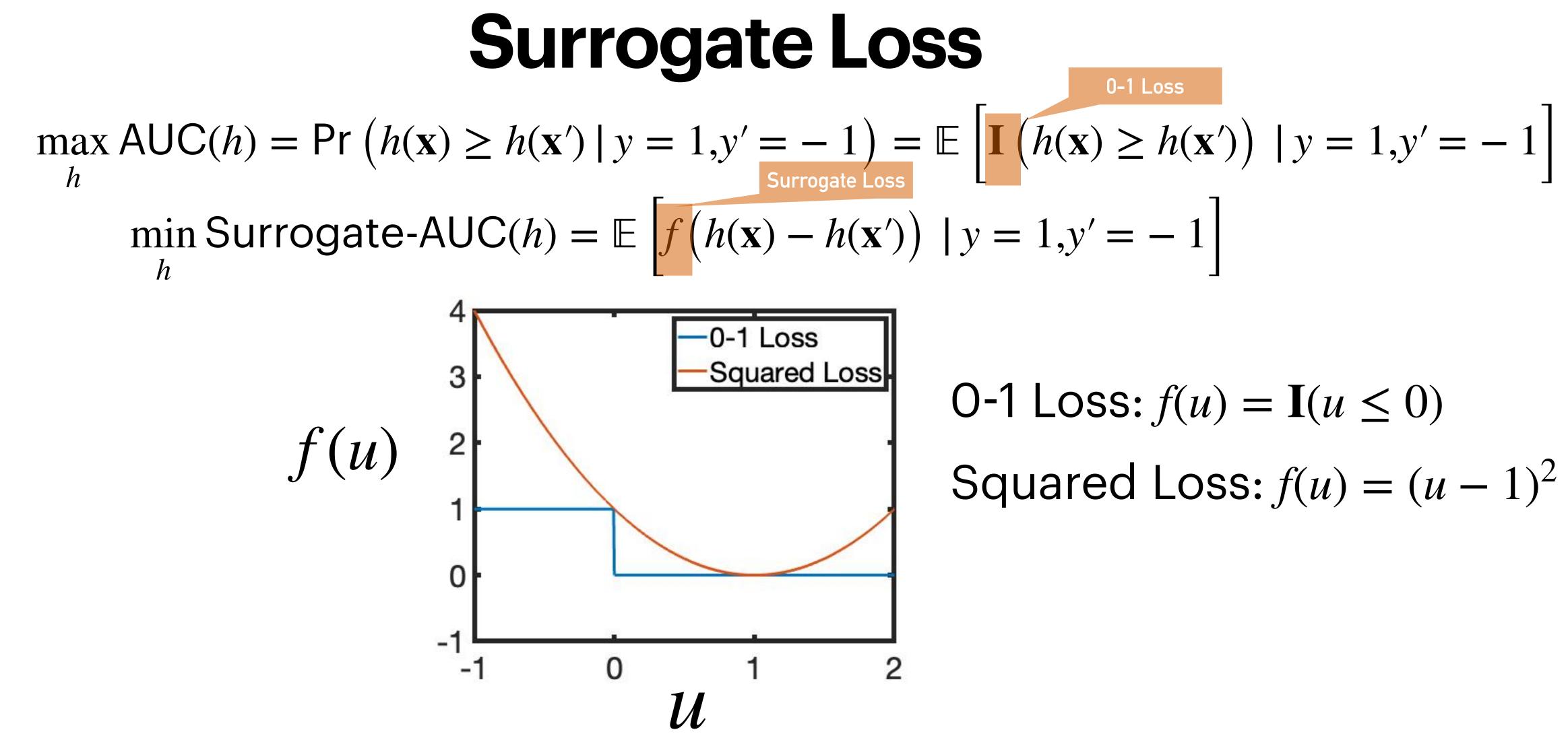
- ROC curve considers different classification thresholds
- Better measure than classification error rate



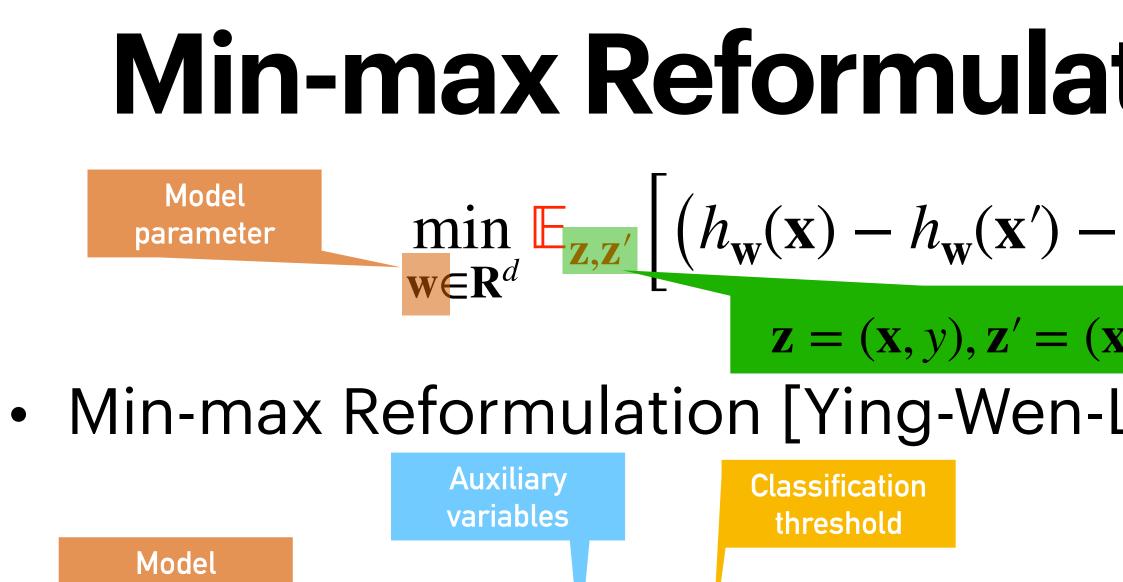
10

Probabilistic Interpretation of AUC

- $AUC(h) = Pr(h(\mathbf{x}) \ge h(\mathbf{x}') | y = 1, y' = -1)$
- Equivalent to Wilcoxon Statistics [Hanley and McNeil'82]
- h : prediction model (e.g., linear model, deep neural network)
- $(\mathbf{x}, y), (\mathbf{x}', y')$: feature-label pair



