

Bridging the gap between low level vision and high level tasks

任文琦

中国科学院信息工程研究所 VALSE 2019-09-18

□ Gated fusion network for single image dehazing, CVPR'18

Benchmarks: RESIDE (dehazing), MPID (deraining)

- Evaluate current low-level vision algorithms in terms of high-level tasks
- □ (Dehazing/Deraining) + Object detection, TIP'19, CVPR'19

□ Semi-supervised dehazing/deraining, TIP'19, CVIU'19

Introduction

☐ Hazy images

- □ Low visibility: distance between an object and the observer increases
- □ Faint colors: atmosphere color replaces the color of the object

Koschmieder, H.: Theorie der horizontalen sichtweite. Beitrage zur Physik der freien Atmosphare (1924)

Related work

□ Maximize local contrast, CVPR'08

Dark channel prior, CVPR'09

□ Maximize local saturation, CVPR'14

□ Color Attenuation Prior, TIP'15

■ Non-local Prior, CVPR'16

(a) Haze-free image

(b) Corresponding clusters

(d) Corresponding haze-lines

(c) Synthetic hazy image.

Related work

- □ Multi-scale CNN, ECCV'16
- DehazeNet, TIP'16
- □ AOD-Net, ICCV'17
- □ Fusion Network, CVPR'18
- Densely Connected Network, CVPR'18
- □ CGAN, CVPR'18
- □ Proximal Dehaze-Net, ECCV'18

Gated Fusion Network for Single Image Dehazing

W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, M.-H. Yang CVPR 2018

• End-to-end dehazing network

Two major factors in hazy images:

- Color cast introduced by the atmospheric light (White Balance)
- Lack of visibility due to attenuation (Gamma Correct, Contrast Enhance)

Input

10

Output

Confidence maps

Two major factors in hazy images:

- Color cast introduced by the atmospheric light (White Balance)
- Lack of visibility due to attenuation (Contrast Enhance)

Codruta Orniana Ancuti and Cosmin Ancuti, Single Image Dehazing by Multi-Scale Fusion, TIP 2013

Two major factors in hazy images:

- Color cast introduced by the atmospheric light (White Balance)
- Lack of visibility due to attenuation (Gamma Correct, Contrast Enhance)

Derived inputs

- White Balanced: aims to eliminate chromatic casts caused by the atmospheric color
- Contrast enhance: extract visible information (denser haze regions)
- Gamma correct: extract visible information (light haze regions)

Input

White Balanced 13

Contrast Enhance

Gamma Correct

Network

- Use dilated convolution to enlarge receptive fields in the encoder
- Skip shortcuts are connected from the encoder to decoder
- Three derived inputs are weighted by the three confidence maps learned by our network
- Use adversarial loss and multi-scale to further improve results

Multi-Scale Refinement

Finer Inputs Finer GFN Finer Up-Sampling Finer Up-Sampling Coarsest Coarsest Coarsest Inputs Coarsest Coarsest Coarsest Coarsest Coarsest Coarsest Coarsest

Finest GFN

inest Inputs

Maps of CE Maps of GC

Our results

Maps of WB

Results

SOTS Set	DCP	САР	NLD	MSCNN	DehazeNet	AOD-Net	Ours
PSNR	16.62	19.05	17.29	17.57	21.24	19.06	22.30
SSIM	0.82	0.84	0.75	0.81	0.85	0.85	0.88

(a) Hazy inputs (b) DCP [13] (c) BCCR [23] (d) NLD [2] (e) CAP [44] (f) MSCNN [32] (g) DehazeNet [3] (h) AOD-Net [19] (i) GFN

Figure 6. Qualitative comparison of different methods on real-world images. Please zoom-in to see the differences.

Results: Derived inputs

- More inputs (e.g., other parameters) may be better for final dehazing
 - Original input (O)
 - White Balanced (WB)
 - Contrast Enhance (CE)
 - Gamma Correct (GC)

	0	O+CE+GC	O+WB+CE	O+WB+GC	O+WB+GC+CE
PSNR	19.16	18.99	19.32	21.02	22.41
SSIM	0.76	0.80	0.79	0.81	0.81

Gated Fusion Network for Single Image Dehazing

- Demonstrate the effectiveness of a gated fusion network for single image dehazing by leveraging the derived inputs.
- Learn the confidence maps to combine three derived input images into a single one by keeping only the most significant features of them.
- Train the proposed model with a multi-scale approach to eliminate the halo artifacts that hurt image dehazing.

