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▪ Visual SLAM techniques have been widely applied to unmanned vehicles.

Visual SLAM

Fisheye camera

Stereo camera

Stereo camera



▪ Augmented reality (AR) (Hololens Glass，Project Tango Tablet）

Visual SLAM

Hololens uses four 
cameras for visual SLAM

Tango use one 
fisheye camera for 

visual SLAM



▪ Operation system on cellphones

▪ Google and Apple integrate visual SLAM into their OS (iOS, Android).

Visual SLAM



▪ A lot of algorithms have been proposed for visual SLAM in the past 15 

years.

▪ MonoSLAM (2003), StructSLAM(2014)

▪ PTAM(2007), ORB-SLAM(2015)

▪ SVO(2014), LSD-SLAM(2014), DSO(2016)

▪ Pure visual SLAM system is not robust in practical applications.

▪ Visual-inertial systems become predominant for real applications.

▪ MSCKF (2007), ROVIO (2009) 

▪ OKVIS (2015), VINS(2017), ICE-BA(2018)

Visual SLAM



▪ Most visual-SLAM or visual-inertial systems choose points as the 

landmarks. 

Features in v/vi-SLAM systems



▪ Man made environments exhibit strong regularity on geometry.

Features in v/vi-SLAM systems

Natural scenes

Street

Indoor 

Underground parking 



Structural regularity - Manhattan word

1. Rich of line features
2. Three known directions (x, y, z)



▪ StructSLAM (Presented VALSE online seminar, 2016, 30th,Mar)

▪ Point + structural lines (lines aligned with x, y, z directions)

▪ The direction of lines improves the observability of camera orientation

Visual SLAM with Manhattan world model

Zhou, Huizhong, Danping, Zou, et al. "StructSLAM: Visual SLAM with building structure lines." Vehicular 
Technology, IEEE Transactions on 64.4 (2015): 1364-1375. - Special session for indoor localization



▪ A lot of man made environments can not be well described by Manhattan 

world model.

▪ Oblique/curvy structures.

Real word is full of diversity



▪ A novel visual-inertial odometry method 

is presented

▪ Use Atlanta world model to better 

describe irregular scenes.

▪ Made several improvements to existing 

VIO approach.

▪ A VIO dataset that can be used evaluate 

different methods.

StructVIO

Zou, Danping, et al. “StructVIO: Visual-inertial Odometry with Structural Regularity of Man-

made Environments.” IEEE Trans. on Robotics, 2019

Executable, tools & dataset : http://drone.sjtu.edu.cn/dpzou/project/structvio.html



▪ We can approximate an irregular world by a group of local Manhattan 

worlds. 

▪ Each one of them can be represented by a heading direction ∶ 𝜙.

Key idea – Atlanta world model

One Manhattan world Two Manhattan worlds Three Manhattan worlds



▪ Locally, the world is a Manhattan world. We can still use

▪ Three directions 

▪ Structural line features 

▪ to improve the performance of the VIO system. 

Key idea – Atlanta world model

Three directions

X,Y directions – Render the Yaw angle observable (locally)

Z direction – Render the gravity direction observable

Line features
A good complementary to point features in texture-
less scenes.



▪ We adopt the multi-state EKF filter based 

framework.

▪ Comparing with classic EKF filter

▪ Much faster since the features are not 

included in the state vector.

▪ Comparing with key-frame optimization

▪ Short feature trajectories are fully explored.

▪ State update using a single feature trajectory.

▪ Efficient but without losing much accuracy.

The framework of StructVIO

Classic EKF filter

Key-frame optimization

Multi-state EKF filter



▪ The pipeline of StructVIO is as the following:

The framework of StructVIO



▪ The state vector consists of the current IMU state, historical IMU poses,

calibration parameters, and the heading directions of local Manhattan 

worlds

State definition of StructVIO

Current IMU state

Camera-IMU calibration

Manhattan worlds

Historical IMU poses



▪ Inside of the filter

▪ Parameterization

▪ Measurement equation

StructVIO – Technical details

▪ Outside of the filter

▪ Structural line related tasks:

▪ Line detection & tracking

▪ Classification of structural lines

▪ initialization & triangulation

▪ Handling long feature tracks

▪ Manhattan world :

▪ Detection 

▪ Merging

▪ Other details

▪ Outlier rejection



▪ World frame : 

▪ Z axis aligned with gravity

▪ Starting point as the origin

▪ Local Manhattan frame:

▪ Camera frame :

▪ Z axis aligned with the optical axis toward the viewing direction.