Non-decomposable over individual training data, not suitable for online learning



[Ying-Wen-Lyu'16]

parameter

• focuses on linear model: $h_{\mathbf{w}}(\mathbf{x}) =$

 $\mathbf{w} \in \mathbb{R}^{d}$, $(a,b) \in \mathbb{R}^{2}$ $\alpha \in \mathbb{R}$

m1n

- Convex-concave min-max problem
- Solve the problem by Primal-Dual Stochastic Gradient (PDSG)

Min-max Reformulation with Squared Loss

 $\mathbf{Z} = (\mathbf{X}, \mathbf{y})$

$$(-1)^2 | y = 1, y' = -1$$

$$\max_{\mathbf{T}} f(\mathbf{w}, a, b, \alpha) = \mathbb{E}_{\mathbf{z}} \left[F(\mathbf{w}, a, b, \alpha; \mathbf{z}) \right]$$

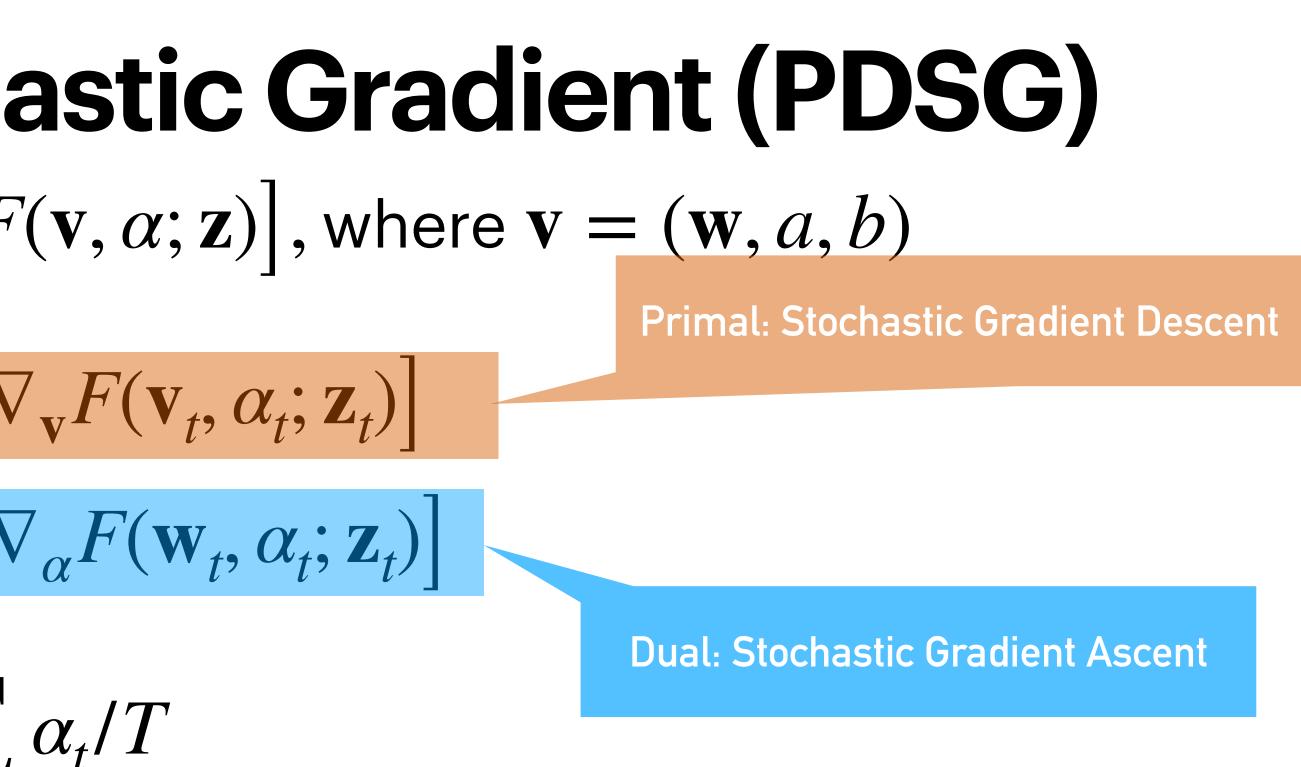
$$= \mathbf{W}^{\top} \mathbf{X}$$

Primal-Dual Stocha
Consider
$$\min_{\mathbf{v}\in\Omega_{1}} \max_{\alpha\in\Omega_{2}} f(\mathbf{v}, \alpha) = \mathbb{E}_{\mathbf{z}} \begin{bmatrix} F \\ F \end{bmatrix}$$

PDSG:

$$\begin{cases} \mathbf{v}_{t+1} = \Pi_{\Omega_{1}} \begin{bmatrix} \mathbf{v}_{t} - \eta_{t} \\ \mathbf{v}_{t+1} \end{bmatrix} \\ \alpha_{t+1} = \Pi_{\Omega_{2}} \begin{bmatrix} \alpha_{t} + \eta_{t} \\ \mathbf{v}_{t} \end{bmatrix} \\ \alpha_{t+1} = \Pi_{\Omega_{2}} \begin{bmatrix} \alpha_{t} + \eta_{t} \\ \mathbf{v}_{t} \end{bmatrix} \\ \mathbf{v} = \sum_{t=1}^{T} \mathbf{v}_{t} \\ T, \quad \hat{\alpha} = \sum_{t=1}^{T} \mathbf{v}_{t} \end{bmatrix}$$

