NATTACK
by learning the
Distributions of Adversarial Examples

Boqing Gong
Joint work with Yandong Li, Lijun Li, Liqiang Wang, & Tong Zhang
Published in ICML 2019
Intriguing properties of deep neural networks (DNNs)

“panda”
57.7% confidence

+.007 ×

“gibbon”
99.3% confidence

Intriguing properties of deep neural networks (DNNs)

\[+\eta\text{sign}(\nabla L(x_t, y)) = \]

“panda” 57.7% confidence

“gibbon” 99.3% confidence

Projected gradient descent (PGD) attack

\[x_{t+1} \leftarrow \text{Proj}_S(x_t + \eta \text{sign}(\nabla L(x_t, y))) \]

Intriguing results (1)

~100% attack success rates on CIFAR10 & ImageNet
Intriguing results (2)

<table>
<thead>
<tr>
<th></th>
<th>ADV-TRAIN</th>
<th>ADV-BNN</th>
<th>THERM-ADV</th>
<th>LID</th>
<th>THERM</th>
<th>SAP</th>
<th>VANILLA-1</th>
<th>VANILLA-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV-TRAIN</td>
<td>100.00</td>
<td>33.58</td>
<td>44.07</td>
<td>36.88</td>
<td>34.60</td>
<td>28.49</td>
<td>36.00</td>
<td>22.80</td>
</tr>
<tr>
<td>ADV-BNN</td>
<td>19.18</td>
<td>100.00</td>
<td>21.07</td>
<td>45.54</td>
<td>37.89</td>
<td>26.56</td>
<td>42.24</td>
<td>23.10</td>
</tr>
<tr>
<td>THERM-ADV</td>
<td>9.10</td>
<td>11.33</td>
<td>100.00</td>
<td>20.83</td>
<td>20.02</td>
<td>19.64</td>
<td>12.75</td>
<td>17.10</td>
</tr>
<tr>
<td>LID</td>
<td>3.55</td>
<td>3.76</td>
<td>3.14</td>
<td>100.00</td>
<td>52.66</td>
<td>30.54</td>
<td>48.51</td>
<td>37.93</td>
</tr>
<tr>
<td>THERM</td>
<td>2.75</td>
<td>4.08</td>
<td>2.15</td>
<td>34.26</td>
<td>100.00</td>
<td>80.02</td>
<td>25.16</td>
<td>88.23</td>
</tr>
<tr>
<td>SAP</td>
<td>3.85</td>
<td>6.29</td>
<td>4.13</td>
<td>30.10</td>
<td>67.11</td>
<td>100.00</td>
<td>22.15</td>
<td>97.62</td>
</tr>
<tr>
<td>VANILLA-1</td>
<td>1.60</td>
<td>3.90</td>
<td>1.87</td>
<td>21.49</td>
<td>30.11</td>
<td>32.13</td>
<td>100.00</td>
<td>33.42</td>
</tr>
<tr>
<td>VANILLA-2</td>
<td>2.31</td>
<td>4.09</td>
<td>1.78</td>
<td>17.76</td>
<td>36.79</td>
<td>77.10</td>
<td>30.56</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Intriguing results (2)

Adversarial examples generalize between different DNNs

E.g., AlexNet vs InceptionV3
Intriguing results (3)

A universal adversarial perturbation

In a nutshell, **white-box** adversarial attacks can

Fool different DNNs for almost all test examples

Most data points lie near the classification boundaries.

Fool different DNNs by the same adversarial examples

The classification boundaries of various DNNs are close.

Fool different DNNs by a single universal perturbation

We can turn most examples to adversarial by moving them along the same direction by the same amount.
However, **white-box** adversarial attacks can:

- Not apply to most real-world scenarios
- Not work when the network architecture is unknown
- Not work when the weights are unknown
- Not work when querying networks is (e.g., cost) prohibitive
Black-box attacks

Panda: 0.88493
Indri: 0.00878
Red Panda: 0.00317

Substitute attack (Papernot et al., 2017)

Decision-based (Brendel et al., 2017)

Boundary-tracing (Cheng et al., 2019)

Zero-th order (Chen et al., 2017)

Natural evolution strategies (Ilyas et al., 2018)
The adversarial perturbation (for an input)

Bad local optimum, non-smooth optimization, curse of dimensionality, defense-specific gradient estimation, etc.

Our work

Learns the distribution of adversarial examples (for any input)

\[\pi_S(x' | \theta) \]
Our work

Learns the distribution of adversarial examples (for an input)

Reduces the “attack dimension” \[\dim(\theta) \ll \dim(x') \]

Fewer queries into the network.