Code available at: <u>https://github.com/rwenqi/GFN-dehazing</u>

Comprehensive Benchmark Analysis

REalistic Single-Image DEhazing (**RESIDE**)TIP'19Multi-Purpose Image Deraining (**MPID**)CVPR'19

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 1, JANUARY 2019

Benchmarking Single-Image Dehazing and Beyond

492

Boyi Li¹⁰, Wenqi Ren¹⁰, *Member, IEEE*, Dengpan Fu, Dacheng Tao¹⁰, *Fellow, IEEE*, Dan Feng, *Associate Member*, Wenjun Zeng, *Fellow, IEEE*, and Zhangyang Wang, *Member, IEEE*

Single Image Deraining: A Comprehensive Benchmark Analysis

Siyuan Li¹* Iago Breno Araujo²*, Wenqi Ren^{3†}, Zhangyang Wang^{4†}, Eric K. Tokuda², Roberto Hirata Junior², Roberto Cesar-Junior², Jiawan Zhang¹, Xiaojie Guo¹, Xiaochun Cao³ ¹*Tianjin University* ²*University of Sao Paulo* ³*SKLOIS, IIE, CAS* ⁴*Texas A&M University* https://github.com/lsy17096535/Single-Image-Deraining

Evaluation criteria in existing algorithms

- □ Synthetic images: PSNR/SSIM
 - Small scale images
 - insufficient for human perception quality and machine vision effectiveness
- □ Real images: visual comparison
 - Show about ten real images
 - No-reference metrics

Examples in RESIDE

Three different sets of evaluation criteria:

- **objective** (PNSR, SSIM + no-reference metrics),
- subjective (human rating),
- task-driven (whether or how well dehazed results benefits machine vision, e.g., object detection)

(a) ITS

(b) OTS

(c) SOTS

(d) RTTS

(e) HSTS. Top row: 10 synthetic hazy images; Bottom row: 10 realistic hazy images.

RESIDE(Standard)	
Subset	Number of Images
Indoor Training Set (ITS)	13,990
Synthetic Objective Testing Set (SOTS)	500
Hybrid Subjective Testing Set (HSTS)	20
RESIDE- β	
Subset	Number of Images
Outdoor Training Set (OTS)	313,950
Real-world Task-driven Testing Set (RTTS)	4,322

Examples in MPID: Multi-Purpose Image Deraining

(1)

 $\begin{aligned} \text{Rain streak}\\ \mathbf{R}_s &= \mathbf{B} + \mathbf{S}. \end{aligned}$

Raindrops (a) Synthetic rainy images

 $\mathbf{R}_m = \mathbf{B} \odot t + A\left(1 - t\right) + \mathbf{S},$

(3)

Rain streak

Raindrops (b) Real-world rainy images

Rain and mist

Examples in MPID: Multi-Purpose Image Deraining

(c) Rain in driving (RID)

(d) Rain in surveillance (RIS)

	Tuble 2. Object Statistics in Kilb and Kilb Sets.									
	Categories	Car	Person	Bus	Bicycle	Motorcycle				
2495	RID Set	7332	1135	613	268	968				
	Categories	Car	Person	Bus	Truck	Motorcycle				
2048	RIS Set	11415	2687	488	673	275				

Table 2. Object Statistics in RID and RIS sets.

	DCP [12]	FVR [41]	BCCR [24]	GRM [6]	CAP [46]	NLD [3]	DehazeNet [5]	MSCNN [32]	AOD-Net [16]				
		Synthetic images											
Clearness	1.26	0.18	0.62	0.75	0.50	1	0.29	1.22	0.86				
Authenticity	0.78	0.14	0.50	0.95	0.86	1	1.94	0.54	1.41				
PSNR	17.27	15.68	16.61	20.48	22.88	18.92	26.94	20.53	23.41				
SSIM	0.7210	0.7157	0.6947	0.7631	0.8223	0.7411	0.8758	0.7893	0.8616				
SSEQ	86.15	85.68	85.60	78.43	85.32	86.28	86.01	85.56	86.75				
BLIINDS-II	90.70	87.65	91.05	82.30	85.75	85.30	87.15	88.70	87.50				
					Real-world	d images							
Clearness	0.39	0.46	0.45	0.75	1	0.54	1.16	1.29	1.05				
Authenticity	0.17	0.20	0.18	0.62	1	0.15	1.03	1.27	1.07				
SSEQ	68.65	67.75	66.63	70.19	67.67	67.96	68.34	68.44	70.05				
BLIINDS-II	69.35	72.10	68.55	79.60	63.55	70.80	60.35	62.65	74.75				

Table 4. Average subjective scores, as well as full- and no-reference evaluations results, of dehazing results on HSTS.