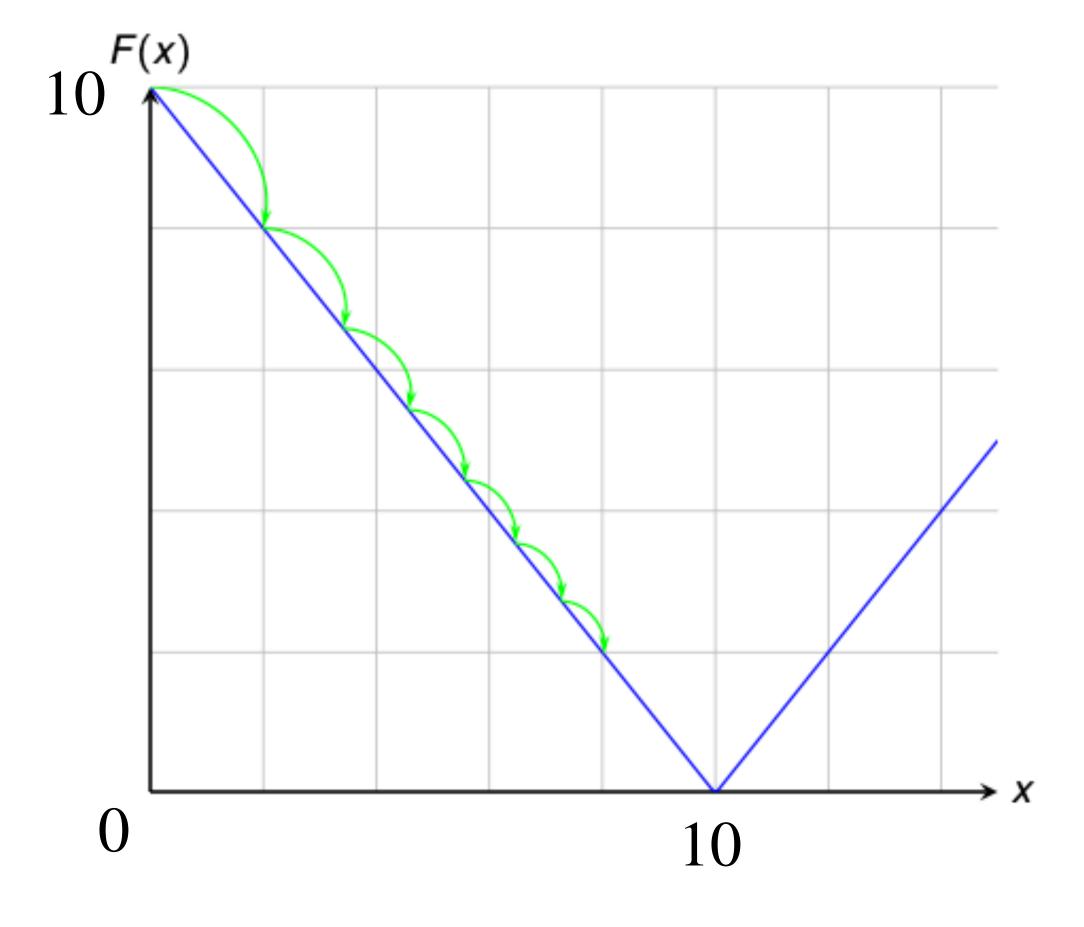
- $O(1/\epsilon^2)$ iteration complexity for convex-concave min-max problems [Nemirovski-Juditsky-Lan-Shapiro'09]



PDSG is a generalization of SGD for min-max problems (default method)

Question: How to design algorithms for optimizing AUC with lower complexity?

Why PDSG is slow?