Smothers the optimization

Higher attack success rates.

Characterizes the risk of the input example

New defense methods.
Our work

Learns the **distribution of adversarial examples** (for an input)

\[
\max_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y)
\]

\[
\pi_S(x'|\theta) \quad \quad \quad \pi_S(x'|\theta_0) \quad \pi_S(x'|\theta_1) \quad \pi_S(x'|\theta_2) \quad \pi_S(x'|\theta_3)
\]
Our work

Learns the distribution of adversarial examples (for an input)

$$\max_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y)$$

A sample from the distribution fails DNN by a high chance.
Which family of distributions? \(\pi_{\mathcal{S}}(x' | \theta) \)

1. draw \(z \sim \mathcal{N}(\mu, \sigma^2) \), compute \(g(z) \) as
 \[
 g(z) = \frac{1}{2}(\tanh(g_0(z)) + 1),
 \]
2. clip \(\delta' = \text{clip}_p(g(z) - x) \), \(p = 2 \) or \(\infty \), and
3. return \(\text{proj}_\mathcal{S}(g(z)) \) as \(x' = x + \delta' \)
Natural evolution strategies (NES)

\[\nabla_\theta \mathbb{E}_{x' \sim \pi} L(x', y) \]

\[\max_\theta \mathbb{E}_{x' \sim \pi} L(x', y) \]

Natural evolution strategies (NES)

\[\nabla_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y) = \nabla_{\theta} \int L(x', y) \pi(x'|\theta) dx' \]

\[\max_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y) \]

Natural evolution strategies (NES)

\[\nabla_\theta \mathbb{E}_{x' \sim \pi} L(x', y) \]

\[= \nabla_\theta \int L(x', y) \pi(x' | \theta) dx' \]

\[= \int L(x', y) \nabla_\theta \pi(x' | \theta) dx' \]

\[
\max_\theta \mathbb{E}_{x' \sim \pi} L(x', y) \]

Natural evolution strategies (NES)

\[
\max_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y) \\
= \nabla_{\theta} \int L(x', y) \pi(x' | \theta) dx'
\]

Natural evolution strategies (NES)

\[
\max_\theta \mathbb{E}_{x' \sim \pi} L(x', y) \\
= \nabla_\theta \mathbb{E}_{x' \sim \pi} L(x', y) \\
= \nabla_\theta \int L(x', y) \pi(x' | \theta) dx' \\
= \int L(x', y) \nabla_\theta \pi(x' | \theta) dx' \\
= \int L(x', y) \frac{\nabla_\theta \pi(x' | \theta)}{\pi(x' | \theta)} \pi(x' | \theta) dx' \\
= \int L(x', y) \left[\nabla_\theta \log \pi(x' | \theta) \right] \pi(x' | \theta) dx'
\]
Natural evolution strategies (NES)

\[
\max_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y) \\
= \nabla_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y) \\
= \nabla_{\theta} \int L(x', y) \pi(x'|\theta) dx' \\
= \int L(x', y) \mathbb{E}_{x' \sim \pi} \nabla_{\theta} \pi(x'|\theta) dx' \\
= \int L(x', y) \frac{\nabla_{\theta} \pi(x'|\theta)}{\pi(x'|\theta)} \pi(x'|\theta) dx' \\
= \int L(x', y) \left[\nabla_{\theta} \log \pi(x'|\theta) \right] \pi(x'|\theta) dx' \\
= \mathbb{E}_{x' \sim \pi} L(x', y) \nabla_{\theta} \log \pi(x'|\theta)
\]

Natural evolution strategies (NES)

\[
\max_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y)
\]

\[
\nabla_{\theta} \mathbb{E}_{x' \sim \pi} L(x', y)
\]

\[
= \nabla_{\theta} \int L(x', y) \pi(x' | \theta) dx'
\]

\[
= \int L(x', y) \nabla_{\theta} \pi(x' | \theta) dx'
\]

\[
= \int L(x', y) \frac{\nabla_{\theta} \pi(x' | \theta)}{\pi(x' | \theta)} \pi(x' | \theta) dx'
\]

\[
= \int L(x', y) \left[\nabla_{\theta} \log \pi(x' | \theta) \right] \pi(x' | \theta) dx'
\]

\[
= \mathbb{E}_{x' \sim \pi} L(x', y) \nabla_{\theta} \log \pi(x' | \theta)
\]

\[
\approx \frac{1}{b} \sum_{i=1}^{b} L(x'(i), y) \nabla_{\theta} \log \pi(x'(i) | \theta)
\]

