

Deep Model Generalization for Medical Image Computing at Scale

DOU Qi

Department of Computer Science and Engineering co-affiliated with T Stone Robotics Institute The Chinese University of Hong Kong

Model Generalization in Real World Conditions

Data-driven method is sensitive to data mismatch

- Large-scale data always encounter data heterogeneity
- Medical imaging: different vendors, imaging protocols, patient population, etc.

Tackling Data Heterogeneity: does Normalization Help?

An empirical study on the impact of scanner effects with brain imaging

Construct an **age- and sex-matched** dataset with T1-weighted brain MRI from n = 592 individuals, where 296 subjects (146 F) are taken each from the Cam-CAN and UKBB, to simulate a somewhat 'best case scenario' to **remove population bias**.

Very **careful pre-processing** is conducted, including: 1) reorientation, 2) skull stripping, 3) bias field correction, 4) intensitybased linear registration (rigid and affine) to MNI space, 5) whitening for intensity normalization

Site classification with random forest binary classifier

Stripped	Bias Field	Aligned	Intensities	Accuracy	Avg. Entropy	Avg. Prob.
1	1	rigid	whitening	96.96%	0.4039	0.8296
✓	✓	affine	whitening	98.82%	0.3876	0.8397
SPM12 -	Segment			Accuracy	Avg. Entropy	Avg. Prob.
×	1	rigid	graymatter	80.24%	0.6363	0.6399
×	1	non-linear	graymatter	96.62%	0.5675	0.7234
FSL – FAS	ST			Accuracy	Avg. Entropy	Avg. Prob.
1	✓	rigid	graymatter	93.24%	0.4542	0.7968

B. Glocker et al. "Machine Learning with Multi-site Imaging Data: An Empirical Study on the Impact of Scanner Effects." Medical Imaging meets NeurIPS Workshop, 2019.

Related work: [Shafto et al., 2014; Taylor et al., 2017; Sudlow et al., 2015; Miller et al., 2016; Alfaro-Almagro et al., 2018]

A case study with prostateT2-weighted MRI image segmentation

Dataset	Case num	Field strength (T)	Resolution(in- plane/through- plane)(mm)	Coil	Manufactor
Site A	30	3	0.6-0.625/3.6-4	Surface	Siemens
Site B	30	1.5	0.4/3	Endorectal	Philips
Site C	19	3	0.67-0.79/1.25	No	Siemens

Q. Liu, Q. Dou, et al. "MS-Net: Multi-Site Network for Improving Prostate Segmentation with Heterogeneous MRI Data", IEEE Trans. on Medical Imaging, 2020. Related work: [Karani et al. MICCAI 2018; Gibson et al. MICCAI 2018; John et al. ISBI 2019]

	D	ice Coefficient	(mean±std, %	6)
Methods	Site A	Site B	Site C	Overall
Tian <i>et al.</i> [26]	88.23	88.23	—	
Rundo et al. [9]		—	88.66	
Separate	90.47±3.00	$90.52{\pm}2.45$	90.70 ± 3.34	90.56 ± 2.88
Joint	90.69 ± 3.05	$89.53 {\pm} 2.97$	$90.55 {\pm} 3.18$	90.25 ± 3.08
USE-Net [19]	90.90 ± 2.41	$90.17 {\pm} 2.61$	$90.73 {\pm} 2.36$	90.60 ± 2.50
Dual-Stream [47]	90.87 ± 2.85	$90.57 {\pm} 2.12$	90.10 ± 3.28	90.51 ± 2.72
Series-Adapter [48]	90.80 ± 2.72	$89.92{\pm}2.80$	91.24 ± 2.21	90.65 ± 2.71
Parallel-Adapter [23]	90.61 ± 3.54	$90.71 {\pm} 2.17$	$91.30{\pm}2.06$	90.88±2.79
DSBN (ours)	90.98±2.69	$90.67 {\pm} 2.22$	91.07 ± 1.86	90.91±2.36
MS-Net (ours)	91.54±2.01	91.24±1.97	92.18±1.62	91.66±1.95

Q. Liu, Q. Dou, et al. "MS-Net: Multi-Site Network for Improving Prostate Segmentation with Heterogeneous MRI Data", IEEE Trans. on Medical Imaging, 2020.

