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An Example of Spam Email Classification

y ∈ {spam, not spam}x : feature vector model: f(x)
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Risk Minimization

• : hypothesis class 

• Loss function  measures the prediction error

ℱ

ℓ( ̂y, y)

f* = arg min
f∈ℱ

R( f ) := 𝔼x,y [ℓ( f(x), y)]
Risk of model f

w* = arg min
w

𝔼x,y [ℓ( f(w; x), y)]

Prediction ̂y = f(w; x)
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Linear Model: Convex Methods

x → fw(x) = w⊤x

min
w

𝔼x,y [ℓ( fw(x), y)]
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Deep Neural Networks: Nonconvex Methods

x → fw(x) = wL ∘ σ (…σ (w2 ∘ σ(w1 ∘ x)))
min

w
𝔼x,y [ℓ( fw(x), y)]

Alexnet:
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Classical Learning Paradigm

• Stochastic Gradient Descent (SGD) [Robbins-Monro’51] 

• Sample  uniformly 

•

(xt, yt)

wt+1 = wt − ηt∂ℓ(wt, xt, yt)

min
w

𝔼x,y [ℓ( fw(x), y)]

Learning rate

Stochastic gradient

Goal: For an small , find a solution  such that 
 

ϵ > 0 ŵ
F (ŵ) − min

w
F (w) ≤ ϵ

• Iteration complexity of SGD for convex function:   O(1/ϵ2) (ηt = 1/ t)
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Solve risk minimization by stochastic gradient descent



Limitations of Classical Learning Paradigm

• Slow convergence:        (e.g., ) 

• Not sufficient for learning imbalanced data

O(1/ϵ2) 1012 iterations if ϵ = 10−6
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Imbalanced data



Imbalanced Data is Common

Credit Card Fraud Detection Software Bug Detection Medical Image Classification

Minimizing Classification Error Rate is not a good idea
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Q: How to efficiently learn from imbalanced data? 

A: Fast Algorithms for AUC Maximization 
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Area Under the ROC Curve (AUC)

• ROC curve considers different 
classification thresholds 

• Better measure than classification error 
rate

Ground truth: 
Positive

Ground truth: 
Negative

Predict: 
Positive TP FP

Predict: 
Negative FN TN

TPR versus FPR at one 
decision threshold 

TPR versus FPR at 
another 

decision threshold 

Random guess 
AUC=0.5TPR = TP/(TP+FN), FPR = FP/(FP+TN) 
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Probabilistic Interpretation of AUC

• Equivalent to Wilcoxon Statistics [Hanley and McNeil’82] 

•  

•

h : prediction model (e.g., linear model, deep neural network)

(x, y), (x′ , y′ ) : feature-label pair

AUC(h) = Pr (h(x) ≥ h(x′ ) | y = 1,y′ = − 1)
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Surrogate Loss
max

h
AUC(h) = Pr (h(x) ≥ h(x′ ) | y = 1,y′ = − 1) = 𝔼 [I (h(x) ≥ h(x′ )) | y = 1,y′ = − 1]
min

h
Surrogate-AUC(h) = 𝔼 [f (h(x) − h(x′ )) | y = 1,y′ = − 1]

u

f (u)

0-1 Loss

Surrogate Loss

0-1 Loss: f(u) = I(u ≤ 0)

Squared Loss: f(u) = (u − 1)2
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Non-decomposable over individual training data, not suitable for online learning



Min-max Reformulation with Squared Loss

• Min-max Reformulation [Ying-Wen-Lyu’16]

min
w∈Rd

𝔼z,z′ [(hw(x) − hw(x′ ) − 1)2 | y = 1,y′ = − 1]

min
w∈ℝd,(a,b)∈ℝ2

max
α∈ℝ

f(w, a, b, α) = 𝔼z [F(w, a, b, α; z)]

• [Ying-Wen-Lyu’16]  

• focuses on linear model:  

• Convex-concave min-max problem 

• Solve the problem by Primal-Dual Stochastic Gradient (PDSG)

hw(x) = w⊤x

Model 
parameter

Model 
parameter

Auxiliary 
variables

Classification 
threshold z = (x, y)
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z = (x, y), z′ = (x′ , y′ )



Primal-Dual Stochastic Gradient (PDSG)
•  

•
PDSG:     

• Return:    

• PDSG is a generalization of SGD for min-max problems (default method) 

•  iteration complexity for convex-concave min-max problems 
[Nemirovski-Juditsky-Lan-Shapiro’09]

Consider min
v∈Ω1

max
α∈Ω2

f(v, α) = 𝔼z [F(v, α; z)], where v = (w, a, b)

{
vt+1 = ΠΩ1 [vt − ηt ∇vF(vt, αt; zt)]
αt+1 = ΠΩ2 [αt + ηt ∇αF(wt, αt; zt)]

̂v =
T

∑
t=1

vt /T, ̂α =
T

∑
t=1

αt /T

O(1/ϵ2)

Primal: Stochastic Gradient Descent

Dual: Stochastic Gradient Ascent
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Question: How to design algorithms for optimizing AUC with lower complexity?



