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Recovering 3D human motion from sensor data

Human motion capture (MoCap)

Sensor data Skeleton Template Detailed surface



Applications

Source: www.motionshadow.com

Telepresence

Movie

Sports

HCI

Source: Microsoft holoportationSource: ShotTracker

Source: Microsoft Kinect



Existing MoCap systems

Optical MoCap systems (e.g. Vicon) Depth sensors (e.g. Holoportation)

• Need body markers
• Special hardware

• Limited sensing range
• Constrained environments



How to make MoCap systems more widely applicable?

Making MoCap more practical

Existing systems
• Expensive & special hardware
• Need markers
• Constrained environments

More practical:
• Few RGB cameras
• No markers
• Unconstrained environments



In this talk: MoCap from RGB videos

Multi-view MoCap Single-view MoCap

MoCap from Internet videos Novel view synthesis



Part I: Multi-view MoCap



How to get rid of markers?

Multi-view markerless MoCap



Get rid of markers by using a keypoint detector

Multi-view markerless MoCap

Harvesting Multiple Views for Marker-less 3D Human Pose Annotations. CVPR 2017

Why it works?

If projection is on the edge:

�1 = �2 ) orthogonality;

If �Y is small:

�1 = �2 = 0 ) sparsity.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.

The convex geometry of linear inverse problems.

Foundations of Computational Mathematics, 12(6):805–849, 2012.

Xiaowei Zhou et al. (UPenn) 3D Shape Etimation



How to address crowd scene?
• Need to solve correspondences 

across views

• Challenges: 
- large viewpoint change
- humans with similar appearance

Key ideas for multi-view matching:
• Geometric constraints (epipolar geometry)

• Cycle consistency constraints

Multi-view markerless MoCap

Fast and Robust Multi-Person 3D Pose Estimation from Multiple Views. CVPR 2019.

Why it works?

If projection is on the edge:

�1 = �2 ) orthogonality;

If �Y is small:

�1 = �2 = 0 ) sparsity.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.

The convex geometry of linear inverse problems.

Foundations of Computational Mathematics, 12(6):805–849, 2012.

Xiaowei Zhou et al. (UPenn) 3D Shape Etimation



Real-time markerless MoCap system

Multi-view markerless MoCap



Part II: Single-view MoCap



Can we get rid of multiple cameras?

Single-view pose estimation
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Valse2020年度进展报告：https://www.bilibili.com/video/BV1QA411Y7SD



Single-view pose estimation

Sparse representation [CVPR’16] Volumetric representation [CVPR’17]

Multiple Views [CVPR’17] Ordinal Depth [CVPR’18]

SMPL model [CVPR’18]

Different
representations

Weak 
supervisions

Mirror symmetry

Main challenge: how to address the lack of 3D training data?



Reconstructing 3D pose estimation from mirrored human images
• Provide an additional virtual view

• Observe unseen part of the person

Single-view pose estimation

Reconstructing 3D Human Pose by Watching Humans in the Mirror. Under review.

Why it works?

If projection is on the edge:

�1 = �2 ) orthogonality;

If �Y is small:

�1 = �2 = 0 ) sparsity.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.

The convex geometry of linear inverse problems.

Foundations of Computational Mathematics, 12(6):805–849, 2012.

Xiaowei Zhou et al. (UPenn) 3D Shape Etimation



Learning 3D pose estimation from mirrored human images

Single-view pose estimation

Estimate the mirror geometry 
using vanishing points 

Optimize 3D poses with
mirror symmetry constraints



Single-view pose estimation



VIBE, CVPR20 Ours

Single-view pose estimation



Our Mirrored-Human Dataset

Single-view pose estimation



Mirrored-Human Dataset

Single-view pose estimation



Single-view pose estimation

Train existing single-view methods on Mirrored-Human

MeshNet MeshNet trained on 
Mirrored-Human
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Methods
3DPW H3.6M

MPJPE # PA-MPJPE # MPJPE # PA-MPJPE #
HMR [19] - 81.3 88.0 56.8
HMMR [20] - 72.6 - 56.9
Arnab. [3] - 72.2 77.8 54.3
CMR [23] - 70.2 - 50.1
SPIN [22] 98.2* 59.2 62.3* 41.1
MeshNet [33] 93.2 58.6 55.7 41.7
Baseline 90.0 57.5 54.7 41.7
[33]+MiHu 85.1 54.8 53.6 41.0

Table 3. Results on 3DPW and H3.6M datasets. ‘MiHu’ is our
Mirrored-Human dataset. ‘Baseline’ means training MeshNet [33]
with our images and the 3D annotations are from SMPLify-X [38].
*MPJPE of [22] is obtained by evaluating their released model.