Unpaired Multi-modal Learning with Knowledge Distillation

$$\mathbf{z}_{c}^{i} = \frac{1}{\sum_{n} |\mathcal{S}_{c}^{n}|} \sum_{n} \sum_{(w,h) \in S_{c}^{n}} z_{nwhi},$$

$$\mathbf{p}_c^i = \frac{\exp(\mathbf{z}_c^i/T)}{\sum_j \exp(\mathbf{z}_c^j/T)},$$

Minimize probability divergence:

$$\begin{split} \mathcal{L}_{\mathrm{kd}} &= \frac{1}{C} \sum_{c} \Bigl(\mathcal{D}_{\mathrm{KL}}(\mathbf{q}_{c}^{a} || \mathbf{q}_{c}^{b}) + \mathcal{D}_{\mathrm{KL}}(\mathbf{q}_{c}^{b} || \mathbf{q}_{c}^{a}) \Bigr) \,,\\ & \text{where } \mathcal{D}_{\mathrm{KL}}(\mathbf{q}_{c}^{a} || \mathbf{q}_{c}^{b}) = \sum \mathbf{q}_{c}^{a} \log \frac{\mathbf{q}_{c}^{a}}{\mathbf{q}_{c}^{b}}. \end{split}$$

6

Q. Dou, Q. Liu et al. "Unpaired Multi-modal Segmentation via Knowledge Distillation", IEEE Trans. on Medical Imaging, 2020.

Unsupervised domain adaptation through pixel-level alignment

C. Chen, Q. Dou, et al. "Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaptation in Chest X-ray Segmentation." MICCAI-MLMI'18 (Oral)

Related work: [Y. Huo et al., ISBI 2018; Z. Zhang et al. CVPR 2018; Y. Zhang et al. MICCAI 2018]

Tackling Data Heterogeneity with UDA

Image-to-image transformation with generative adversarial nets

C. Chen, Q. Dou, et al. "Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaptation in Chest X-ray Segmentation." MICCAI-MLMI'18 (Oral)

Related work: [Y. Huo et al., ISBI 2018; Z. Zhang et al. CVPR 2018; Y. Zhang et al. MICCAI 2018]

Tackling Data Heterogeneity with UDA

Unsupervised Domain Adaptation: Feature-level Alignment

Train a source domain segmentation model

• joint cross-entropy loss and dice loss

$$\mathcal{L}_{seg} = -\sum_{i=1}^{N^s} \sum_{c \in C} w_c^s \cdot y_{i,c}^s \log(\hat{p}_{i,c}^s) - \lambda \sum_{c \in C} \frac{\sum_{i=1}^{N^s} 2y_{i,c}^s \hat{y}_{i,c}^s}{\sum_{i=1}^{N^s} y_{i,c}^s y_{i,c}^s + \sum_{i=1}^{N^s} \hat{y}_{i,c}^s \hat{y}_{i,c}^s}$$

Q. Dou*, C. Ouyang*, et al. "Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss.." IJCAI 2018.

Unsupervised Domain Adaptation: Feature-level Alignment

Unsupervised learning with adversarial loss

domain adaptation module (generator):
$$\min_{\mathcal{M}} \mathcal{L}_{\mathcal{M}}(X^{t}, \mathcal{D}) = -\mathbb{E}_{(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t})) \sim \mathbb{P}_{g}}[\mathcal{D}(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t}))]$$

domain critic module (discriminator):
$$\min_{\mathcal{D}} \mathcal{L}_{\mathcal{D}}(X^{s}, X^{t}, \mathcal{M}) = \mathbb{E}_{(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t})) \sim \mathbb{P}_{g}} [\mathcal{D}(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t}))] - \mathbb{E}_{(M^{s}_{A}(x^{s}), F_{H}(x^{s})) \sim \mathbb{P}_{s}} [\mathcal{D}(M^{s}_{A}(x^{s}), F_{H}(x^{s}))], s.t. \|\mathcal{D}\|_{L \leq K}$$

Q. Dou*, C. Ouyang*, et al. "Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss.." IJCAI 2018. Related work: [K Kamnitsas et al. IPMI 2017]

