How to Win CheXpert Competition? Deep AUC Maximization in Medical Applications

Zhuoning Yuan

Department of Computer Science University of Iowa

June 2, 2021

CheXpert Competition

Melanoma Competition

LibAUC: A Library for AUC Optimization

Recall the Definition of AUC

AUC: probability of a positive sample ranking higher than a negative sample

$$AUC(\mathbf{w}) = \Pr(h_{\mathbf{w}}(\mathbf{x}) \ge h_{\mathbf{w}}(\mathbf{x}') | y = 1, y' = -1)$$
$$= \mathbb{E} \left[\mathbb{I}(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}') \ge 0) | y = 1, y' = -1 \right].$$

Convex Surrogate Loss *l*

$$\min_{\mathbf{w}\in\mathbb{R}^d} \mathbb{E}\big[\ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}'))\mathbb{I}_{[y=1]}\mathbb{I}_{[y'=-1]}\big].$$

Square Loss (existing studies)

$$\ell(h_{\mathbf{w}}(\mathbf{x}) - h_{\mathbf{w}}(\mathbf{x}')) = (1 - h_{\mathbf{w}}(\mathbf{x}) + h_{\mathbf{w}}(\mathbf{x}'))^{2}$$

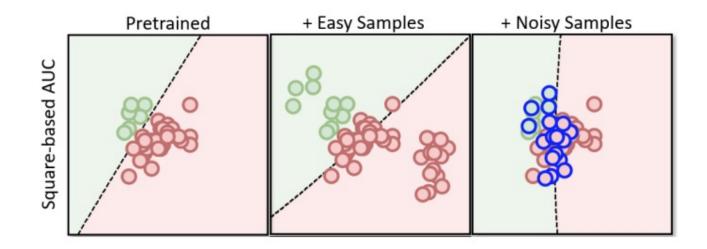
min-max form
$$\lim_{\substack{\mathbf{w} \in \mathbb{R}^{d} \\ (a,b) \in \mathbb{R}^{2}}} \int_{\alpha \in \mathbb{R}} f(\mathbf{w}, a, \bar{b}, \alpha) := \mathbb{E}_{\mathbf{z}} \left[F(\mathbf{w}, a, b, \alpha; \mathbf{z}) \right], \qquad F(\mathbf{w}, a, b, \alpha; \mathbf{z}) = (1 - p) \left(h_{\mathbf{w}}(\mathbf{x}) - a \right)^{2} \mathbb{I}_{[y=1]} \qquad (5 + p(h_{\mathbf{w}}(\mathbf{x}) - b)^{2} \mathbb{I}_{[y=-1]} - p(1 - p)\alpha^{2} + 2\alpha \left(p(1 - p) + ph_{\mathbf{w}}(\mathbf{x}) \mathbb{I}_{[y=-1]} - (1 - p)h_{\mathbf{w}}(\mathbf{x}) \mathbb{I}_{[y=1]} \right)$$

,

Toy example: Squared-based AUC Loss

A toy example:

- 2-layer NN
- imbalanced 2D data points
- Adding Easy & Noisy examples
- Performance on Square-based AUC Loss
 - Adverse Effect on Easy Data
 - Sensitive to Noisy Data



CheXpert Competition

Melanoma Competition

LibAUC: A Library for AUC Optimization

Decomposition of Square-based AUC Loss

$$\begin{aligned} \mathcal{A}(\mathbf{w}) =& \mathrm{E}[(h_{\mathbf{w}}(\mathbf{x}) - a(\mathbf{w}))^2 | y = 1] + \mathrm{E}[(h_{\mathbf{w}}(\mathbf{x}') - b(\mathbf{w}))^2 | y' = 1] \\ &+ (1 + b(\mathbf{w}) - a(\mathbf{w}))^2 \end{aligned}$$

 $a(\mathbf{w})$ ($b(\mathbf{w})$): average score of positive data (negative data)

Margin-based AUC Loss:

$$\begin{split} A_1(\mathbf{w}) =& \operatorname{E}[(h_{\mathbf{w}}(\mathbf{x}) - a(\mathbf{w}))^2 | y = 1] + \operatorname{E}[(h_{\mathbf{w}}(\mathbf{x}') - b(\mathbf{w}))^2 | y' = 1] \\ &+ (m + b(\mathbf{w}) - a(\mathbf{w}))_+^2 \end{split}$$

where $[s]_+ = \max(0, s)$, *m* is a margin parameter.