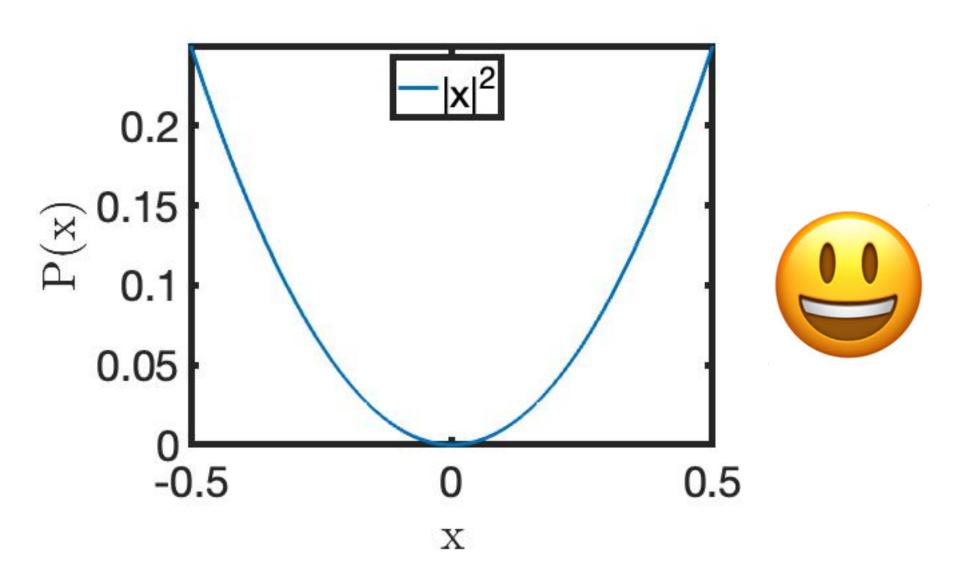


 $\min |x - 10|$

 ${\mathcal X}$



Key Observation: Quadratic Growth Condition



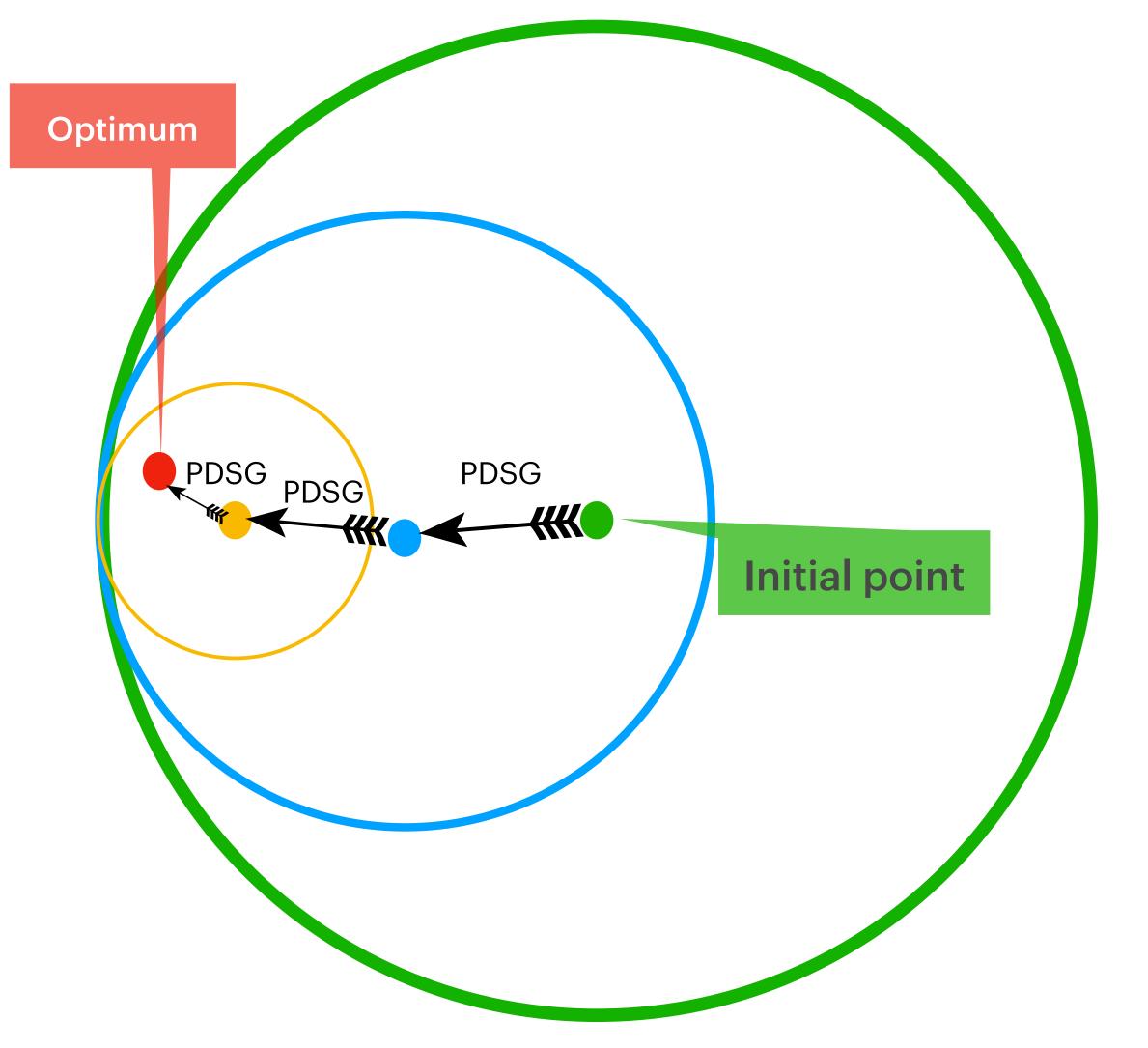
We prove that Quadratic Growth Condition (QGC) holds for $P(\mathbf{v}) = \max f(\mathbf{v}, \alpha)$: $\|\mathbf{v} - \mathbf{v}_*\| \le c(P(\mathbf{v}) - \min_{\mathbf{v} \in O} P(\mathbf{v}))^{1/2}$ **Optimal solution**

Decreasing Learning Rate

 $\alpha \in \Omega_2$ $\mathbf{v} \in \Omega_1$

Stagewise Decreasing Learning Rate

Fast Stochastic AUC Maximization [L.-Zhang-Chen-Wang-Yang, ICML 18]



Algorithm 1 FSAUC

1: Set
$$m = \lfloor \frac{1}{2} \log_2 \frac{2n}{\log_2 n} \rfloor - 1$$
, $n_0 = \lfloor n/m \rfloor$ Constrained verse of PDSG
2: for $k = 0, ..., m - 1$ do of PDSG
3: $(\widehat{\mathbf{v}}_{k+1}, \widehat{\alpha}_{k+1}) = \mathsf{PDSG}(\widehat{\mathbf{v}}_k, \widehat{\alpha}_k, R_k, D_k, n_0, \eta_k)$
4: $\eta_{k+1} = \eta_k/2$, $R_{k+1} = R_k/2$, $D_{k+1} = D_k/2$ Shrints

Algorithm 2 PDSG($\mathbf{v}_1, \alpha_1, R, D, T, \eta$)

1: for
$$t = 1, ..., T$$
 do
2: $\mathbf{v}_{t+1} = \prod_{\|\mathbf{v}-\mathbf{v}_1\| \le R} (\mathbf{v}_t - \eta \nabla_{\mathbf{v}} F(\mathbf{v}_t, \alpha_t; \mathbf{z}_t))$
projection onto a ball
3: $\alpha_{t+1} = \prod_{\|\boldsymbol{\alpha}-\boldsymbol{\alpha}_1\| \le D} (\alpha_t + \eta \nabla_{\boldsymbol{\alpha}} F(\mathbf{v}_t, \alpha_t; \mathbf{z}_t))$
projection onto a ball
4: end for
5: return $\bar{\mathbf{v}}_T = \frac{1}{m} \sum_{i=1}^{T} \mathbf{v}_i$

$$\bar{\alpha}_T = \bar{\mathbf{w}}_T^\top \left[\mathbb{E}(\mathbf{x}|y = -1) - \mathbb{E}(\mathbf{x}|y = 1) \right]$$

(closed form of α given $\bar{\mathbf{v}}_T$)

17 —

2:

3:

sion

Faster Convergence Exploiting Function Structure

$$\|\mathbf{v} - \mathbf{v}_*\| \le c(P(\mathbf{v}) - \min_{\mathbf{v} \in \Omega_1} P(\mathbf{v}))^{1/2}$$