Unsupervised Domain Adaptation: Feature-level Alignment

Unsupervised learning with adversarial loss

domain adaptation module (generator):
$$\min_{\mathcal{M}} \mathcal{L}_{\mathcal{M}}(X^{t}, \mathcal{D}) = -\mathbb{E}_{(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t})) \sim \mathbb{P}_{g}}[\mathcal{D}(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t}))]$$

domain critic module (discriminator):
$$\min_{\mathcal{D}} \mathcal{L}_{\mathcal{D}}(X^{s}, X^{t}, \mathcal{M}) = \mathbb{E}_{(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t})) \sim \mathbb{P}_{g}} [\mathcal{D}(\mathcal{M}_{A}(x^{t}), F_{H}(x^{t}))] - \mathbb{E}_{(M_{A}^{s}(x^{s}), F_{H}(x^{s})) \sim \mathbb{P}_{s}} [\mathcal{D}(M_{A}^{s}(x^{s}), F_{H}(x^{s}))], s.t. \|\mathcal{D}\|_{L \leq K}$$

Q. Dou*, C. Ouyang*, et al. "Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss.." IJCAI 2018. Related work: [K Kamnitsas et al. IPMI 2017] 12

Related work: [DANN, Ganin et al. JMLR 2016; ADDA, Tzeng et al. CVPR 2017; CycleGAN, Zhu et al. ICCV 2017]

Unsupervised Domain Adaptation: Synergistic Alignment

Methods	Adar	otation	Dice							ASI)	
	Image	Feature	AA	LAC	LVC	MYO	Average	AA	LAC	LVC	MYO	Average
W/o adaptation			28.4	27.7	4.0	8.7	17.2	20.6	16.2	N/A	48.4	N/A
DANN (Ganin et al. 2016)		\checkmark	39.0	45.1	28.3	25.7	34.5	16.2	9.2	12.1	10.1	11.9
ADDA (Tzeng et al. 2017)		\checkmark	47.6	60.9	11.2	29.2	37.2	13.8	10.2	N/A	13.4	N/A
CycleGAN (Zhu et al. 2017)	\checkmark		73.8	75.7	52.3	28.7	57.6	11.5	13.6	9.2	8.8	10.8
CyCADA (Hoffman et al. 2018)	\checkmark	\checkmark	72.9	77.0	62.4	45.3	64.4	9.6	8.0	9.6	10.5	9.4
Dou et al. (Dou et al. 2018)		\checkmark	74.8	51.1	57.2	47.8	57.7	27.5	20.1	29.5	31.2	27.1
Joyce et al. (Joyce et al. 2018)		\checkmark	-	-	66	44	-	-	-	-	-	-
SIFA (Ours)	\checkmark	\checkmark	81.1	76.4	75.7	58.7	73.0	10.6	7.4	6.7	7.8	8.1

C. Chen, Q. Dou et al. "Synergistic Image and Feature Adaptation: Towards Cross-Modality Domain Adaptation for Medical Image Segmentation", AAAI, 2019. (Oral) Related work: [DANN, Ganin et al. JMLR 2016; ADDA, Tzeng et al. CVPR 2017; CycleGAN, Zhu et al. ICCV 2017] 14

Bidirectional Adaptation via Deeply Supervised SIFA

	Cardiac MRI \rightarrow Cardiac CT													
Method			Dice	e				ASE)					
wiethou	AA	LAC	LVC	MYO	Average	AA	LAC	LVC	MYO	Average				
Supervised training	92.7	91.1	91.9	87.7	90.9	1.5	3.5	1.7	2.1	2.2				
W/o adaptation	28.4	27.7	4.0	8.7	17.2	20.6	16.2	N/A	48.4	N/A				
PnP-AdaNet [44]	74.0	68.9	61.9	50.8	63.9	12.8	6.3	17.4	14.7	12.8				
SynSeg-Net [37]	71.6	69.0	51.6	40.8	58.2	11.7	7.8	7.0	9.2	8.9				
AdaOutput [15]	65.2	76.6	54.4	43.6	59.9	17.9	5.5	5.9	8.9	9.6				
CycleGAN [8]	73.8	75.7	52.3	28.7	57.6	11.5	13.6	9.2	8.8	10.8				
CyCADA [18]	72.9	77.0	62.4	45.3	64.4	9.6	8.0	9.6	10.5	9.4				
Prior SIFA [20]	81.1	76.4	75.7	58.7	73.0	10.6	7.4	6.7	7.8	8.1				
SIFA (Ours)	81.3	79.5	73.8	61.6	74.1	7.9	6.2	5.5	8.5	7.0				