Why PDSG is slow?

Decreasing learning rate ( )ηt = 1/ t Constant Learning rate doesn’t work

0 10

10

min
x

|x − 10 |

10

10

0
Image Credit: Orabona ICML 2020 tutorial15



Key Observation: Quadratic Growth Condition

We prove that Quadratic Growth Condition (QGC) holds for : P(v) = max
α∈Ω2

f(v, α)
∥v − v*∥ ≤ c(P(v) − min

v∈Ω1

P(v))1/2

Optimal solution

Decreasing Learning Rate Stagewise Decreasing Learning Rate
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Fast Stochastic AUC Maximization
[L.-Zhang-Chen-Wang-Yang, ICML 18]

Optimum

Initial point

PDSGPDSGPDSG

Shrinking 
learning rate 
and domain

Constrained version 
of PDSG 
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∥v − v*∥ ≤ c(P(v) − min
v∈Ω1

P(v))1/2

 Faster Convergence Exploiting Function Structure

Recall that we prove Quadratic Growth Condition for : P(v) = max
α∈Ω2

f(v, α)

Theorem [L.-Zhang-Chen-Wang-Yang, ICML’18]  
With high probability,  

 

P(v̂m) − min
v

P(v) ≤ Õ (1/n)

max
v

AUC(v) − AUC(v̂m) ≤ Õ (1/n)

Õ ( ⋅ ) compresses logarithmic factors

Improved Complexity: O(1/ϵ2) ⇒ Õ (1/ϵ)

Optimal solution
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Experiments

Blue: our algorithm 
Red: PDSG  
Yellow: PDSG with l1-ball constraint 
Green: One-pass AUC (each 
iteration computes covariance 
matrix)

Very Imbalanced Mildly Imbalanced Balanced
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From Linear Model to Deep Neural Networks

Question: How to maximize AUC when the predictive model is a deep neural network?

Classification Error Rates for ImageNet CompetitionImageNet: 1000 object classes, 1.2M training, 100k test
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Difficulty of Optimizing AUC with DNN

The architecture of AlexNet: hw(x) = wL ∘ σ (…σ (w2 ∘ σ(w1 ∘ x)))
• Difficulty: Nonconvex-Concave Min-max Problem
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• Min-max Reformulation [L.-Yuan-Ying-Yang, ICLR 20]

min
w∈ℝd,(a,b)∈ℝ2

max
α∈ℝ

f(w, a, b, α) = 𝔼z [F(w, a, b, α; z)]



Nonconvex-Concave Min-max Optimization

• Nonconvex in  and concave in  

• PDSG does not work, we solve this problem by proximal-point framework 

• Approximately solve 

v α

(vk+1, αk+1) ≈ arg min
v

max
α

f(v, α)+
ρ
2

∥v − vk∥2

min
v∈Ω1

max
α∈Ω2

f(v, α) = 𝔼z [F(v, α; z)]

Optimal solution

convex-concavesubproblem solver

• Intuition (Fixed-point Iterate): (v*, α*) = arg min
v

max
α

f(v, α)+
ρ
2

∥v − v*∥2
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Property of an Overparameterized NN
• NN has favorable property: Polyak-Lojasiewicz (PL) condition

[Allenzhu-Li-Song’19]

• , we prove the PL condition holds  [L.-Yuan-Ying-Yang, ICLR 20]: ϕ(v) = max
α∈Ω2

f(v, α)

ϕ(w) − min
w

ϕ(w) ≤
1

2μ
∥∇ϕ(w)∥2
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• PL condition is stronger than QGC in [L.-Zhang-Chen-Wang-Yang, ICML 18], 

    but we do not need convexity 



• [L.-Yuan-Ying-Yang, ICLR 20]
Fast Rate under PL Condition

Number of IterationsLearning rate

•  complexity for finding -optimal solution [L.-Yuan-Ying-Yang, ICLR 20] 

• The complexity in terms of  is optimal, matching lower bound [Hazan-Kale’11] 

• Replace PDSG with other algorithms (e.g., AdaGrad)

O(1/μ2ϵ) ϵ

ϵ
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AUC value is -close to 
maximal AUC

ϵ



Experiments

Very Imbalanced Mildly Imbalanced

Blue, Purple: our algorithm exploring PL condition [L.-Yuan-Ying-Yang, ICLR 20] 
Green: our algorithm without exploring PL condition [Rafique-L.-Lin-Yang, OSM 18] 
Red: standard SGD for optimizing cross entropy loss

Balanced
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Thank you! 
Questions?
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