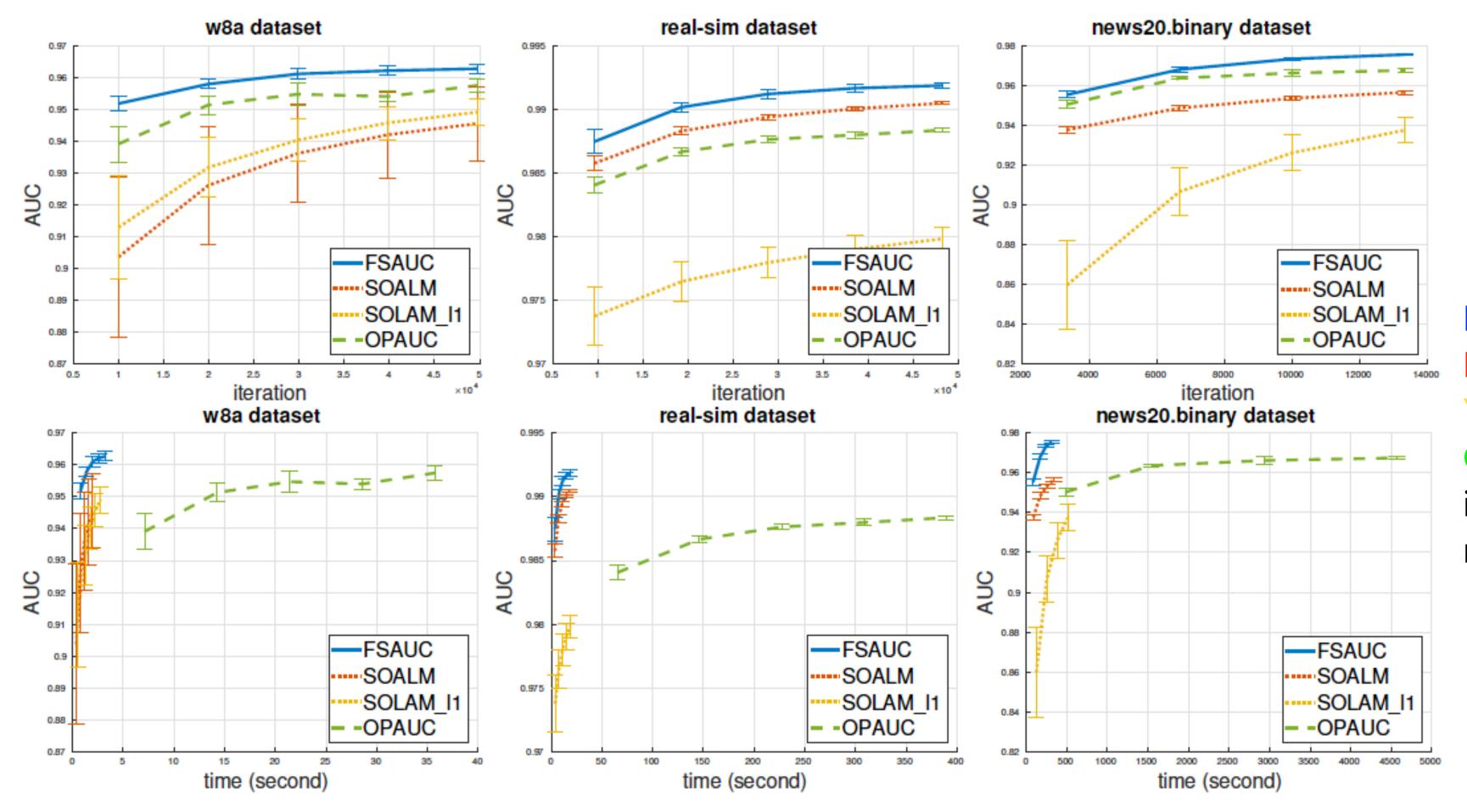
Optimal solution

Theorem [L.-Zhang-Chen-Wang-Yang, ICML'18] With high probability, $P(\hat{\mathbf{v}}_m) - \min_{\mathbf{v}} P(\mathbf{v}) \le \widetilde{O}(1/n)$ $\max AUC(\mathbf{v}) - AUC(\hat{\mathbf{v}}_m) \le \widetilde{O}(1/n)$

Improved Complexity

Recall that we prove Quadratic Growth Condition for $P(\mathbf{v}) = \max f(\mathbf{v}, \alpha)$: $\alpha \in \Omega_{2}$

$$: O(1/\epsilon^2) \Rightarrow \widetilde{O}(1/\epsilon)$$



p = 2.97%,

Very Imbalanced

p = 30.68%,

Mildly Imbalanced

Experiments

Blue: our algorithm Red: PDSG Yellow: PDSG with I1-ball constraint Green: One-pass AUC (each iteration computes covariance matrix)