	Cardiac CT \rightarrow Cardiac MRI													
Method			Dice	e				ASE)					
	AA	LAC	LVC	MYO	Average	AA	LAC	LVC	MYO	Average				
Supervised training	82.8	80.5	92.4	78.8	83.6	3.6	3.9	2.1	1.9	2.9				
W/o adaptation	5.4	30.2	24.6	2.7	15.7	15.4	16.8	13.0	10.8	14.0				
PnP-AdaNet [44]	43.7	47.0	77.7	48.6	54.3	11.4	14.5	4.5	5.3	8.9				
SynSeg-Net [37]	41.3	57.5	63.6	36.5	49.7	8.6	10.7	5.4	5.9	7.6				
AdaOutput [15]	60.8	39.8	71.5	35.5	51.9	5.7	8.0	4.6	4.6	5.7				
CycleGAN [8]	64.3	30.7	65.0	43.0	50.7	5.8	9.8	6.0	5.0	6.6				
CyCADA [18]	60.5	44.0	77.6	47.9	57.5	7.7	13.9	4.8	5.2	7.9				
Prior SIFA [20]	67.0	60.7	75.1	45.8	62.1	6.2	9.8	4.4	4.4	6.2				
SIFA (Ours)	65.3	62.3	78.9	47.3	63.4	7.3	7.4	3.8	4.4	5.7				

	Abdominal MRI \rightarrow Abdominal CT													
Method			Dice				ASD							
Wieulou	Liver	R. kidney	L. kidney	Spleen	Average	Liver	R. kidney	L. kidney	Spleen	Average				
Supervised training	92.8	86.4	87.4	88.2	88.7	1.0	1.8	0.9	1.2	1.2				
W/o adaptation	73.1	47.3	57.3	55.1	58.2	2.9	5.6	7.7	7.4	5.9				
SynSeg-Net [37]	85.0	82.1	72.7	81.0	80.2	2.2	1.3	2.1	2.0	1.9				
AdaOutput [15]	85.4	79.7	79.7	81.7	81.6	1.7	1.2	1.8	1.6	1.6				
CycleGAN [8]	83.4	79.3	79.4	77.3	79.9	1.8	1.3	1.2	1.9	1.6				
CyCADA [18]	84.5	78.6	80.3	76.9	80.1	2.6	1.4	1.3	1.9	1.8				
Prior SIFA [20]	87.9	83.7	80.1	80.5	83.1	2.1	1.1	1.6	1.8	1.6				
SIFA (Ours)	88.0	83.3	80.9	82.6	83.7	1.2	1.0	1.5	1.6	1.3				

	Abdominal $CT \rightarrow Abdominal MRI$													
Method			Dice					ASD						
Wiethou	Liver	R. kidney	L. kidney	Spleen	Average	Liver	R. kidney	L. kidney	Spleen	Average				
Supervised training	92.0	91.1	80.6	85.7	87.3	1.3	2.0	1.5	1.3	1.5				
W/o adaptation	48.9	50.9	65.3	65.7	57.7	4.5	12.3	6.8	4.5	7.0				
SynSeg-Net [37]	87.2	90.2	76.6	79.6	83.4	2.8	0.7	4.8	2.5	2.7				
AdaOutput [15]	85.8	89.7	76.3	82.2	83.5	1.9	1.4	3.0	1.8	2.1				
CycleGAN [8]	88.8	87.3	76.8	79.4	83.1	2.0	3.2	1.9	2.6	2.4				
CyCADA [18]	88.7	89.3	78.1	80.2	84.1	1.5	1.7	1.3	1.6	1.5				
Prior SIFA [20]	88.5	90.0	79.7	81.3	84.9	2.3	0.9	1.4	2.4	1.7				
SIFA (Ours)	90.0	89.1	80.2	82.3	85.4	1.5	0.6	1.5	2.4	1.5				