- PSNR and SSIM appear to be less reliable metrics for dehazing perceptual quality, and are especially poor to reflect "clearness"
- There is certain inconsistency (domain gap) between synthetic and real-world data
- CNN-based dehazing show promising real-world performance (even training data has domain gap)
- MSCNN and AOD-Net achieve good trade-off on clearness v.s. authenticity for real-world dehazing
- Standard no-reference metrics are only roughly aligned with human subjective perception in dehazing

Benchmark Result Analysis: "Detection as a Metric"

re high-level semantics, and the object detection performance

■ We propose a task-driven metric that captures more high-level semantics, and the object detection performance on the dehazed/derained images as a brand-new evaluation criterion for dehazing/deraining realistic images.

RESIDE Result Analysis: "Detection as a Metric"

TABLE VIII

ALL DETECTION RESULTS ON RTTS(IN %), PLEASE NOTE THAT, THE MODEL USED IN FRCNN IS TRAINED ON VOC2007_TRAINVAL DATASET, WHILE THE MODELS USED IN YOLO-V2 AND SSDS ARE TRAINED ON VOC2007_TRAINVAL + VOC2012_TRAINVAL.

		Haze	DCP [9]	FVR [10]	BCCR [11]	GRM [12]	CAP [13]	NLD [14]	DehazeNet [15]	MSCNN [16]	AOD [17]
	FRCNN [52]	37.58	40.58	35.01	41.56	28.90	39.63	40.03	40.54	41.34	37.47
mAP	YOLO-V2 [53]	40.37	39.81	38.06	40.65	29.41	39.80	39.93	40.10	40.76	40.53
	SSD-300 [54]	50.26	49.40	47.04	51.57	35.59	50.31	49.84	50.14	51.82	49.77
	SSD-512 [54]	55.55	55.71	52.29	57.17	39.18	55.70	54.99	55.40	56.88	55.29
	FRCNN [52]	60.84	61.54	57.72	64.51	50.22	61.29	60.53	61.40	61.43	61.22
Derson	YOLO-V2 [53]	61.24	61.14	60.00	61.16	50.13	61.24	60.49	61.16	61.30	61.20
reison	SSD-300 [54]	68.60	68.18	66.36	69.12	53.91	68.78	66.96	68.18	69.20	68.28
	SSD-512 [54]	72.58	72.72	69.45	73.34	56.74	72.50	71.20	72.34	73.13	72.62
	FRCNN [52]	40.72	40.77	38.76	44.57	30.71	40.48	40.21	40.68	41.69	40.33
Biquela	YOLO-V2 [53]	44.63	43.39	40.08	43.66	28.81	42.65	43.56	42.34	43.53	44.55
Bicycle	SSD-300 [54]	54.92	51.36	49.35	53.33	34.48	53.38	53.42	53.08	55.73	54.18
	SSD-512 [54]	58.45	56.70	54.57	58.57	36.70	57.49	56.38	57.50	58.76	57.91
	FRCNN [52]	35.18	42.15	34.74	42.69	26.30	41.52	42.30	41.74	42.61	35.13
Cor	YOLO-V2 [53]	39.39	38.93	37.22	39.88	29.91	39.03	38.96	39.35	40.00	39.49
Cai	SSD-300 [54]	54.14	54.98	50.81	56.32	40.21	55.08	54.98	55.27	56.32	54.62
	SSD-512 [54]	63.05	64.95	61.54	65.80	47.79	64.15	65.04	64.21	65.22	64.05
	FRCNN [52]	20.90	24.18	19.06	24.66	14.81	24.74	23.74	25.20	25.25	20.56
Pue	YOLO-V2 [53]	20.57	19.34	19.42	20.01	12.86	18.90	18.22	19.07	19.63	19.09
Dus	SSD-300 [54]	30.13	30.87	30.98	33.70	19.72	30.90	30.43	30.86	32.26	29.42
	SSD-512 [54]	34.60	36.51	33.47	37.69	22.81	35.47	34.31	35.18	37.42	34.13
	FRCNN [52]	30.24	34.25	24.78	34.34	22.44	30.10	33.36	33.70	35.72	30.09
Motorbike	YOLO-V2 [53]	37.84	36.23	33.59	38.54	25.33	37.10	38.40	38.59	39.33	38.31
Motorbike	SSD-300 [54]	43.48	41.61	37.72	45.38	29.63	43.41	43.40	43.30	45.60	42.35
	SSD-512 [54]	49.08	47.69	42.40	50.46	31.85	48.89	48.04	47.79	49.87	47.76

TABLE IX AVERAGE NO-REFERENCE METRICS OF DEHAZED RESULTS ON RTTS.