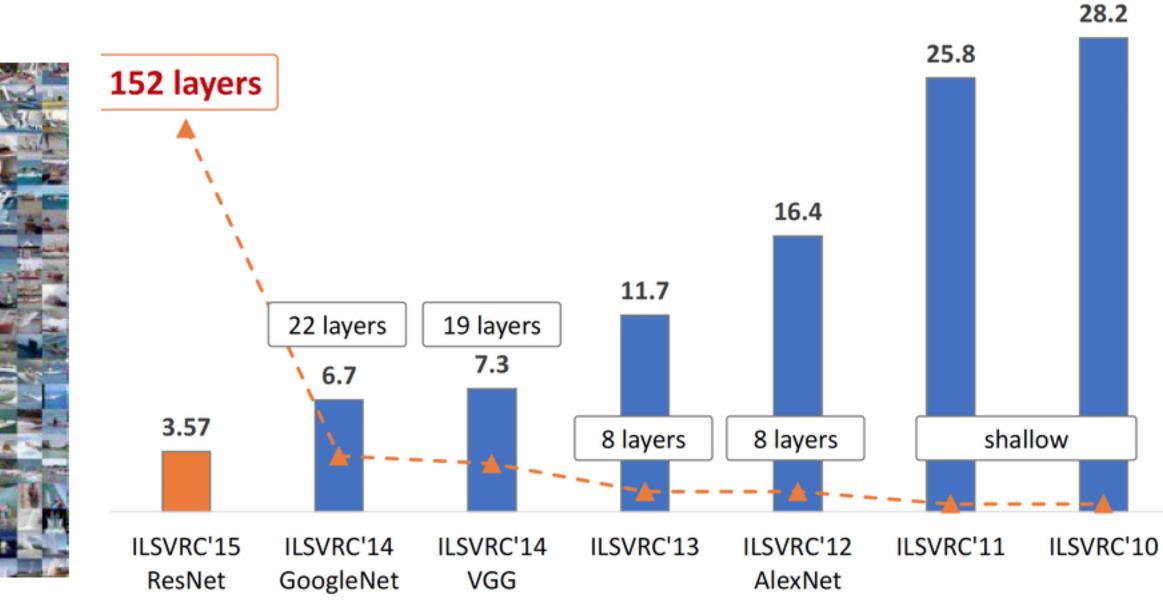
p = 50.29%

Balanced

From Linear Model to Deep Neural Networks

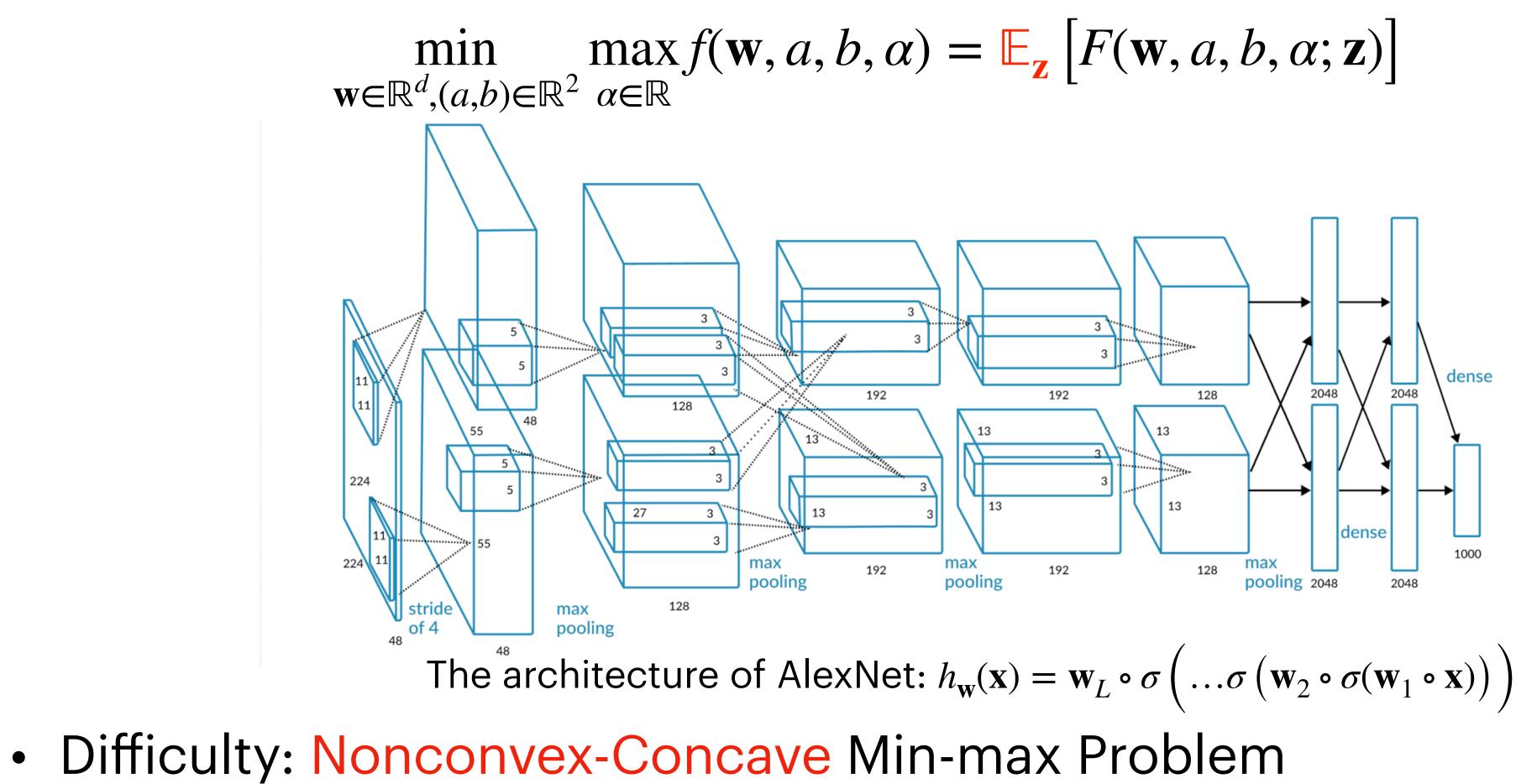
ImageNet: 1000 object classes, 1.2M training, 100k test

Question: How to maximize AUC when the predictive model is a deep neural network?



Classification Error Rates for ImageNet Competition

Difficulty of Optimizing AUC with DNN Min-max Reformulation [L.-Yuan-Ying-Yang, ICLR 20]

