

Human Motion Capture from RGB Videos

別 浙江大学CAD8

浙江大学CAD&CG国家重点实验室

Human motion capture (MoCap)

Recovering 3D human motion from sensor data

Sensor data

Skeleton

Template

Detailed surface

Source: Microsoft Kinect

Source: ShotTracker

Applications

Source: www.motionshadow.com

Source: Microsoft holoportation

Existing MoCap systems

Optical MoCap systems (e.g.Vicon)

- Need body markers
- Special hardware

Depth sensors (e.g. Holoportation)

- Limited sensing range
- Constrained environments

Making MoCap more practical

How to make MoCap systems more widely applicable?

Existing systems

- Expensive & special hardware
- Need markers
- Constrained environments

More practical:

- Few RGB cameras
- No markers
- Unconstrained environments

In this talk: MoCap from RGB videos

MoCap from Internet videos

Single-view MoCap

Novel view synthesis

Part I: Multi-view MoCap

How to get rid of markers?

Get rid of markers by using a keypoint detector

Harvesting Multiple Views for Marker-less 3D Human Pose Annotations. CVPR 2017

How to address crowd scene?

- Need to solve correspondences across views
- Challenges:
 - large viewpoint change
 - humans with similar appearance

Key ideas for multi-view matching:

- Geometric constraints (epipolar geometry)
- Cycle consistency constraints

Fast and Robust Multi-Person 3D Pose Estimation from Multiple Views. CVPR 2019.

Real-time markerless MoCap system

Part II: Single-view MoCap

Can we get rid of multiple cameras?

Single-view pose estimation

Valse2020年度进展报告:https://www.bilibili.com/video/BVIQA4IIY7SD

Sparse representation [CVPR'16]

Different representations

Multiple Views [CVPR'17]

Weak supervisions

Main challenge: how to address the lack of 3D training data?

Single-view pose estimation

Volumetric representation [CVPR'17]

SMPL model [CVPR'18]

Ordinal Depth [CVPR'18]

Z(left knee) > Z(right knee) Z(right elbow) > Z(right wrist) Z(left shoulder) < Z(right shoulder) Z(right knee) < Z(left hip) Z(left wrist) = Z(left elbow) Z(head) > Z(right ankle) Z(right hip) = Z(left hip)Z(right ankle) < Z(neck) Z(left wrist) < Z(left ankle)

Mirror symmetry

Reconstructing 3D pose estimation from mirrored human images

- Provide an additional virtual view \bullet
- Observe unseen part of the person \bullet

Single-view pose estimation

Reconstructing 3D Human Pose by Watching Humans in the Mirror. Under review.

Single-view pose estimation

Learning 3D pose estimation from mirrored human images

Optimize 3D poses with mirror symmetry constraints

Estimate the mirror geometry using vanishing points

Single-view pose estimation

Single-view pose estimation

VIBE, CVPR20

Ours

Our Mirrored-Human Dataset

Single-view pose estimation

Mirrored-Human Dataset

Single-view pose estimation

Train existing single-view methods on Mirrored-Human

MeshNet

MeshNet trained on Mirrored-Human

Meshnet: Image-to-pixel prediction network for accurate 3d human pose and mesh estimation from a single rgb image, ECCV2020

	3DPW		H3.6M	
Methods	$MPJPE \downarrow$	PA-MPJPE↓	$\mathbf{MPJPE}\downarrow$	PA-MPJPE↓
HMR [19]	-	81.3	88.0	56.8
HMMR [20]	-	72.6	-	56.9
Arnab. [3]	-	72.2	77.8	54.3
CMR [23]	-	70.2	-	50.1
SPIN [22]	98.2*	59.2	62.3*	41.1
MeshNet [33]	93.2	58.6	55.7	41.7
Baseline	90.0	57.5	54.7	41.7
[<mark>33</mark>]+MiHu	85.1	54.8	53.6	41.0

Multi-person pose estimation

How to estimate 3D poses of multiple people from a single image?

CVPR 2020

Coherent Reconstruction of Multiple Humans from a Single Image. CVPR 2020.

SMAP: Single-Shot Multi-Person Absolute 3D Pose Estimation. ECCV 2020.

ECCV 2020

Part III: MoCap from Internet videos

Though single-view estimation is good, it is NOT accurate enough because of

depth ambiguity & self-occlusion

Motion Capture from Internet Videos. ECCV 2020.

New challenges:

- Videos are unsynchronized
- Camera parameters are unknown
- Motions are not exactly the same

All previous multi-view reconstruction methods are inapplicable

Proposed approach

- Joint optimization of synchronizaiton, camera parameters and human motion parameters
- Model motion variation among videos by low-rank approximation

Part IV: Novel view synthesis for dynamic humans

Free-viewpoint video (bullet time):

Traidtional methods

Requiring dense camera array Limited viewpoint range

Relying on reconstruction quality Complicated hardware, constrained environments

Can we generate free-viewpoint video using few RGB cameras?

4-view video

Free-view video (bullet time)

Recent trend: neural radiance fields (Nerf)

Efficient rendering Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

But it is ill-posed to learn the radiance fields from very sparse input views

Key idea: Integrate observations across video frames

Four input views

Novel view synthesis by NeRF

Suppose the radiance field is decoded from a set of structured latent codes

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans. Under review.

4-view video

Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Neural Volumes [1]

[3] Saito, Shunsuke, et al. PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization. In CVPR, 2020.

Novel view synthesis from a monocular video

Input video

[1] Alldieck, Thiemo, et al. Video based reconstruction of 3d people models. In CVPR, 2018

People-Snapshot [1]

OURS

Reconstruction results

D

Input video

[1] Alldieck, Thiemo, et al. Video based reconstruction of 3d people models. In CVPR, 2018

People-Snapshot [1]

OURS

Free-viewpoint video from only 4 cameras

What makes it possible?

- More power tools •
 - Deep learning
 - New representation
 - Differentiable rendering
- More 3D data ... \bullet

More challenges:

Large-scale & crowd scene

Conclusion

Low-cost and easy-to-use capture systems

Reconstruction from historical data?

Acknowledgements

Jianan Zhen

Yuanqing Zhang

Wen Jiang

Personal website: http://xzhou.me/ Github page: https://github.com/zju3dv