	DCP [9]	FVR [10]	BCCR [11]	GRM [12]	CAP [13]	NLD [14]	DehazeNet [15]	MSCNN [16]	AOD-Net [17]
SSEQ	62.87	63.59	63.31	58.64	60.66	59.37	60.01	62.31	65.35
BLIINDS-II	68.34	67.68	74.07	54.54	65.15	68.32	52.54	56.59	71.05

MPID Result Analysis: Objective/Visual Quality

Full- and no-reference evaluations on **synthetic** rainy images

No-reference evaluations on **real** rainy images

								_								
	Degraded	GMM [27]	JORDER [32]	DDN [6]	CGAN [33]	DID-MDN [8]	DeRaindrop [7]	-		Degraded	GMM [27]	JORDER [32]	DDN [6]	CGAN [33]	DID-MDN [8]	DeRaindrop [7]
			rain s	streak				-		•		roin	rtraak			
PSNR	25.95	26.88	26.26	29.39	21.86	26.80	/	_				Talli S	sucak			
SSIM	0.7565	0.7674	0.8089	0.7854	0.6277	0.8028	/		SSEQ	65.77	61.63	64.00	63.51	59.32	55.11	/
SSEQ	70.24	67.46	<u>73.70</u>	75.95	70.02	60.05	/	-	NIOE	2 5 2 2 6	2 0117	2 5271	2 5 9 1 1	2 5274	5 1255	1
NIQE	5.4529	4.4248	4.2337	3.9834	4.6189	4.8122	/	_	NIQE	5.5250	3,2117	<u>3.3371</u>	5.5011	5.5574	5.1255	/
BLINDS-II	78.89	75.95	<u>84.21</u>	91.71	79.29	67.90	/		BLINDS-II	78.04	75.54	82.62	85.81	78.42	66.65	/
raindrops							-				rainc	Irone				
PSNR	25.40	24.85	27.52	25.23	21.35	24.76	31.57	-				Tanic	uops			
SSIM	0.8403	0.7808	0.8239	0.8366	0.7306	0.7930	0.9023		SSEQ	78.23	64.77	<u>69.26</u>	67.62	62.18	60.65	79.83
SSEQ	<u>78.48</u>	64.73	84.32	77.62	63.15	58.42	72.42	-	NIOE	3 8220	4 3801	3 6579	3 8200	4 4692	4 5631	3 5053
NIQE	3.8126	5.1098	4.3278	4.1462	3.3551	4.1192	5.0047	-	TIQL	5.0227	T.J001	5.0577	5.0270	-,-U)2	4.5051	5,5755
BLINDS-II	92.50	75.95	88.05	91.95	73.85	64.70	96.45		BLINDS-II	84.46	71.21	<u>80.04</u>	77.75	66.29	66.63	87.13
			rain ar	nd mist				-				rain ar	nd mist			
PSNR	26.84	29.37	30.37	32.98	22.44	28.77	/	-				1411 41	iu mot		() ()	
SSIM	0.8520	0.8960	0.9262	0.9350	0.7636	0.8430	/		SSEQ	73.86	59.51	<u>65.18</u>	64.56	70.04	63.85	/
SSEQ	72.37	65.39	<u>70.55</u>	69.80	68.71	65.33	/	-	NIQE	3.2602	4.4808	3.3238	3.7261	2,9532	3.2260	
NIQE	3.4548	3.2117	2.8595	2.9970	2.8336	3.0871	/	-		04.00	(0.70	70 (0	01 (7	04.01	7(00	/
BLINDS-II	82.95	74.90	83.75	85.75	80.20	76.35	/		BLINDS-II	84.00	62.70	/8.62	81.07	84.91	/0.08	

• There is certain inconsistency (domain gap) between synthetic and real-world data

MPID Result Analysis: "Detection as a Metric"

Detection results (mAP) on the **RID** and **RIS** sets.