HTCN: Hierarchical Transferability Calibration Network

- transferability and discriminability may come at a contradiction given the complex combinations of objects
- hierarchically (local-region/image/instance) calibrates the transferability of feature representations

HTCN: Hierarchical Transferability Calibration Network

Domain Generalization

Problem setting: train on multiple source domains and **directly** generalize to unseen domains

Regularization for generic semantic features

- adversarial feature alignment for domain invariance [Li et al. ECCV 2018]
- decompose networks parameters to domain-specific/invariant [Khosla ECCV 2012]
- data augmentation based methods [Shankar et al. ICLR 2018; Volpi et al. NeurIPS 2018]
- multi-task or self-supervised signals [Ghifary et al. ICCV 2015; Carlucci et al. CVPR 2019]

Tackling Data Heterogeneity for Domain Generalization

Domain Generalization with Gradient-based Meta-learning

Model-agnostic learning: MAML (model-agnostic meta-learning) [Finn et al. ICML 2017]

- MLDG: directly applying episodic training paradigm [Li et al. AAAI 2018]
- MetaReg: meta-learning of weights regularization term [Balaji et al. NeurIPS 2018]
- Episodic training with alternative model updates [Li et al. ICCV 2019]

Episodic training paradigm

Available domains: $D = \{D_1, D_2, ..., D_K,\}$ Neural network is composed of: $F_{\psi} \circ T_{\theta}$

Learning with explicit simulation of domain shift:

At each iteration, split into meta-train D_{tr} and meta-test D_{te} Update the parameters one or more steps with gradient descent:

 $(\psi', \theta') = (\psi, \theta) - \alpha \nabla_{\psi, \theta} \mathcal{L}_{\text{task}}(\mathcal{D}_{\text{tr}}; \psi, \theta)$

Then, apply meta-learning step, to enforce certain properties to be exhibited on held-out domain D_{te} , to regularize semantic features

Global Class Alignment

Inter-class relationships concept is domain-invariant and transferable

• In each domain, compute class-specific mean feature vector:

$$\bar{\mathbf{z}}_{c}^{(k)} = \frac{1}{N_{k}^{(c)}} \sum_{n:y_{n}^{(k)}=c} F_{\psi'}(\mathbf{x}_{n}^{(k)}) \approx \mathbb{E}_{D_{k}}[F_{\psi'}(\mathbf{x}) \mid y=c]$$

- Compute soft label distribution: $\mathbf{s}_{c}^{(k)} = \operatorname{softmax}(T_{\theta'}(\bar{\mathbf{z}}_{c}^{(k)})/\tau)$
- With $(D_i, D_j) \in D_{tr} \times D_{te}$, regularize consistency of inter-class alignment:

$$\ell_{\text{global}}(D_i, D_j; \psi', \theta') = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{2} [D_{\text{KL}}(\mathbf{s}_c^{(i)} \| \mathbf{s}_c^{(j)}) + D_{\text{KL}}(\mathbf{s}_c^{(j)} \| \mathbf{s}_c^{(i)})]$$

(Note: complexity of pairs is controllable via mini-batch sampling in large-scale scenarios.)

 D_{i}

Local Sample Clustering

feature clusters with domain-independent class-specific cohesion and separation

Use a *metric-learning* approach, with an embedding network and operates in semantic feature space:

• obtain a learnable distance function:

 $d_{\phi}(\mathbf{z}_n, \mathbf{z}_m) = \|\mathbf{e}_n - \mathbf{e}_m\|_2 = \|M_{\phi}(\mathbf{z}_n) - M_{\phi}(\mathbf{z}_m)\|_2$

• metric-learning can rely on contrastive loss [Hadsell et al. CVPR 2006]:

 $\ell_{\rm con}^{n,m} = \begin{cases} d_{\phi}(\mathbf{z}_n, \mathbf{z}_m)^2, & \text{if } y_n = y_m \\ (\max\{0, \, \xi - d_{\phi}(\mathbf{z}_n, \mathbf{z}_m)\})^2, & \text{if } y_n \neq y_m \end{cases}$

