Human Motion Capture from RGB Videos
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Human motion capture (MoCap)

Recovering 3D human motion from sensor data
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Sensor data Skeleton Template Detailed surface



Applications

Source: Microsoft Kinect

Source: ShotTracker Source: Microsoft holoportation



Existing MoCap systems

Optical MoCap systems (e.g.Vicon) Depth sensors (e.g. Holoportation)
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* Need body markers * Limited sensing range
* Special hardware * Constrained environments



Making MoCap more practical

How to make MoCap systems more widely applicable!?
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Existing systems More practical:
* Expensive & special hardware * Few RGB cameras
* Need markers * No markers

e Constrained environments e Unconstrained environments



In this talk: MoCap from RGB videos

~ Multi-view MoCap = Single-view MoCap




Part |: Multi-view MoCap




Multi-view markerless MoCap

How to get rid of markers?




Multi-view markerless MoCap

Get rid of markers by using a keypoint detector

E Harvesting Multiple Views for Marker-less 3D Human Pose Annotations. CVPR 2017



Multi-view markerless MoCap

How to address crowd scene!?

* Need to solve correspondences
across views

* Challenges:
- large viewpoint change
- humans with similar appearance

Key ideas for multi-view matching:

* Geometric constraints (epipolar geometry)

* Cycle consistency constraints

‘| Fast and Robust Multi-Person 3D Pose Estimation from Multiple Views. CVPR 2019.



Multi-view markerless MoCap

Real-time markerless MoCap system




Part ll: Single-view MoCap




Single-view pose estimation
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Can we get rid of multiple cameras! # CVPR papers
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Single-view pose estimation

Sparse representation [CVPR’| 6] Volumetric representation [CVPR’17] SMPL model [CVPR’I 8]

Different
representations
Z(left knee) > Z(right knee)
Z(right elbow) > Z(right wrist)
weak Z(left shoulder) < Z(right shoulder)
. . Z(right knee) < Z(left hip)
supervisions Z(left wrist) = Z(left elbow)

Z(head) > Z(right ankle)
Z(right hip) = Z(left hip)
Z(right ankle) < Z(neck)
Z(left wrist) < Z(left ankle)

Main challenge: how to address the lack of 3D training data?



Single-view pose estimation

Reconstructing 3D pose estimation from mirrored human images

* Provide an additional virtual view

* Observe unseen part of the person

%] Reconstructing 3D Human Pose by Watching Humans in the Mirror. Under review.



Single-view pose estimation

Learning 3D pose estimation from mirrored human images

Mirror symmetry constraint

Optimize 3D poses with Estimate the mirror geometry
mirror symmetry constraints using vanishing points



Single-view pose estimation




Single-view pose estimation

VIBE, CVPR20 Ours



Single-view pose estimation

Our Mirrored-Human Dataset




Single-view pose estimation

Mirrored-Human Dataset
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Single-view pose estimation

Train existing single-view methods on Mirrored-Human

3DPW H3.6M
Methods MPJPE| PA-MPJPE| MPIPE| PA-MPJPE |
HMR [10] : 81.3 88.0 56.8
HMMR [20] : 72.6 : 56.9
Arnab. [3] - 72.2 77.8 54.3
CMR [23] : 70.2 : 50.1
SPIN [22 08.2* 59.2 62.3* 41.1
MeshNet [33] 93.2 58.6 55.7 41.7
Baseline 90.0 57.5 54.7 41.7
[33]+MiHu 85.1 54.8 53.6 41.0

MeshNet MeshNet trained on
Mirrored-Human

Meshnet: Image-to-pixel prediction network for accurate 3d human pose and mesh estimation from a single rgb image, ECCV2020



Multi-person pose estimation

How to estimate 3D poses of multiple people from a single image!?

CVPR 2020 ECCV 2020

‘| Coherent Reconstruction of Multiple Humans from a Single Image. CVPR 2020.
SMAP: Single-Shot Multi-Person Absolute 3D Pose Estimation. ECCV 2020.



Part lll: MoCap from Internet videos




MoCap from Internet videos

Though single-view estimation is good, it is NOT accurate enough because of

depth ambiguity & self-occlusion




MoCap from Internet videos

4 Motion Capture from InternetVideos. ECCV 2020.



MoCap from Internet videos

New challenges:
* Videos are unsynchronized
* Camera parameters are unknown

* Motions are not exactly the same

All previous multi-view reconstruction
methods are inapplicable




MoCap from Internet videos

Proposed approach

* Joint optimization of synchronizaiton, camera parameters and human motion parameters

* Model motion variation among videos by low-rank approximation
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MoCap from Internet videos
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MoCap from Internet videos
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MoCap from Internet videos




Part IV: Novel view synthesis for dynamic humans




Novel view synthesis

Free-viewpoint video (bullet time):

RED Lion movie'shorts




Novel view synthesis

Traidtional methods

Image-based rendering Model-based rendering

=RV 1018

Requiring dense camera array Relying on reconstruction quality
Limited viewpoint range Complicated hardware, constrained environments



Novel view synthesis

Can we generate free-viewpoint video using few RGB cameras?

4-view video Free-view video (bullet time)



Novel view synthesis

Recent trend: neural radiance fields (Nerf)
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Fully-connected
neural network

Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCYV, 2020.



Novel view synthesis

But it is ill-posed to learn the radiance fields from very sparse input views
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Key idea: Integrate observations across video frames i
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Four input views Novel view synthesis by NeRF



Novel view synthesis

Suppose the radiance field is decoded from a set of structured latent codes

Neural Body: Implicit Neural Representations with Structured Latent Codes
for Novel View Synthesis of Dynamic Humans. Under review.




Novel view synthesis

4-view video NeRF [2] Neural Volumes [1] OURS

[I] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
[2] Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.



Novel view synthesis

PIFUHD [3] OURS PIFUHD [3] OURS

[3] Saito, Shunsuke, et al. PIFuUHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization. In CVPR, 2020.



Novel view synthesis

Novel view synthesis from a monocular video

Input video People-Snapshot [ ] OURS

[ 1] Alldieck, Thiemo, et al. Video based reconstruction of 3d people models. In CVPR, 2018



Novel view synthesis

Reconstruction results

)

Input video People-Snapshot [ ] OURS

[1] Alldieck, Thiemo, et al. Video based reconstruction of 3d people models. In CVPR, 2018



Novel view synthesis

Free-viewpoint video from only 4 cameras




Conclusion

What makes it possible?

* More power tools
- Deep learning
- New representation
- Differentiable rendering

e More 3D data ...

More challenges:

Large-scale & crowd scene Reconstruction from historical data!?
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