		Rainy	JORDER [32]	DDN [6]	CGAN [33]	DID-MDN [8]	DeRaindrop [7]
	FRCNN [44]	16.52	16.97	18.36	23.42	16.11	15.58
	YOLO-V3 [45]	27.84	26.72	26.20	23.75	24.62	24.96
KID	SSD-512 [46]	17.71	17.06	16.93	16.71	16.70	16.69
	RetinaNet [47]	23.92	21.71	21.60	19.28	20.08	19.73
	FRCNN [44]	22.68	21.41	20.76	18.02	18.93	19.97
DIC	YOLO-V3 [45]	23.27	20.45	21.80	18.71	21.50	20.43
KIS	SSD-512 [46]	8.19	7.94	8.29	7.10	8.21	8.13
	RetinaNet [47]	12.81	10.71	10.39	9.36	10.33	10.85

A New Benchmark for Single Image Dehazing

Dataset, code, results are available at:

RESIDE: <u>https://sites.google.com/view/reside-dehaze-datasets</u>

MPID: <u>https://github.com/lsy17096535/Single-Image-Deraining</u>

Semi-Supervised Image Dehazing

Lerenhan Li, Yunlong Dong, Wenqi Ren, Jinshan Pan, Changxin Gao, Nong Sang, Ming-Hsuan Yang

TIP 2019, accept

Proposed semi-supervised dehazing network

Fig. 2. Proposed semi-supervised learning framework for single image dehazing. The proposed method consists of two branches sharing the same weights. The supervised branch is trained using labeled synthetic data and loss functions based on mean squared, perceptual, and adversarial errors. The unsupervised branch is trained using unlabeled real data and loss functions based on dark channel loss and total variation.

Training details

□ Supervised loss on synthetic images:

□ Euclidean loss of images and features between dehazed results and ground truths

$$L_c = \frac{1}{N_l} \sum_{i=1}^{N_l} \left\| \mathbf{J}_i - \hat{\mathbf{J}}_i \right\|_2,$$

$$L_p = \frac{1}{N_l} \sum_{i=1}^{N_l} \left\| \mathbf{F}_{J_i} - \mathbf{F}_{\hat{J}_i} \right\|_2,$$

- **Unsupervised loss on real images:**
 - Total variation loss

Dark channel loss

$$L_{t} = \frac{1}{N_{u}} \sum_{i=1}^{N_{u}} \left(\left\| \nabla_{h} \mathbf{J}_{i} \right\|_{1} + \left\| \nabla_{v} \mathbf{J}_{i} \right\|_{1} \right), \qquad \qquad L_{d} = \frac{1}{N_{u}} \sum_{i=1}^{N_{u}} \left\| \mathbf{D}_{J_{i}} \right\|_{1}, \qquad D(I) = \min_{y \in N(x)} \left[\min_{c \in \{r,g,b\}} I^{c}(y) \right],$$

Results: Synthetic images

(a) Hazy image

(f) DCPDN [41]

(a) Hazy image

(g) GFN [28]

(b) DCP [7]

(c) MSCNN [27]

(c) MSCNN [27]

(d) DehazeNet [2]

(i) CycleGAN [4]

(e) AOD-Net [15]

(e) AOD-Net [15]

(j) Ours

(f) DCPDN [41]

(g) GFN [28]

(h) PDN [39]

(i) CycleGAN [4]

(j) Ours

(f) PDN [39]

(g) GFN [28]

(h) CycleGAN [4]

(i) baseline

(j) Ours

TABLE V OBJECT DETECTION RESULTS ON THE RTTS [16] DATASET. WE APPLY FASTER R-CNN TO DETECT OBJECTS OF INTERESTS ON DEHAZED

IMAGES. FASTER R-CNN IS TRAINED ON THE VOC2007 [5] DATASET. THE DETECTION TASK FAVORS THE PROPOSED METHOD MOST AMONG THE OTHER ALGORITHMS.

	mAP (%)
Hazy	37.58
DCP [7]	39.63
MSCNN [27]	41.34
DehazeNet [2]	40.54
AOD-Net [15]	37.47
GFN [28]	58.11
DCPDN [41]	61.28
CycleGAN [4]	42.53
Ours	62.61

TABLE VIII

QUANTITATIVE EVALUATIONS WITH DIFFERENT AMOUNT OF LABELED DATA. THE PERFORMANCE ON THE SYNTHETIC DATASET ARE ROBUST WHILE THE PERFORMANCE ON THE REAL DATASET ARE SENSITIVE TO THE UNLABELED DATA.