• or triplet loss [Schroff et al. CVPR 2015]:

$$\ell_{\rm tri}^{a,p,n} = \max\{0, \ d_{\phi}(\mathbf{z}_a, \mathbf{z}_p)^2 - d_{\phi}(\mathbf{z}_a, \mathbf{z}_n)^2 + \xi\}$$

MASF: Model-Agnostic Learning of Semantic Features

Medical application of brain tissue segmentation

- data acquisition differences in scanners, imaging protocols, and many other factors
- posing severe limitations for translating learning-based methods in clinical practice
- segmentation of 3 brain tissues: white matter, gray matter and cerebrospinal fluid
- 4 domains corresponding to 4 hospitals

Train Test	Set-A	Set-B	Set-C	Set-D	DeepAll	MASF
Set-A Set-B Set-C	85.03 93.14	94.22 92.80	88.81 81.38 95.40	88.31 88.68	89.09 90.41 94.30	89.82 91.71 94.50
Set-D	76.32	88.39	73.50	94.29	88.62	89.51

Shape-awareness in MASF scheme for segmentation tasks

- Encourage complete segmentation shape at domain shift
- Learn domain-invariant contour-relevant and background-relevant embedding

Shape-Aware Meta-Learning for Segmentation Scenarios

Experimental results with prostate MRI segmentation

Method	Site	А	Site	В	Site	С	Site	D	Site	Е	Site	F	Aver	age
Intra-site	89.27	1.41	<u>88.17</u>	1.35	88.29	1.56	83.23	3.21	83.67	2.93	85.43	1.91	86.34	2.06
DeepAll (baseline)	87.87	2.05	85.37	1.82	82.94	2.97	86.87	2.25	84.48	2.18	85.58	1.82	85.52	2.18
Epi-FCR [19]	88.35	1.97	85.83	1.73	82.56	2.99	86.97	2.05	85.03	1.89	85.66	1.76	85.74	2.07
LatReg [2]	88.17	1.95	86.65	1.53	83.37	2.91	87.27	2.12	84.68	1.93	86.28	1.65	86.07	2.01
BigAug [35]	88.62	1.70	86.22	1.56	83.76	2.72	87.35	1.98	85.53	1.90	85.83	1.75	86.21	1.93
MASF $[6]$	88.70	1.69	86.20	1.54	84.16	2.39	87.43	1.91	86.18	1.85	86.57	1.47	86.55	1.81
Plain meta-learning	88.55	1.87	85.92	1.61	83.60	2.52	87.52	1.86	85.39	1.89	86.49	1.63	86.24	1.90
$+ \mathcal{L}_{compact}$	89.08	1.61	87.11	1.49	84.02	2.47	87.96	1.64	86.23	1.80	87.19	1.32	86.93	1.72
$+ \mathcal{L}_{smooth}$ (Ours)	89.66	1.38	87.53	1.46	84.43	2.07	88.67	1.56	87.37	1.77	88.34	1.22	87.67	1.58

Q. Liu, Q. Dou, P. A. Heng. "Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to Unseen Domains", MICCAI, 2020.

Datasets

- 1. Multi-Modality Whole Heart Segmentation (MMWHS) Challenge <u>http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/</u> <u>https://github.com/carrenD/Medical-Cross-Modality-Domain-Adaptation</u>
- 2. MICCAI 2019 MS-CMRSeg Multi-sequence Cardiac MR Segmentation Challenge https://zmiclab.github.io/mscmrseg19/
- 3. MICCAI iSeg 2019 Challenge 6-month Infant Brain MRI segmentation from Multiple Sites <u>http://iseg2019.web.unc.edu</u>
- 4. ISBI 2019 CHAOS Challenge CT-MRI Abdominal Multi-Organ Segmentation https://chaos.grand-challenge.org
- 5. Prostate Segmentation, with several public datasets, i.e., NCI-ISBI 2013 dataset, I2CVB dataset (include multiple sites), PROMISE12 dataset (include multiple sites)
- Chest X-Ray, with several public datasets,
 i.e., ChestX-ray14 NIH, CheXpert, PadChest, Mimic-CXR
 MIDL 2019: <u>https://openreview.net/forum?id=S1gvm2E-t4</u>

Paper & Code Available at:

Acknowledgement

Thanks for your attention! Q & A