, min-max form

 $\min_{\substack{\mathbf{w}\in\mathbb{R}^d\\(a,b)\in\mathbb{R}^2}}\max_{\alpha\geq 0}\mathbb{E}_{\mathbf{z}}\left[F_M(\mathbf{w},a,b,\alpha;\mathbf{z})\right], \quad where \quad (8)$

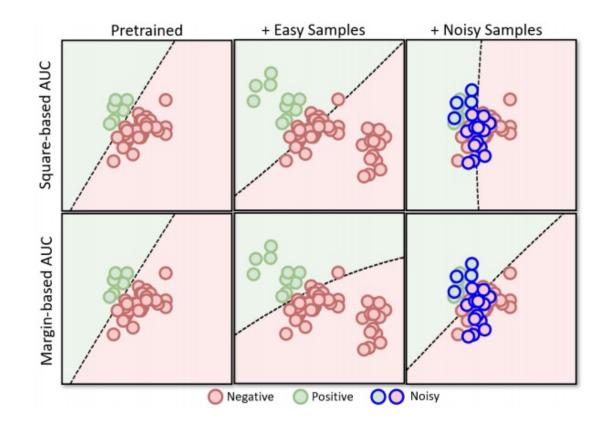
$$F_{M}(\mathbf{w}, a, b, \alpha; \mathbf{z}) = (1 - p) \left(h_{\mathbf{w}}(\mathbf{x}) - a \right)^{2} \mathbb{I}_{[y=1]}$$
(9)
+ $p(h_{\mathbf{w}}(\mathbf{x}) - b)^{2} \mathbb{I}_{[y=-1]} - p(1 - p) \alpha^{2}$

$$+ 2lpha \left(p(1-p)m + ph_{\mathbf{w}}(\mathbf{x})\mathbb{I}_{[y=-1]} - (1-p)h_{\mathbf{w}}(\mathbf{x})\mathbb{I}_{[y=1]}
ight)$$

Zhuoning Yuan (University of Iowa)

AUC-margin Loss

- Robust on Easy Data
- Robust to Noisy Data



Optimization for Solving AUCM Loss

Proximal Epoch Stochastic Gradient (PESG)

FM is objective function (AUC-margin loss)

▶ v = (w, a, b)

- $\triangleright \lambda$ is weight decay
- Stagewise training, i.e., decaying η , resetting Vref

Algorithm 1 PESG for solving AUC margin loss

Require: η, γ, λ, T

- 1: Initialize $\mathbf{v}_1, \alpha_1 \geq 0$
- 2: for t = 1, ..., T do
- 3: Compute $\nabla_{\mathbf{v}} F_{\mathrm{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t)$ and $\nabla_{\alpha} F_{\mathrm{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t)$.
- 4: Update primal variables

$$\mathbf{v}_{t+1} = \mathbf{v}_t - \eta(\nabla_{\mathbf{v}} F_{\mathrm{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t) + \gamma(\mathbf{v}_t - \mathbf{v}_{\mathrm{ref}})) - \lambda \eta \mathbf{v}_t$$

5: Update
$$\alpha_{t+1} = [\alpha_t + \eta \nabla_{\alpha} F_{\mathrm{M}}(\mathbf{v}_t, \alpha_t; \mathbf{z}_t)]_+.$$

- 6: Decrease η by a factor and update \mathbf{v}_{ref} periodically
- 7: end for

Experiments: Benchmark Datasets

C2, C10, C100, S10 (Binary)

- training set: randomly remove some positive samples to make it imbalanced
- testing set: balanced
- imbalance ratio: 1% (i.e., #positive/#all)