▪ X, Y axes aligned with x,y axes of the image

▪ Starting frame: - Moving Manhattan frame

▪ The origin is located at the camera center.

▪ Three axes aligned with those of local Manhattan frame

Coordinate frames



▪ We use a camera-centric representation.

▪ Parameter space :        - use for line representation

Representation of a structural line

Camera frame

Starting frame

Parameter space

World frame



▪ In parameter space {𝐿}，a structural line can be represented by a point 

and a vertical direction. 

▪ To achieve better linearization, the intersection point can be represented 

using inverse-depth approach. We have

Structural line parameter space



▪ The structural line can be transformed into 

three axes of the starting frame        by the 

rotation 𝐿
𝑆𝑅.

Line space -> Starting frame

Line space

Starting 
frame

World 
frame

Camera 
frame



▪ The structural line can be further transformed 

into the world frame by using the heading 

direction (𝜙𝑖) of the local Manhattan world.

▪ The structural line is then transformed to the 

current camera frame by.

Starting frame -> World frame

Line space

Starting 
frame

World 
frame

Camera 
frame



▪ Apply the transformations to both the point 𝑙𝑝 and the vertical direction 𝑍

Line projection on the image

Parameter space

Starting 
frame

World 
frame

Camera 
frame

Line 
equation



▪ Line projection can be written as the following functions

, where 𝐿
𝑆𝑅 are known constants after line direction classification. 

▪ Hence we further write 

▪ We can use the above functions to derive the measurement equations.

Line projection on the image

(unknown camera-IMU 
calibration 𝐶

𝐼𝜏)

𝑖𝑚𝑙 = Π(𝑙, 𝜙𝑖 , 𝐶
𝑊𝜏)

𝑖𝑚𝑙 = Π(𝑙, 𝜙𝑖 , 𝐶
𝐼 𝜏 , 𝐶

𝑊𝜏)



▪ Measurement equation by re-projection errors

▪ The line projection at time 𝑘 is given by:

▪ The line segment detected on the image is denoted 

by :  𝑠𝑎 ↔ 𝑠𝑏

▪ Hence the re-projection error can be computed as 

the signed distances between the line projection and 

the two end points:

Measurement equations

𝑖𝑚𝑙𝑘 = Π(𝑙, 𝜙𝑖 , 𝐶
𝐼 𝜏, 𝐶

𝑊𝜏)



▪ After local linearization, we have 

▪ By stacking all observations from time 1 to time 𝑀

Measurement equations

Heading of 
Manhattan 

world

Camera-
IMU 

calibration

Historical IMU 
poses

Line 
parameters



▪ Project the residual to the left null space of 𝐻𝑙, we can get rid of the line 

parameters：

▪ The measurement equation involves

▪ 1. Heading direction of the local Manhattan world

▪ 2. IMU-camera relative pose

▪ 3. Historical IMU poses

Measurement equations



▪ Structural line related tasks:

▪ Line detection & classification of structural lines

▪ initialization & triangulation

▪ Line tracking

▪ Handling long feature tracks

Outside of the filter



▪ Structural line related tasks:

▪ Line detection & classification of structural lines

Outside of the filter

Detection of line segments Classification of line directions 
(X,Y,or Z) and identify the 

Manhattan world 𝝓𝒊

For a line segment 𝑠𝑎 ↔ 𝑠𝑏 find its Manhattan world 𝜙𝑖 and its direction (X,Y,orZ)



▪ Structural line related tasks:

▪ Initialization 

Outside of the filter

1. Longer line segment first
2. Establish the starting frame (in which Manhattan world it lies)
3. Use the middle point 𝑚 of the line segment for initialization