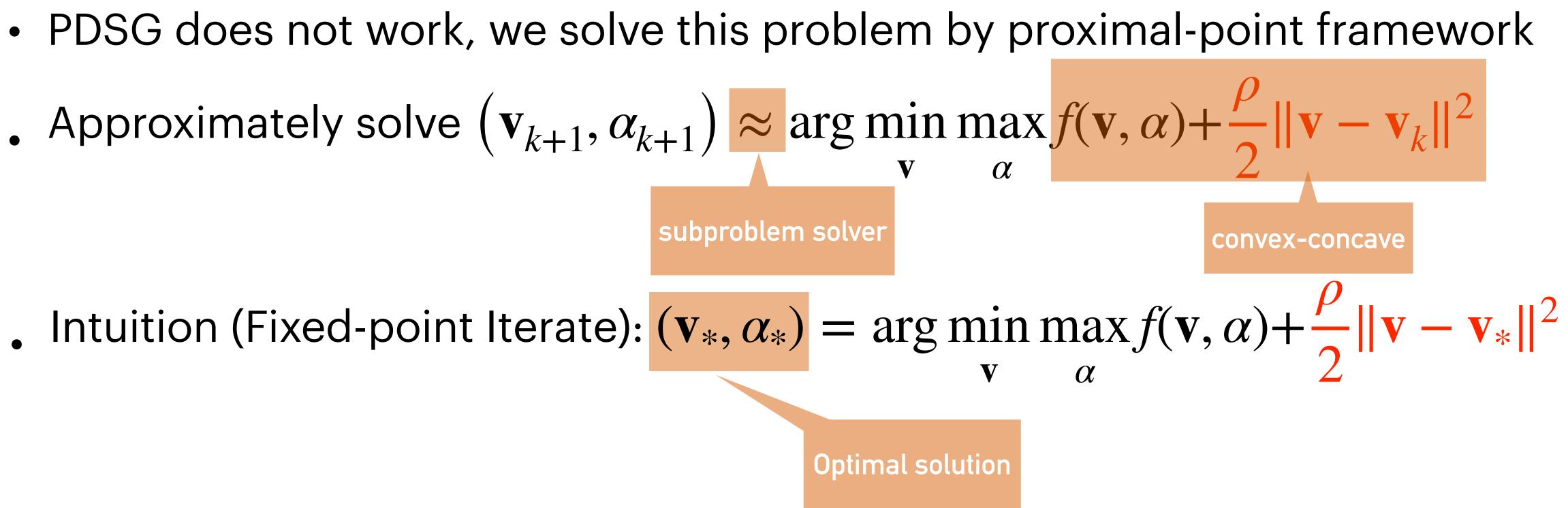


Nonconvex-Concave Min-max Optimization

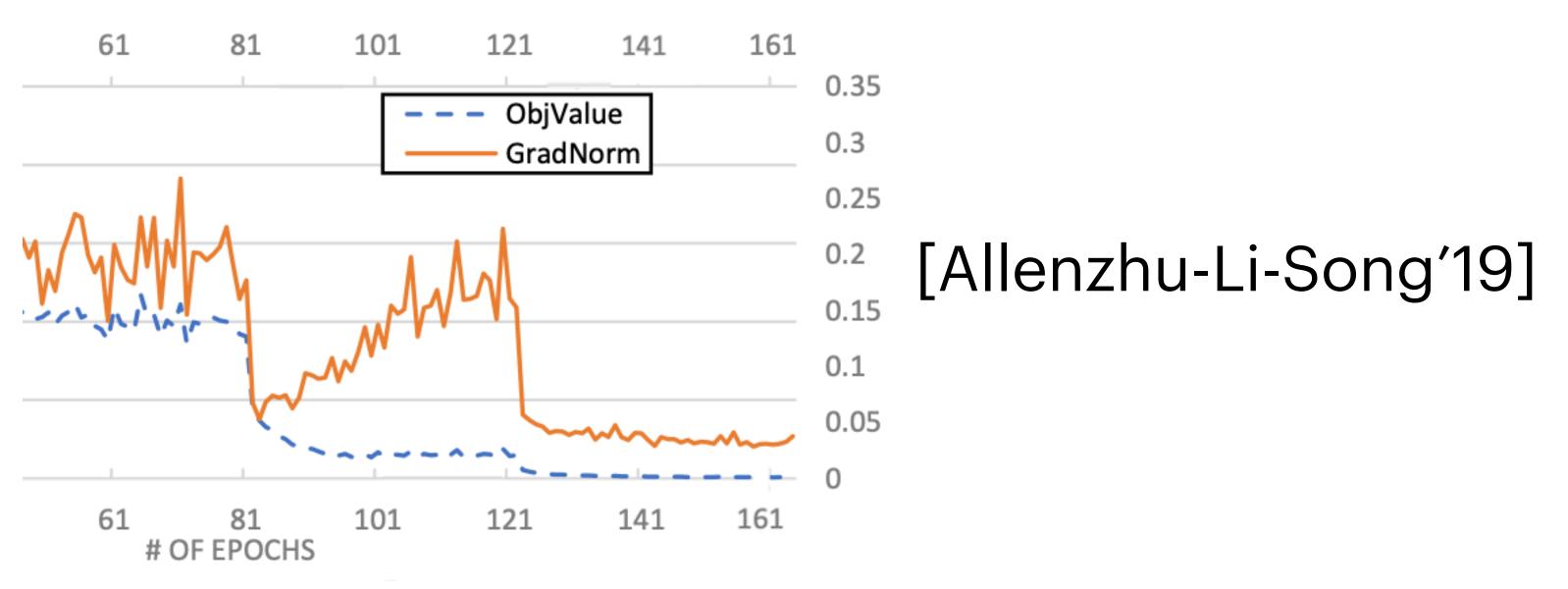
 $\min\max f(\mathbf{v}, \alpha) =$ $\mathbf{v} \in \Omega_1 \ \alpha \in \Omega_2$

- Nonconvex in **v** and concave in α

$$\mathbb{E}_{\mathbf{z}}\left[F(\mathbf{v},\alpha;\mathbf{z})\right]$$



Property of an Overparameterized NN NN has favorable property: Polyak-Lojasiewicz (PL) condition



 $\alpha \in \Omega_{2}$

 $\phi(\mathbf{w}) - \min \phi(\mathbf{w}) \leq$

 PL condition is stronger than QGC in [L.-Zhang-Chen-Wang-Yang, ICML 18], but we do not need convexity