Table 1. Testing AUC on benchmark datasets with imratio=1%.	•
---	---

Dataset	СЕ	Focal	AUC-S	AUC-M
C2 (D)	$0.718 {\pm} 0.018$	$0.713 {\pm} 0.009$	$0.803 {\pm} 0.018$	0.809±0.016
C10 (D)	$0.698 {\pm} 0.017$	$0.700{\pm}0.007$	$0.745 {\pm} 0.010$	$0.760{\pm}0.006$
S10 (D)	$0.641 {\pm} 0.032$	$0.660{\pm}0.027$	$0.669 {\pm} 0.070$	$0.703 {\pm} 0.030$
C100 (D)	$0.588{\pm}0.011$	$0.591{\pm}0.017$	$0.607 {\pm} 0.010$	$0.614{\pm}0.016$
C2 (R)	$0.730 {\pm} 0.028$	0.724 ± 0.020	$0.748 {\pm} 0.007$	0.756±0.017
C10 (R)	$0.690 {\pm} 0.011$	$0.681 {\pm} 0.011$	$0.702{\pm}0.015$	$0.715{\pm}0.008$
S10 (R)	$0.641 {\pm} 0.021$	$0.634{\pm}0.024$	$0.645 {\pm} 0.029$	$0.659{\pm}0.020$
C100 (R)	$0.563{\pm}0.015$	$0.565 {\pm} 0.022$	$0.587 {\pm} 0.017$	0.596±0.016

CheXpert Competition

Melanoma Competition

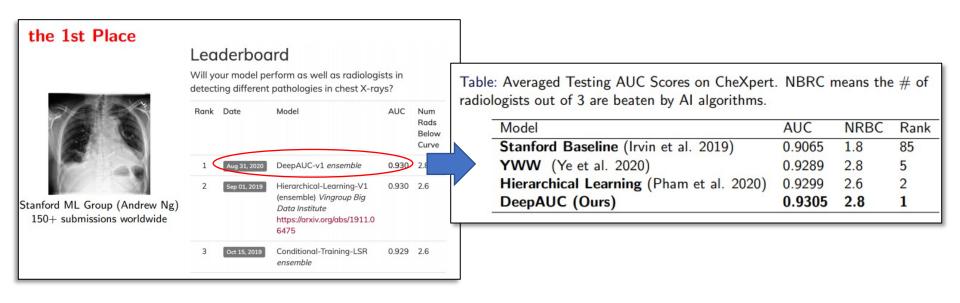
• LibAUC: A Library for AUC Optimization

Experiments: 1st Place in CheXpert Competition

CheXpert Competition

Organized by Stanford ML Group (Andrew NG)

150+ submissions worldwide, e.g., Vingroup Big Data Institute, SenseTime, JF HealthCare, HUST, SJTU, Microsoft, Georgia Tech



CheXpert Competition

CheXpert is a large-scale X-ray image datasets

- 224,316 chest radiographs of 65,240 patients
- Images are labeled for the presence of 14 observations as positive, negative, or uncertain

Pathology	Positive (%)	Uncertain (%)	Negative (%)
No Finding	16627 (8.86)	0 (0.0)	171014 (91.14)
Enlarged Cardiom.	9020 (4.81)	10148 (5.41)	168473 (89.78)
Cardiomegaly	23002 (12.26)	6597 (3.52)	158042 (84.23)
Lung Lesion	6856 (3.65)	1071 (0.57)	179714 (95.78)
Lung Opacity	92669 (49.39)	4341 (2.31)	90631 (48.3)
Edema	48905 (26.06)	11571 (6.17)	127165 (67.77)
Consolidation	12730 (6.78)	23976 (12.78)	150935 (80.44)
Pneumonia	4576 (2.44)	15658 (8.34)	167407 (89.22)
Atelectasis	29333 (15.63)	29377 (15.66)	128931 (68.71)
Pneumothorax	17313 (9.23)	2663 (1.42)	167665 (89.35)
Pleural Effusion	75696 (40.34)	9419 (5.02)	102526 (54.64)
Pleural Other	2441 (1.3)	1771 (0.94)	183429 (97.76)
Fracture	7270 (3.87)	484 (0.26)	179887 (95.87)
Support Devices	105831 (56.4)	898 (0.48)	80912 (43.12)

Table 1: The CheXpert dataset consists of 14 labeled observations. We report the number of studies which contain these observations in the training set.

