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Fast Neural Architecture Search of Compact Segmentation Models via 
Auxiliary Cells, CVPR 2019, Nekrasov, Chen, Shen, Reid

● Manual design of architectures is a tedious task

● Instead, neural architecture search (NAS) methods automatically find 
“right” configurations for any given task

● Problem: Current reinforcement learning (RL)-based approaches for 
dense-per-pixel tasks (segmentation / depth / etc.) require hundreds or 
even thousands of GPU-days

● Our focus: how to train dense-per-pixel networks faster



Neural Architecture Search

● Neural Architecture Search (NAS) can be divided as three parts：

○ Search Space

○ Search Strategy 

○ Model Evaluation

Search Space NAS model Model Evaluation

Searched Archs

Performance Feedback

Search Strategy



Reinforcement Learning

● Reinforcement learning is learning what to do-how to map situations to actions-so 
as to maximize a numerical reward signal.

Elements Brief Description

Policy the learning agents' way of behaving at a given time

Reward Signal the goal of a reinforcement learning problem

Value Function judge what is good in the long run

Environment
Model

something that mimics the behavior of the environment



RL-based NAS background

• A human designs the search space

• Step 2: An RL-agent (controller, RNN) outputs a string that describes a 
neural network configuration in the designed space

• The emitted configuration is trained and evaluated on the given task

• The reward (usually, validation loss) is recorded and the RL-agent is 
trained to produce configurations that maximise the expected reward

• Go to Step 2.



RL-based NAS background

To speed-up the search process, two solutions usually exist:

● To use thousands of GPUs and massively parallelise the whole search / 
training process,

● Or to use proxy datasets -- for example, instead of ImageNet, rely on 
CIFAR

Two questions with regards to that:

● What to do when there are no thousands of GPUs around?

● What is the proxy dataset for semantic segmentation on PASCAL VOC 
or CityScapes?



Our Approach

Instead, we are concentrating on methods to speed-up the training and 
evaluation of the emitted semantic segmentation models

In particular:

1. We use two progressive stages with early stopping
a. We start from a pre-trained backbone (MobileNet-v2) and search 

for the decoder only
b. During the first stage, the encoder is fixed and its outputs are pre-

computed -- only training the decoder
c. If the performance after this stage is better than the running mean 

of previously seen results, we fine-tune end-to-end, otherwise --
move on to the next architecture



Our Approach

2. We use knowledge distillation and Polyak averaging during the first stage 
to speed-up the convergence of the decoder part

3. Finally, as our models are compact, we rely on intermediate supervision 
to further speed-up the convergence

a. We found that over-parameterising auxiliary classifiers leads to even 
better results as opposed to single-layer



Results

● We found that our search rewards (geometric mean of 
mean IoU / freq.weighted-IoU and accuracy) correlate 
well with results after training for more epochs

● While comfortably beating random search



Results

● We tested 3 best architectures on PASCAL VOC and also studied their 
transfer to depth estimation and keypoint detection



Results



Architecture Example

GAP = Global Average Pooling followed by 
conv1x1 and bilinear upsampling



Template-Based Architecture Search 
(https://arxiv.org/abs/1904.02365)

● In our CVPR paper, we used pre-trained encoder with around ~2M 
parameters and raised the total number to ~3M after the search

● Our focus in this work: how to search for segmentation architectures 
with <500K parameters?



Our Approach

Naive application of the methodology in the CVPR paper would lead us to 
large decision space:  longer search process

Instead,

● We factorise the search space into searching for shared templates 
(similar to cells) and locations where they should be used

● Additionally, to increase the capacity of the generated networks and 
adapt for segmentation needs, we add two decision nodes per layer:
○ Number of times the given template must be repeated (without 

weight sharing)
○ Stride of the first operation in the template



Results

● By using the factorised search space, we can search for extremely 
compact models by leveraging only 60K pre-trained parameters of 
MobileNet-v2