5. Learning with Mirrored-Human dataset
5.1. Mirrored-Human

Based on our framework, a large-scale Internet dataset
can be built for the training of single-view tasks. The avail-
able 3D single-person training sets [16, 29] lack the variety
of both appearances and poses, making the training easy to
overfit. For multi-person 3D tasks, collecting data is more
difficult . Therefore, previous methods exploit MuCo [31],
a pseudo multi-person dataset composited from MPI-INF-
3DHP [29] by masks, or JTA [10], a synthetic dataset. The
gap between these datasets and the real scene may limit the
performance of learning-based methods.

To solve these problems, we contribute a large-scale In-
ternet dataset named Mirrored-Human with our framework.
Specifically, we collect a large number of videos in which
we can see the person and the person’s image through a mir-
ror from the Internet. Actions cover dancing, fitness, mirror
installation, swing practice, etc. Fig. 7 demonstrates both
the appearance and pose diversity of our raw data. Table 2
shows a thorough comparison between our dataset and rel-
evant datasets. Note that we annotate the required 2D key-
points and vanishing points.

5.2. Single-person mesh recovery
For this task, we choose MeshNet [33], a state-of-the-art

method for single-view 3D pose esimation. Two datasets
are used for evaluation. H3.6M [16] is an indoor bench-
mark with 3D annotations. 3DPW [50] is an outdoor
benchmark to test the generalization ability and only its
defined test set is used. Following standard protocols, we
report both MPJPE and PA-MPJPE. We also test the base-
line method that uses the state-of-the-art optimization-based
method SMPLify-X [38] to generate pseudo ground-truth to
train the same network. Table 3 shows that with our dataset,
the performance of MeshNet can be improved significantly,
especially in the 3DPW dataset, in which no training data
of 3DPW is used. We also perform better than the baseline,
indicating that our framework is more accurate than [38].

Methods AP25
root " PCKrel " PCKabs "

TD

LCRNet [42] - 53.8 -
LCRNet++ [43] - 70.6 -
Dabral. [8] - 71.3 -
PandaNet [4] - 72.0 -
HMOR [25] - 82.0 43.8
Moon. [32] 31.0 81.8 31.5
Moon. [32]+MiHu 42.2 82.3 43.0

BU

Mehta. [31] - 65.0 -
Xnect [30] - 70.4 -
SMAP [60] 37.3 73.5 35.4
SMAP [60]+MiHu 42.3 74.1 38.0

Table 4. Results on the MuPoTS-3D dataset. The numbers are
calculated for all people. ‘MiHu’ is our Mirrored-Human dataset.
‘TD’ and ‘BU’ mean ‘top-down’ and ‘bottom-up’, respectively.

5.3. Multi-person 3D pose estimation.
For this task, previous methods fall into top-down and

bottom-up two categories. Top-down methods detect hu-
man first and then estimates estimate keypoints with a
single-person pose estimator. Bottom-up methods localize
all keypoints in the image first and then group them into
people. We choose the top-down method [32] and the state-
of-the-art bottom-up method [60].

The MuPoTS-3D [31] dataset is used for evaluation.
Following previous methods [32, 60], AP25

root, PCKrel and
PCKabs are measured. AP25

root, is the average precision
of 3D human root location, which treats the root’s predic-
tion as correct if it lies within 25cm from the ground-truth.
PCKrel is the percentage of correct keypoints after root
alignment. A keypoint is correct if the distance between
the prediction and the ground-truth is smaller than 15cm.
PCKabs has almost the same definition as PCKrel but with-
out the root alignment and it measures the absolute pose
accuracy. Note that AP is calculated only for the root, and
PCK is for all keypoints.

It can be observed from Table 4 that with our dataset,
AP25

root and PCKabs are improved significantly compared
with [32]. For bottom-up methods, we also improve the
performance of the framework [60] apparently.

6. Conclusion
In this paper, we present an optimization-based frame-

work that leverages the mirror reflection to reconstruct
3D human pose. We collect a large-scale Internet dataset
named Mirrored-Human with our reconstructed 3D poses as
pseudo ground-truth and show that training on this dataset
can enhance the performance of existing 3D human pose
estimators. Our work opens many new directions for future
research. We plan to extend the method to multiple mirrors,
multiple people, multiple frames and more detailed recon-
struction of shape and apperance.