Amount of the unlabeled data	SOTS (PSNR/SSIM)	RTTS (mAP, %)
0	23.65/0.86	53.48
500	24.37/0.88	58.97
1000	24.41/0.89	60.79
2000	24.44/0.89	62.61

Object detection results on the RTTS dataset

A New Benchmark for Single Image Dehazing

Dataset, code, results are available at:

https://sites.google.com/view/lerenhanli/homepage/semi_su_dehazing

Fast Single Image Rain Removal via a Deep Decomposition-Composition Network

Siyuan Li, Wenqi Ren, Jiawan Zhang, Jinke Yu and Xiaojie Guo

CVIU 2019

Decomposition-Composition Network

Decomposition Net: O = B + R

Composition Net: $B + R = O' \approx O$

Training details of the decomposition net

Pre-train on synthetic images: 10400 triplets [rainy image, clean background, rain layer]
paired image-to-image mapping: Euclidean loss of background and rain layer

$$\mathcal{L}_{\mathbf{B}} = \frac{1}{N} \sum_{i=1}^{N} \|f_{b}(\mathbf{O}^{i}) - \mathbf{B}^{i}\|_{F}^{2}, \qquad \qquad \mathcal{L}_{\mathbf{R}} = \frac{1}{N} \sum_{i=1}^{N} \|f_{r}(\mathbf{O}^{i}) - \mathbf{R}^{i}\|_{F}^{2},$$

Fine-tune on real images: 240 real-world samples
GAN adversarial loss

$$\mathcal{L}_{\text{ADV}} = \underset{\mathbf{I} \sim p(I)}{\mathbb{E}} \left[\log D(\mathbf{I}) \right] \\ + \underset{\mathbf{O} \sim p(O)}{\mathbb{E}} \left[\log \left(1 - D(G(\mathbf{O})) \right) \right]$$

Layer	Kernel dimension	Stride	Output size		
Input	-	-	224×224		
Conv1	$64 \times 4 \times 4$	2	112×112		
Conv2	$128 \times 4 \times 4$	2	56×56		
Conv3	$256 \times 4 \times 4$	2	28×28		
Conv4	$512 \times 4 \times 4$	1	27×27		
Conv5	$1 \times 4 \times 4$	1	26×26		
Sigmoid	-	-	-		

,

Training details of the composition net

 $\mathbf{O} = \mathbf{B} + \mathbf{R}.$

$$\mathbf{O} = \left(1 - \sum_{i=0}^{n} \alpha_i\right) \mathbf{B} + \alpha_0 \mathbf{A} + \sum_{i=1}^{n} \alpha_i \mathbf{R}^i, \ s.t. \ \alpha_i \ge 0, \ \sum_{i=0}^{n} \alpha_i \le 1,$$

Quadratic training cost function:

$$\mathcal{L}_{\mathbf{O}} = \frac{1}{N} \sum_{i=1}^{N} \left\| f(\mathbf{O}) - \mathbf{O} \right\|_{F}^{2}.$$

Results: synthetic images

Figure 4: Visual comparison. The upper row contains the input, results by GMM and DDN, while the lower row contains the results by JORDER, ID-CGAN and our DDC-Net, respectively. Please zoom-in the results to see more details and differences.

Figure 5: Visual comparison. The upper row contains the input, results by GMM and DDN, while the lower row contains the results by JORDER, ID-CGAN and our DDC-Net, respectively. Please zoom-in the results to see more details and differences.

Figure 7: Visual comparison. The upper row contains the input, results by GMM and DDN, while the lower row contains the results by JORDER, ID-CGAN and our DDC-Net, respectively. Please zoom-in the results to see more details and differences.

Many unsolved, efforts ongoing...

How to get more and better training data?

- I. Improving hazy image synthesis (including fog, smoke, haze...)
 - □ Indoor depth is accurate, but content has mismatch
 - Outdoor depth estimation is insufficiently accurate for synthesizing haze
 - ... and even the atmospheric model itself is *only an approximation*
 - □ Ongoing efforts: developing photo-realistic rendering approaches of generating better hazy images from clean ones, e.g., GAN-based style transfer
- II. Go beyond {clean, corrupted} pairs
 - An unsupervised domain adaption or semi-supervised training perspective: we have included 4,322 unannotated realistic hazy images in RESIDE.
 - □ Signal-level unsupervised prior (loss function): TV norm, no-reference IQA...

More tailored and credible evaluation metrics?

- I. More reliable no-reference image quality assessment metrics in dehazing
- II. More "task-specific" image quality assessment metrics?

45