 $\phi(\mathbf{v}) = \max f(\mathbf{v}, \alpha)$, we prove the PL condition holds [L.-Yuan-Ying-Yang, ICLR 20]:

$$\frac{1}{2\mu} \|\nabla \boldsymbol{\phi}(\mathbf{w})\|^2$$

Fast Rate under PL Condition

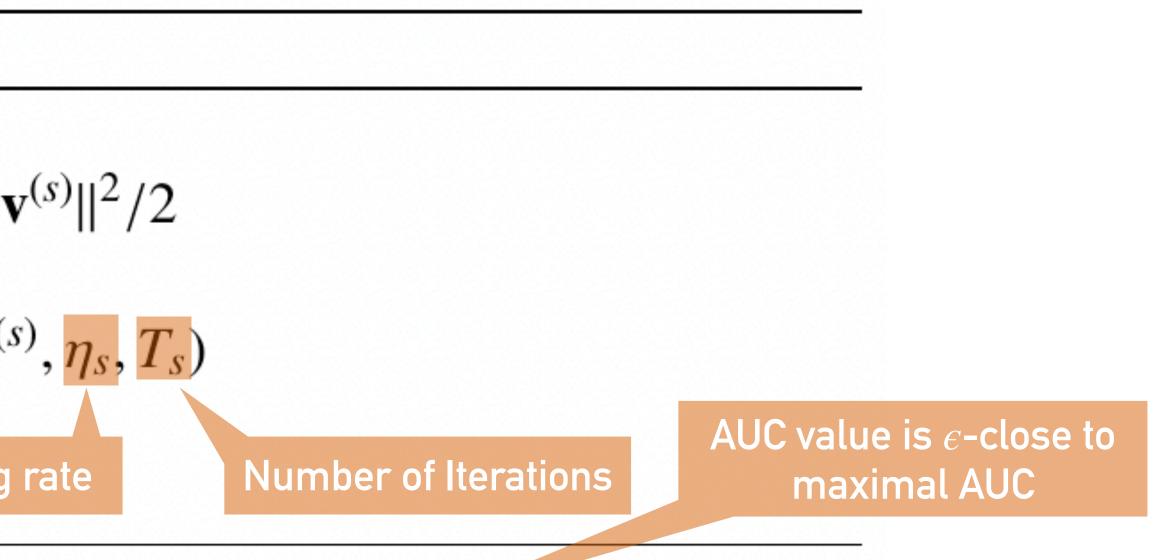
[L.-Yuan-Ying-Yang, ICLR 20]

Algorithm 2 Stagewise-PDSG-PL

- 1: for s = 1, ..., S do
- Define $f^{(s)}(\mathbf{v}, \alpha) = f(\mathbf{v}, \alpha) + \rho \|\mathbf{v} \mathbf{v}^{(s)}\|^2/2$ 2:
- $\eta_s \propto \exp(-s), T_s \propto \exp(s)$ 3:
- $(\mathbf{v}^{(s+1)}, \boldsymbol{\alpha}^{(s+1)}) = \mathsf{PDSG}(f^{(s)}, \mathbf{v}^{(s)}, \boldsymbol{\alpha}^{(s)}, \boldsymbol{\eta}_s, \boldsymbol{T}_s)$ 4:
- 5: end for
- 6: return ($v^{(S+1)}, \alpha^{(S+1)}$)

Learning rate

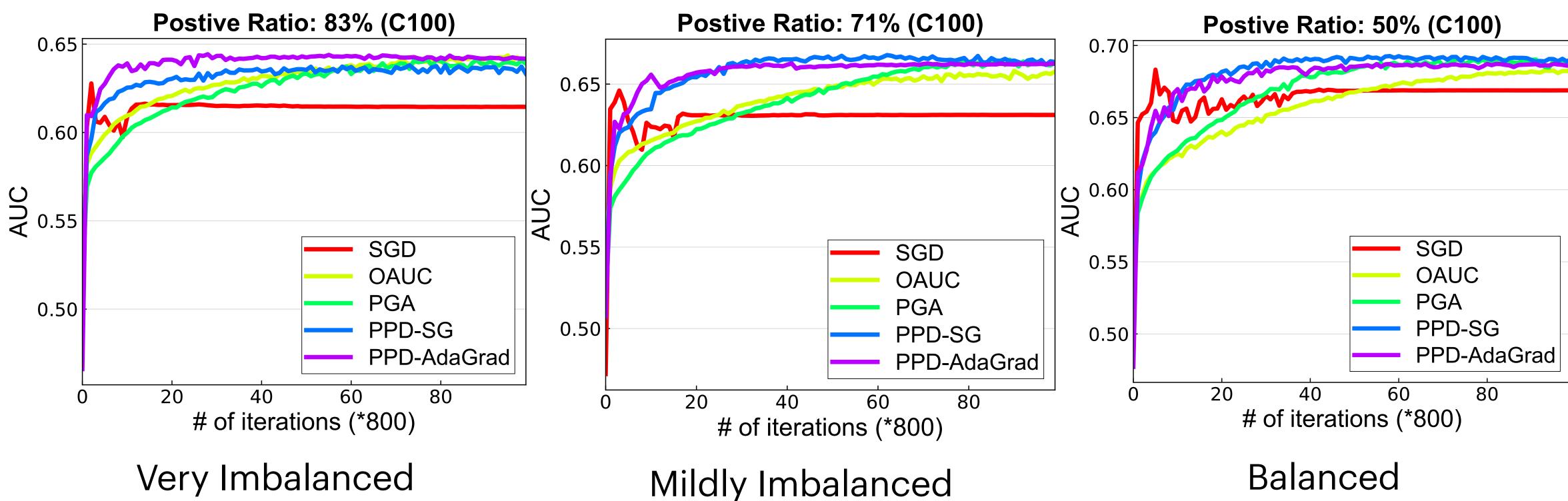
- Replace PDSG with other algorithms (e.g., AdaGrad)



• $O(1/\mu^2\epsilon)$ complexity for finding ϵ -optimal solution [L.-Yuan-Ying-Yang, ICLR 20]

• The complexity in terms of ϵ is optimal, matching lower bound [Hazan-Kale'11]

Experiments



Blue, Purple: our algorithm exploring PL condition [L.-Yuan-Ying-Yang, ICLR 20] Green: our algorithm without exploring PL condition [Rafique-L.-Lin-Yang, OSM 18] **Red:** standard SGD for optimizing cross entropy loss

Acknowledgment

- Collaborators:
 - Zaiyi Chen, Xiaoxuan Zhang, Zh Tianbao Yang

Thank you! Questions?

• Zaiyi Chen, Xiaoxuan Zhang, Zhuoning Yuan, Xiaoyu Wang, Yiming Ying,