CheXpert Competition

Validation Set contains 200 patients of 234 labeled images

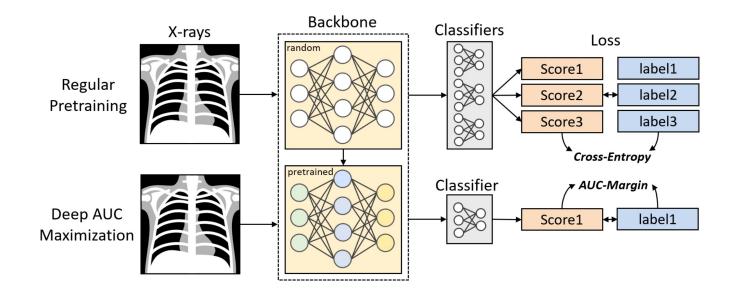
- Testing Set contains 500 patients of unknown images which are private for all participants, the leaderboard is evaluated on 5 selected classes:
 - ▶ Atelectasis (肺不张)
 - ▶ Cardiomegaly (心脏肥大)
 - ▶ Consolidation (肺实变)
 - ▶ Edema (肺水肿)
 - ▶ Pleural Effusion (胸腔积液)

CheXpert Competition: Our Approach

Two-stage learning methods

Feature Learning, i.e., multi-class training using CrossEntropy loss

AUC Optimization, i.e., finetuning using AUC optimization



CheXpert Competition: Our Approach

Model Architectures

- Family of DenseNet, e.g., DenseNet121, 169, ...
- InceptionV3

Image size

- 224x224, 320x320, 512x512
- Optimization
 - PESG (AUCM)
 - Stagewise Training

CheXpert Competition

Melanoma Competition

LibAUC: A Library for AUC Optimization

Zhuoning Yuan (University of Iowa)

Experiments: Melanoma Competition

In-competition

- Ranked 33rd out of 3314 teams
- Ensemble of 10 models
- Private AUC: 0.9436

Post-Competition

Ensemble of 2 models: EffecientNetB5 (384x384, AUCM)+ EffecientNetB6 (512x512, CE)

Private AUC: 0.9505 (better than winner's 18 ensembled models)

# ∆pub	Team Name	Notebook	Team Members	Score 🔞	Entries	Last		
1 • 880	All Data Are Ext		3 3	0.9490	116	9mo		
2 - 55	aloe		۲	0.9485	61	9mo		
3 • 262	Deloitte Analytics Spain		۵	0.9484	118	10mo		
							Dublis ALIC	
							Public AUC	Private AUC
					1 st Place		0.9586	0.9490
					2 nd Place		0.9679	0.9485
				De	DeepAUC (Ours)		0.9559	0.9505

Melanoma Competition

Melanoma is a highly-imbalanced dataset

- 33,126 training images with only 584 malignant melanoma samples (1.76% positive ratio)
- 10,982 testing images with unknown malignant melanoma samples

Task

to predict malignant or benign (1 or 0)

- binary classification
- Evaluation
 - AUCROC
 - Public AUC: 30% of testing data
 - Private AUC: 70% of testing data

O MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. MLL RIGHTS RESERVED.

Melanoma Competition: Our Approach

Two-stage learning methods

- Feature Learning, i.e., training using CrossEntropy loss
- AUC Optimization, i.e., finetuning (all layers) using AUC optimization

Model Architectures

EffecientNetB3, B5, B6, B7

Image Size

256x256, 384x384, 512x512, 768x768

Optimization

- PESG (AUCM)
- Stagewise Learning
- 5-fold Cross Validation

Melanoma Competition: Our Approach

Experiments on EffcientNetB5 with 384x384 images

- TTA (x30) Testing-time Augmentation
- Non-TTA

Table: Comparison of Testing AUC on Melanoma dataset for Optimizing EffecientNetB5. TTA (30) means that the results are averaged over 30 times of evaluation on different test-time augmented data.

	wo/	TTA	w/ TTA(30)		
Loss	Public	Private	Public	Private	
CE	0.9391	0.9285	0.9447	0.9345	
Focal	0.9412	0.9266	0.9424	0.9303	
AUC-S	0.9482	0.9332	0.9502	0.9364	
AUC-M	0.9497	0.9357	0.9503	0.9393	

Other Medical Datasets

DDSM: classification of mammogram for breast cancer screening

imratio=13%

DenseNet121

 PCAM: classification of microscopic images for identifying tumor tissue

imratio=1%

DenseNet121

Table 5. Testing AUC of two medical datasets on DenseNet121.