Camera frame World frame
Starting frame 

(Local Manhattan)
Line parameter 

space

For horizontal lines (aligned with X, Y axes of a certain Manhattan frame)



▪ Structural line related tasks:

▪ Initialization 

Outside of the filter

1. Longer line segment first
2. Establish the starting frame (in which Manhattan world it lies)
3. Use the middle point 𝑚 of the line segment for initialization

Camera frame World frame
A dummy 
Manhattan 

world 𝜙0 = 0

Line parameter 
space

For vertical lines (aligned with Z axis of any Manhattan frames)



▪ We can write the initialization process as a function: 

Outside of the filter

𝑠 :  line segment
𝜙𝑖 :  Local Manhattan frame

𝐶
𝑊𝑅: Current camera orientation
𝜌0:  Initial inverse depth

Initial covariance

Initial parameters

𝜎𝜃0
2 : small value to account line detection error (2-4 pixels)

𝜎𝜌0
2 : uncertainty of inverse depth (5 by default)



▪ Line triangulation with prior Knowledge

Outside of the filter

𝑙0 : Prior line parameters
𝑟𝑘(𝑙) : line projection error
𝒱 : set of visible views 

𝑟𝑘(𝑙)

Line projection 
error

Prior 
knowledge



▪ Line tracking

▪ 1. Sample several points on the line

▪ 2. Project those points onto the image, searching corresponding points 

perpendicular to the line projection.

▪ 3. Use the small patches around those points as the descriptor

Outside of the filter



▪ Handling long feature tracks

Outside of the filter

Dropped views {𝒟}

Normal equation in the last 
Gauss-Newton iteration

Step1 – Absorb dropped measurements into 
priori information : 

Step2 – Change the starting frame 𝑆 → 𝑆′

Current estimate Prior information



▪ Manhattan world detection :

▪ 1. starts once vertical lines are identified

▪ 2. compute the horizontal line 𝑙∞ = 𝐾−𝑇
𝑊
𝐶𝑅 0,0,1 𝑇

▪ 3. run 1-line RANSAC to detect one of the two horizontal directions (X or Y)

▪ Randomly select one line, extended it to intersect 𝑙∞ to get a vanishing point 𝑣𝑥

▪ Compute the other vanishing point 𝑣𝑦

▪ Check the consistent line segments aligned with 𝑣𝑥 or 𝑣𝑦

▪ Repeat the aforementioned steps 

▪ It is a possible Manhattan world if the maximum consensus set  contains 

sufficient inliers.

Outside of the filter



▪ Manhattan world merging :

▪ The heading direction of two Manhattan worlds could be very close.

|𝜙𝑖 − 𝜙𝑗| < Δ𝜙

▪ We merge them by removing the newly detected one and update the 

information of related structural lines

Outside of the filter



▪ Benchmark tests on Euroc dataset

Results

V2_03_difficult MH_05_difficult



▪ Euroc dataset

Results

RMSE-Rooted Mean Squared Error



▪ Euroc datasets

▪ StructVIO performs better in Machine hall, since it exhibit stronger structural 

regularity.

Results



▪ Visual-inertial data collected by Google Tango Tablet (16 test sequences) 

▪ Different buildings in SJTU campus.

▪ Indoor/Outdoor, Large illumination changes, 5~10 minutes walking

Results



▪ Ground truth data were collected by either Vicon or ArUco code.

Results

Starting segment：

Ending segment：
Align the starting segments :

Compute the ending segment’s RMSE and Max errors:



▪ Methods：OKVIS, VINS, Project Tango, Point-only, Point-line, StructVIO

Results



▪ Software building (Soft-02)

Results



▪ Micro Electronic Engineering Building (MicroA-04)

Results



▪ Mechanical Engineering Building (Mech-04)

Results



▪ Other tests

▪ Software, tools, and dataset:

Results

Atlanta world vs Manhattan world
Without dealing with 

dropped measurements for 
long feature tracks

http://drone.sjtu.edu.cn/dpzou/project/structvio.html



▪ Supports the following modes

▪ Point/Line/Structural line-only

▪ Point+line

▪ Point+Structural line

▪ Script for evaluation (revised from evo)

Software usage