● We search using CityScapes



Results

CityScapes



Results

CamVid



Takeaway messages

• In order to leverage NAS for dense-per-pixel tasks it is not necessary to 
have 1000s of GPUs -- instead it is better to consider what is slowing us 
down in training

• Auxiliary over-parameterisation helps compact models to converge 
faster -- no use during inference

• Search for extremely compact models (<500K) does not result in FAST 
models -- we should consider setting up additional objectives for the 
controller



NAS-FCOS: 
Fast Neural Architecture Search for Object Detection

Wang, Gao, Chen, Wang, Tian, Shen



Background

● Amazing results in various visual tasks achieved by neural network-
based approach:

Image Classification

Object Detection

Semantic Segmentation

Pose Estimation



Problem and Target

Manual structural design

Adjusting parameters is difficult

With the help of NAS, we 

hope to:

● break through the 

existing paradigm

● get rid of the tedious 

manual engineering



Search Framework

● The workflow of NAS-FCOS can be divided into three processes：

○ Sampling architecture from a search space following some search
strategies

○ Evaluating performance of the sampled architecture

○ Updating the parameters based on the performance



Design Search Space

Our NAS-FCOS decoder consists of two sub networks, an FPN f and a set of prediction heads h 
which have shared structures. One notable difference with other FPN-based one-stage detectors is 
that our heads have partially shared weights. The number of layers to share is decided automatically 
by the search algorithm. 



Improving Search Efficiency

● The key to NAS is to improve search efficiency. We propose the 
following ways to achieve the goal:

○ Proxy Dataset： Use PASCAL VOC as the proxy dataset, which 
contains 5715 training images with bounding box annotations.

○ New evaluate metric： Use negative loss sum as the reward instead 
of average precision.

○ Progressive search： Use a progressive search strategy rather than 
the joint search for both FPN and head, since the former requires 
less computing resources and time cost than the latter.



New evaluate metric



Search Results

● The controller identifies that deformable convolution and concatenation are the 

best performing operations for unary and aggregation respectively.

● Note that the discovered “dconv+1x1conv” structure achieves a better trade-off 

between accuracy and FLOPs than “3x3conv+3x3conv”.

● The searched decoder with channel 256 (@256) surpasses its FCOS counterpart by 

1.5 to 3.5 points in AP under different backbones.

● NAS-FCOS model still achieves better performance (AP=38.9 with FPN search 

only, and AP=39.8 with both FPN and head search) than the Deform-FPN-FCOS 

model (AP=38.4).

● Searching for FPN brings slightly more benefits than searching head only. And 

our progressive search which combines both FPN and head achieves a better 

result. 



Discovered Structures

Our discovered FPN structure. C2 is omitted 
from this figure since it is not chosen by this 
particular structure during the search 
process.

Our discovered Head structure.



Experiments

Results on test-dev set of COCO after full training. FLOPs and parameters are being 
measured on 1088×800. For our NAS-FCOS, @128 and @256 means that the decoder 
channel width is 128 and 256 respectively. @128-256 is the decoder with 128 FPN 
width and 256 head width. 



Experiments

Comparison with other NAS methods. For NAS-FPN, the input size is 1280 × 1280 and the search 
cost should be timed by their number of TPUs used to train each architecture. Note that the 
FLOPs and AP of NAS-FPN @256 here are from Figure 11 in NAS-FPN(Ghiasietal.2019), and NAS-
FPN 7@256 stacks the searched FPN structure 7 times. 



Experiments



Messages

● Neural Architecture Search can be used to further design and optimize object 

detection networks.

● Carefully designed proxy tasks, search strategies and model evaluation metrics 

are necessary.

● The discovered NAS-FCOS models are efficient and flexible with various 

backbone architectures.



IR-NAS: 
Neural Architecture Search for Low-level Image Restoration

Zhang, Chen, Li, Shen



IR-NAS

• IR-NAS is one of the first efforts towards employing NAS algorithm
to automatically design effective neural network architectures for
low-level image restoration tasks

• IR-NAS is able to search for both inner cell structures and outer
layer widths. It takes only 6 hours to search on a single GPU and
takes one third of the memory of Auto-Deeplab (Liu et al. 2019) to
search for the same structure.