7

Meshnet: Image-to-pixel prediction network for accurate 3d human pose and mesh estimation from a single rgb image, ECCV2020 



Multi-person pose estimation

How to estimate 3D poses of multiple people from a single image?

CVPR 2020 ECCV 2020

Coherent Reconstruction of Multiple Humans from a Single Image. CVPR 2020.

SMAP: Single-Shot Multi-Person Absolute 3D Pose Estimation. ECCV 2020.

Why it works?

If projection is on the edge:

�1 = �2 ) orthogonality;

If �Y is small:

�1 = �2 = 0 ) sparsity.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.

The convex geometry of linear inverse problems.

Foundations of Computational Mathematics, 12(6):805–849, 2012.

Xiaowei Zhou et al. (UPenn) 3D Shape Etimation



Part III: MoCap from Internet videos



Though single-view estimation is good, it is NOT accurate enough because of

depth ambiguity & self-occlusion

MoCap from Internet videos



MoCap from Internet videos

Motion Capture from Internet Videos. ECCV 2020.

Why it works?

If projection is on the edge:

�1 = �2 ) orthogonality;

If �Y is small:

�1 = �2 = 0 ) sparsity.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.

The convex geometry of linear inverse problems.

Foundations of Computational Mathematics, 12(6):805–849, 2012.

Xiaowei Zhou et al. (UPenn) 3D Shape Etimation



New challenges:
• Videos are unsynchronized

• Camera parameters are unknown

• Motions are not exactly the same

MoCap from Internet videos

All previous multi-view reconstruction 
methods are inapplicable



Proposed approach
• Joint optimization of synchronizaiton, camera parameters and human motion parameters

• Model motion variation among videos by low-rank approximation

MoCap from Internet videos

Reconstruction

Pose 
Initialization

... ... ... ......

...

...

...

...

...

Input videos 3D poses Synchronized videos

Synchronization

Iterative
optimization

Recovered cameras and motion

time

videos



MoCap from Internet videos



单目方法 我们的方法

MoCap from Internet videos



MoCap from Internet videos



Part IV: Novel view synthesis for dynamic humans



Free-viewpoint video (bullet time):

Novel view synthesis



Traidtional methods

Novel view synthesis

Image-based rendering Model-based rendering

Relying on reconstruction quality
Complicated hardware, constrained environments

Requiring dense camera array
Limited viewpoint range



Can we generate free-viewpoint video using few RGB cameras?

Novel view synthesis

4-view video Free-view video (bullet time)



Recent trend: neural radiance fields (Nerf)

Novel view synthesis

Pipeline
Images ImagesModel

Modeling Rendering

Radiance Field

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis , ECCV 2020


Efficient rendering
Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.



But it is ill-posed to learn the radiance fields from very sparse input views

Novel view synthesis

Four input views Novel view synthesis by NeRF

Key idea: Integrate observations across video frames



Suppose the radiance field is decoded from a set of structured latent codes

Novel view synthesis

Neural Body: Implicit Neural Representations with Structured Latent Codes 
for Novel View Synthesis of Dynamic Humans. Under review.

Why it works?

If projection is on the edge:

�1 = �2 ) orthogonality;

If �Y is small:

�1 = �2 = 0 ) sparsity.

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky.

The convex geometry of linear inverse problems.

Foundations of Computational Mathematics, 12(6):805–849, 2012.

Xiaowei Zhou et al. (UPenn) 3D Shape Etimation



Novel view synthesis

4-view video NeRF [2] Neural Volumes [1] OURS

[1] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
[2] Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.



Novel view synthesis

[3] Saito, Shunsuke, et al. PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization. In CVPR, 2020.

PIFuHD [3] OURS PIFuHD [3] OURS



Novel view synthesis from a monocular video

Novel view synthesis

[1] Alldieck, Thiemo, et al.   Video based reconstruction of 3d people models. In CVPR, 2018

People-Snapshot [1] OURSInput video



Reconstruction results

Novel view synthesis

[1] Alldieck, Thiemo, et al.   Video based reconstruction of 3d people models. In CVPR, 2018

People-Snapshot [1] OURSInput video



Novel view synthesis

Free-viewpoint video from only 4 cameras



What makes it possible?
• More power tools

- Deep learning
- New representation
- Differentiable rendering

• More 3D data …

More challenges:

Conclusion

Reconstruction from historical data?

Low-cost and easy-to-use capture systems

Large-scale & crowd scene
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