Algorithm 1 Black-box adversarial \$N\text{ATTACK}\$

Input: DNN \(F(\cdot)\), input \(x\) and its label \(y\), initial mean \(\mu_0\), standard deviation \(\sigma\), learning rate \(\eta\), sample size \(b\), and the maximum number of iterations \(T\)

Output: \(\mu_T\), mean of the normal distribution

1: \textbf{for} \(t = 0, 1, \ldots, T - 1\) \textbf{do}
2: \hspace{1em} Sample \(\epsilon_1, \ldots, \epsilon_b \sim \mathcal{N}(0, I)\)
3: \hspace{1em} Compute \(g_i = g(\mu_t + \epsilon_i \sigma)\) by Step 1 \(\forall i \in \{1, \ldots, b\}\)
4: \hspace{1em} Obtain \(\text{proj}(g_i)\) by steps 2–3, \(\forall i\)
5: \hspace{1em} Compute losses \(f_i := f(\text{proj}(g_i)), \forall i\)
6: \hspace{1em} Z-score \(\hat{f}_i = (f_i - \text{mean}(f)) / \text{std}(f), \forall i\)
7: \hspace{1em} Set \(\mu_{t+1} \leftarrow \mu_t - \frac{\eta}{b \sigma} \sum_{i=1}^{b} \hat{f}_i \epsilon_i\)
8: \textbf{end for}
Experiment setup

Attack 13 defended DNNs & 2 vanilla DNNs

Consider both ○ and □

Examine all test examples of CIFAR10 & 1000 of ImageNet

Excluding those misclassified by the targeted DNN

Evaluate by attack success rates
Attack success rates, *ImageNet*
Attack success rates, \textit{CIFAR10}
Attack success rate vs. optimization steps
Transferabilities of the adversarial examples
A universally effective defense technique?

Adversarial training / defensive learning

$$\min_{\phi} \mathbb{E}_{x,y} \max_{x' \in S(x)} L(x', y)$$

The PGD attack
In a nutshell, \textit{NATTACK}

Is a \textbf{powerful black-box} attack, \(\geq\) white-box attacks

Is \textit{universal}, failed various defenses by the same algorithm

Characterizes the distributions of adversarial examples

Reduces the “attack dimension”

Speeds up the defensive learning \textit{(ongoing work)}
Physical adversarial attack

Boqing Gong

Joint work with Yang Zhang, Hassan Foroosh, & David Phil

Published in ICLR 2019
Recall the following result

A universal adversarial perturbation

Physical attack: universal perturbation → 2D mask

Physical attack: \textbf{2D mask} \rightarrow \textbf{3D camouflage}

Gradient descent \textit{w.r.t.} \textbf{camouflage} c

in order to \textbf{minimize detection scores}

for the vehicle under all feasible locations

\[C = C \cup \{c\} \]

Scores $\{V_t(c)|t \in T_S\}$

\[\arg\min_c \frac{\sum_{t \in T_S} V_\theta(c, t)}{|T_S|} \]

Non-differentiable
Physical attack: 2D mask \rightarrow **3D camouflage**

Repeat until done

1. Camouflage a vehicle
2. Drive it around and take many pictures of it
3. Detect it by Faster-RCNN & save the detection scores

\rightarrow **Dataset:** {(camouflage, vehicle, background, detection score)}
Physical attack: 2D mask → 3D camouflage

Fit a DNN to predict any camouflage’s corresponding detection scores

$$\arg\min_{\theta} \frac{1}{|C||T_S|} \sum_{c \in C} \sum_{t \in T_S} H[s, V_\theta(c, t)] + \alpha \|\theta\|^2$$

$$C = C \cup \{c\}$$

Scores $$\{V_t(c)|t \in T_S\}$$
Physical attack: 2D mask \rightarrow 3D camouflage

Gradient descent w.r.t. Camouflage c

in order to **minimize detection scores**

for the vehicle under all feasible locations

$C = C \cup \{c\}$

Scores $\{V_t(c) | t \in T_S\}$

Non-differentiable

But approximated by a DNN

$$\arg\min_c \frac{\sum_{t \in T_S} V_\theta(c, t)}{|T_S|}$$
Why do we care?
Observation, re-observation, & future work

Defended DNNs are still vulnerable to transfer attacks (only to some moderate degree though)

Adversarial examples from black-box attacks are less transferable than those from white-box attacks

All future work on defenses will adopt adversarial training

Adversarial training will become faster (we are working on it)

We should certify DNNs’ expected robustness by \mathcal{N} ATTACK
New works to watch