• The proposed IR-NAS is applied to such tasks: image denoising and
image deraining. The architectures found by IR-NAS outperform
SOTA algorithms with less parameters and faster speed.

Liu et al. 2019. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation.
In CVPR, 82–92.



IR-NAS

Following (Liu et al. 2019; Cai et al. 2019), we employ gradient-
based architecture search strategy in our IR-NAS and we
search a computation cell as basic block then build the final
architecture by stacking the searched block with different
widths.

Differing from previous methods, IR-NAS has a more flexible
search space and it is able to search both the cell structures
and widths.

Zhu et al. 2019. Darts: Differentiable architecture search. In ICLR.
Cai et al. 2019. Proxylessnas: Direct neural architecture search on target task and hardware. In ICLR



Cell architecture search

Figure 1. Cell architecture search. Left: super cell. Right: the
cell architecture search result.

For cell architecture search, we build a super
cell that integrate all possible layer types and
consists of N nodes, then derive a compact
cell from the build super cell according to
the learned continuous weights α.

We denote the super cell in layer l as Cl,
which takes outputs of previous cell and the
cell before previous cell as inputs and
outputs one tensor hl . As shown in Figure 1.



Cell architecture search

Figure 1. Cell architecture search. Left: super cell. Right: the
cell architecture search result.

The output of the i th node in Cl is calculated as follows:



Cell architecture search

:

• conv: 3☓3 convolution
• sep: 3☓3 separable convolution
• dil: 3☓3 convolution with dilation factor 2
• def: 3☓3 deformable convolution V2 (Zhu et al. 2019)
• skip: skip connection
• none: no connection and return zero

Zhu et al. 2019. Deformable convnets v2: More deformable, better results. In CVPR, 9308–9316.



Cell architecture search

Figure 1. Cell architecture search. Left: super cell. Right: the
cell architecture search result.

The output of the super cell Cl can be expressed as :

After the super cell is trained, for each node, we rank
the corresponding inputs according to α values, then
reserve the top two inputs and remove the rest to obtain
the compact cell, as shown in the right of Figure 1



Cell width search

Figure 2. Cell width search. Left: a super net Right: the
final architecture

Similarly, we build a super net that contains several
super cells with different widths in each layer. As
illustrated in the left of Figure 2.

At each layer l, there are three cells with widths W ,
2W and 4W , where W is the basic width. The output
feature of each layer is:



Cell width search

Figure 2. Cell width search. Left: a super net Right: the
final architecture

After the super net is trained with gradient descent, we
view the learned β values as probability, then use the
Viterbi algorithm to select the path with the maximum
probability as the final result.

In addition, an ASPP module is added to the end of the 
last Cell in the final architecture, as illustrated in the 
right of Figure 2.  



Searching with gradient descent

The searching process is the optimization process. For image 
denoising and image de-raining, the two most widely used evaluation 
metrics are PSNR and SSIM (Wang et al. 2004). Inspired by this, we 
de- sign the following loss for optimizing super net:  

Wang et al. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image
Process. 13(4), 600–312.



Networks found by IR-NAS

Figure 3. Left: the denoising network. The first one shows the out layer widths and the
second one shows the inner cell architectures.



Experimental results on BSD500

Table 1: Denoising experiments. Comparisons with state-of-the-arts on BSD500. We show our results in the last
row. Time cost means GPU-seconds cost to inference on the 200 images from the test set of BSD500 with one
GTX 980 graphic card.

Figure 4: Denoising experiments on on BSD500. 



What we are doing now

• Further improving the efficiency and flexibility of IR-NAS. Specifically, by 
learning the advantages of  ProxylessNAS and Single-Path NAS, we will 
propose new search strategy and search space, where network depth is 
also included and the changing of outer layer widths is more flexible. 

• Expanding the proposed IR-NAS algorithm to more image restoration 
tasks, such as super-resolution, dehazing and inpainting, etc.