Data (imratio)	CE	Focal	AUC-S	AUC-M
DDSM+ (13%)	0.9392	0.9495	0.9469	0.9544
PatchCamelyon (1%)	0.8394	0.8556	0.8703	0.8896

CheXpert Competition

Melanoma Competition

LibAUC: A Library for AUC Optimization

Easy Installation

Easy to install and integrate AUC training pipeline with popular deep learning frameworks like **PyTorch** and **TensorFlow**

Large-scale Learning

Robust strategies to handle large-scale optimization on various types of data and make the optimization smoothly

Distributed Training

Support for various distributed learning methods that accelerate training efficiency and secure data privacy

ML Benchmarks

LibAUC provides a collection of imbalanced classification benchmarks on various applications with easy-to-use input pipeline

LibAUC: A ML Library for AUC Optimization

AUROC optimization

Robust Deep AUC optimization

Federated Learning

AUPRC optimization

New!

https://libauc.org/

LibAUC: Demo

https://github.com/yzhuoning/LibAUC

```
Get started with python examples
Quickstart for beginners
 >>> # import library
 >>> from libauc.losses import AUCMLoss
 >>> from libauc.optimizers import PESG
 >>> ...
 >>> #define loss
 >>> model = model.cuda()
 >>> Loss = AUCMLoss()
 >>> optimizer = PESG(imratio=0.1)
 >>> ...
 >>> #training
 >>> model.train()
 >>> for data, targets in trainloader:
 >>>
         data, targets = data.cuda(), targets.cuda()
         preds = model(data)
         loss = Loss(preds, targets)
         optimizer.zero grad()
         loss.backward(retain graph=True)
         optimizer.step()
 >>> ...
 >>> #restart stage
 >>> optimizer.update regularizer()
 >>> ...
 >>> #evaluation
 >>> model.eval()
 >>> for data, targets in testloader:
         data, targets = data.cuda(), targets.cuda()
         preds = model(data)
```

Learn More

MIT AI Cures Open Challenge for COVID-19

- to predict a target compound's property from its molecular structure
- Collaboration with Prof. Shuiwang Ji's group (TAMU)

Our library (LibAUC) helped the team to achieve

1st place in terms of both AUROC and AUPRC

Specifically,

- AUROC improved from 0.925 to 0.957 (+3%!)
- AUPRC improved from 0.677 to 0.729 (+5%!)

Rank ¢	Model 🗢	Author 🗢	Submissions \$	10-fold CV ROC-AUC ♀	10-fold CV PRC-AUC ♀	Test ROC- AUC 🗢	Test PRC- AUC \$
1		DIVE@TAMU	10			0.957	0.729
2	MolecularG	AIDrug@PA	9			0.7	0.725
З		AGL Team	20			0.675	0.702
4		phucdoitoan@Fujitsu	14	0.898 +/- 0.113	0.508 +/- 0.253	0.867	0.694
5	GB	BI	6			0.698	0.67
6	Chemprop ++	AICures@MIT	4			0.877	0.662

Acknowledgements

• Collaborators:

Zhishuai Guo, Qi Qi, Yan Yan(WSU), Milan Sonka, Shuiwang Ji (TAMU)

Supervisor:

Tianbao Yang

Thank You!

Zhuoning Yuan (University of Iowa)

Reference

- Advanced Graph and Sequence Neural Networks for Molecular Property Prediction and Drug Discovery
- CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
- Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification
- Stochastic Optimization of Area Under Precision-Recall Curve for Deep Learning with Provable Convergence
- Fast objective and duality gap convergence for non-convex strongly-concave min-max problems
- A patient-centric dataset of images and metadata for identifying melanomas using clinical context
- Stochastic AUC maximization with deep neural networks